mirror of
https://github.com/roc-lang/roc.git
synced 2025-09-28 14:24:45 +00:00
1177 lines
39 KiB
Rust
1177 lines
39 KiB
Rust
use roc_can::constraint::Constraint::{self, *};
|
|
use roc_collections::all::{ImMap, MutMap, SendMap};
|
|
use roc_module::ident::TagName;
|
|
use roc_module::symbol::{ModuleId, Symbol};
|
|
use roc_region::all::Located;
|
|
use roc_types::boolean_algebra::{self, Atom};
|
|
use roc_types::solved_types::{Solved, SolvedType};
|
|
use roc_types::subs::{Content, Descriptor, FlatType, Mark, OptVariable, Rank, Subs, Variable};
|
|
use roc_types::types::Type::{self, *};
|
|
use roc_types::types::{Alias, Problem};
|
|
use roc_unify::unify::{unify, Unified};
|
|
|
|
// Type checking system adapted from Elm by Evan Czaplicki, BSD-3-Clause Licensed
|
|
// https://github.com/elm/compiler
|
|
// Thank you, Evan!
|
|
|
|
pub type SubsByModule = MutMap<ModuleId, ExposedModuleTypes>;
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub enum ExposedModuleTypes {
|
|
Invalid,
|
|
Valid(MutMap<Symbol, SolvedType>, MutMap<Symbol, Alias>),
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct Env {
|
|
pub vars_by_symbol: SendMap<Symbol, Variable>,
|
|
pub aliases: MutMap<Symbol, Alias>,
|
|
}
|
|
|
|
const DEFAULT_POOLS: usize = 8;
|
|
|
|
#[derive(Clone, Debug)]
|
|
struct Pools(Vec<Vec<Variable>>);
|
|
|
|
impl Default for Pools {
|
|
fn default() -> Self {
|
|
Pools::new(DEFAULT_POOLS)
|
|
}
|
|
}
|
|
|
|
impl Pools {
|
|
pub fn new(num_pools: usize) -> Self {
|
|
let mut pools = Vec::with_capacity(num_pools);
|
|
|
|
for _ in 0..num_pools {
|
|
pools.push(Vec::new());
|
|
}
|
|
|
|
Pools(pools)
|
|
}
|
|
|
|
pub fn len(&self) -> usize {
|
|
self.0.len()
|
|
}
|
|
|
|
pub fn get_mut(&mut self, rank: Rank) -> &mut Vec<Variable> {
|
|
self.0
|
|
.get_mut(rank.into_usize())
|
|
.unwrap_or_else(|| panic!("Compiler bug: could not find pool at rank {}", rank))
|
|
}
|
|
|
|
pub fn get(&self, rank: Rank) -> &Vec<Variable> {
|
|
self.0
|
|
.get(rank.into_usize())
|
|
.unwrap_or_else(|| panic!("Compiler bug: could not find pool at rank {}", rank))
|
|
}
|
|
|
|
pub fn iter<'a>(&'a self) -> std::slice::Iter<'a, Vec<Variable>> {
|
|
self.0.iter()
|
|
}
|
|
|
|
pub fn split_last(&self) -> (&Vec<Variable>, &[Vec<Variable>]) {
|
|
self.0
|
|
.split_last()
|
|
.unwrap_or_else(|| panic!("Attempted to split_last() on non-empy Pools"))
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
struct State {
|
|
env: Env,
|
|
mark: Mark,
|
|
}
|
|
|
|
pub fn run(
|
|
env: &Env,
|
|
problems: &mut Vec<Problem>,
|
|
mut subs: Subs,
|
|
constraint: &Constraint,
|
|
) -> (Solved<Subs>, Env) {
|
|
let mut pools = Pools::default();
|
|
let state = State {
|
|
env: env.clone(),
|
|
mark: Mark::NONE.next(),
|
|
};
|
|
let rank = Rank::toplevel();
|
|
let state = solve(
|
|
env,
|
|
state,
|
|
rank,
|
|
&mut pools,
|
|
problems,
|
|
&mut MutMap::default(),
|
|
&mut subs,
|
|
constraint,
|
|
);
|
|
|
|
(Solved(subs), state.env)
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn solve(
|
|
env: &Env,
|
|
state: State,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
problems: &mut Vec<Problem>,
|
|
cached_aliases: &mut MutMap<Symbol, Variable>,
|
|
subs: &mut Subs,
|
|
constraint: &Constraint,
|
|
) -> State {
|
|
match constraint {
|
|
True => state,
|
|
SaveTheEnvironment => {
|
|
let mut copy = state;
|
|
|
|
copy.env = env.clone();
|
|
|
|
copy
|
|
}
|
|
Eq(typ, expected_type, _region) => {
|
|
let actual = type_to_var(subs, rank, pools, cached_aliases, typ);
|
|
let expected = type_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
cached_aliases,
|
|
expected_type.get_type_ref(),
|
|
);
|
|
let Unified { vars, mismatches } = unify(subs, actual, expected);
|
|
|
|
// TODO use region when reporting a problem
|
|
problems.extend(mismatches);
|
|
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
state
|
|
}
|
|
Lookup(symbol, expected_type, _region) => {
|
|
let var = *env.vars_by_symbol.get(&symbol).unwrap_or_else(|| {
|
|
// TODO Instead of panicking, solve this as True and record
|
|
// a Problem ("module Foo does not expose `bar`") for later.
|
|
panic!(
|
|
"Could not find symbol {:?} in vars_by_symbol {:?}",
|
|
symbol, env.vars_by_symbol
|
|
)
|
|
});
|
|
|
|
// Deep copy the vars associated with this symbol before unifying them.
|
|
// Otherwise, suppose we have this:
|
|
//
|
|
// identity = \a -> a
|
|
//
|
|
// x = identity 5
|
|
//
|
|
// When we call (identity 5), it's important that we not unify
|
|
// on identity's original vars. If we do, the type of `identity` will be
|
|
// mutated to be `Int -> Int` instead of `a -> `, which would be incorrect;
|
|
// the type of `identity` is more general than that!
|
|
//
|
|
// Instead, we want to unify on a *copy* of its vars. If the copy unifies
|
|
// successfully (in this case, to `Int -> Int`), we can use that to
|
|
// infer the type of this lookup (in this case, `Int`) without ever
|
|
// having mutated the original.
|
|
//
|
|
// If this Lookup is targeting a value in another module,
|
|
// then we copy from that module's Subs into our own. If the value
|
|
// is being looked up in this module, then we use our Subs as both
|
|
// the source and destination.
|
|
let actual = deep_copy_var(subs, rank, pools, var);
|
|
let expected = type_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
cached_aliases,
|
|
expected_type.get_type_ref(),
|
|
);
|
|
let Unified { vars, mismatches } = unify(subs, actual, expected);
|
|
|
|
// TODO use region when reporting a problem
|
|
problems.extend(mismatches);
|
|
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
state
|
|
}
|
|
And(sub_constraints) => {
|
|
let mut state = state;
|
|
|
|
for sub_constraint in sub_constraints.iter() {
|
|
state = solve(
|
|
env,
|
|
state,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
cached_aliases,
|
|
subs,
|
|
sub_constraint,
|
|
);
|
|
}
|
|
|
|
state
|
|
}
|
|
Pattern(_region, _category, typ, expected) => {
|
|
let actual = type_to_var(subs, rank, pools, cached_aliases, typ);
|
|
let expected = type_to_var(subs, rank, pools, cached_aliases, expected.get_type_ref());
|
|
let Unified { vars, mismatches } = unify(subs, actual, expected);
|
|
|
|
// TODO use region when reporting a problem
|
|
problems.extend(mismatches);
|
|
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
state
|
|
}
|
|
Let(let_con) => {
|
|
match &let_con.ret_constraint {
|
|
True if let_con.rigid_vars.is_empty() => {
|
|
introduce(subs, rank, pools, &let_con.flex_vars);
|
|
|
|
// If the return expression is guaranteed to solve,
|
|
// solve the assignments themselves and move on.
|
|
solve(
|
|
&env,
|
|
state,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
cached_aliases,
|
|
subs,
|
|
&let_con.defs_constraint,
|
|
)
|
|
}
|
|
ret_con if let_con.rigid_vars.is_empty() && let_con.flex_vars.is_empty() => {
|
|
let state = solve(
|
|
env,
|
|
state,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
cached_aliases,
|
|
subs,
|
|
&let_con.defs_constraint,
|
|
);
|
|
|
|
// Add a variable for each def to new_vars_by_env.
|
|
let mut local_def_vars = ImMap::default();
|
|
|
|
for (symbol, loc_type) in let_con.def_types.iter() {
|
|
let var = type_to_var(subs, rank, pools, cached_aliases, &loc_type.value);
|
|
|
|
local_def_vars.insert(
|
|
symbol.clone(),
|
|
Located {
|
|
value: var,
|
|
region: loc_type.region,
|
|
},
|
|
);
|
|
}
|
|
|
|
let mut new_env = env.clone();
|
|
for (symbol, loc_var) in local_def_vars.iter() {
|
|
if !new_env.vars_by_symbol.contains_key(&symbol) {
|
|
new_env.vars_by_symbol.insert(symbol.clone(), loc_var.value);
|
|
}
|
|
}
|
|
|
|
let new_state = solve(
|
|
&new_env,
|
|
state,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
cached_aliases,
|
|
subs,
|
|
ret_con,
|
|
);
|
|
|
|
for (symbol, loc_var) in local_def_vars {
|
|
check_for_infinite_type(subs, problems, symbol, loc_var);
|
|
}
|
|
|
|
new_state
|
|
}
|
|
ret_con => {
|
|
let rigid_vars = &let_con.rigid_vars;
|
|
let flex_vars = &let_con.flex_vars;
|
|
|
|
// work in the next pool to localize header
|
|
let next_rank = rank.next();
|
|
|
|
// introduce variables
|
|
for &var in rigid_vars.iter().chain(flex_vars.iter()) {
|
|
subs.set_rank(var, next_rank);
|
|
}
|
|
|
|
let work_in_next_pools = |next_pools: &mut Pools| {
|
|
let pool: &mut Vec<Variable> = next_pools.get_mut(next_rank);
|
|
|
|
// Replace the contents of this pool with rigid_vars and flex_vars
|
|
pool.clear();
|
|
pool.reserve(rigid_vars.len() + flex_vars.len());
|
|
pool.extend(rigid_vars.iter());
|
|
pool.extend(flex_vars.iter());
|
|
|
|
let mut new_env = env.clone();
|
|
|
|
// Add a variable for each def to local_def_vars.
|
|
let mut local_def_vars = ImMap::default();
|
|
|
|
for (symbol, loc_type) in let_con.def_types.iter() {
|
|
let def_type = loc_type.value.clone();
|
|
|
|
let var =
|
|
type_to_var(subs, next_rank, next_pools, cached_aliases, &def_type);
|
|
|
|
local_def_vars.insert(
|
|
symbol.clone(),
|
|
Located {
|
|
value: var,
|
|
region: loc_type.region,
|
|
},
|
|
);
|
|
}
|
|
|
|
// run solver in next pool
|
|
|
|
// Solve the assignments' constraints first.
|
|
let new_state = solve(
|
|
&new_env,
|
|
state,
|
|
next_rank,
|
|
next_pools,
|
|
problems,
|
|
cached_aliases,
|
|
subs,
|
|
&let_con.defs_constraint,
|
|
);
|
|
let young_mark = new_state.mark;
|
|
let visit_mark = young_mark.next();
|
|
let final_mark = visit_mark.next();
|
|
|
|
debug_assert!({
|
|
let offenders = next_pools
|
|
.get(next_rank)
|
|
.iter()
|
|
.filter(|var| {
|
|
subs.get_without_compacting(roc_types::subs::Variable::clone(
|
|
var,
|
|
))
|
|
.rank
|
|
.into_usize()
|
|
> next_rank.into_usize()
|
|
})
|
|
.collect::<Vec<&roc_types::subs::Variable>>();
|
|
|
|
offenders.is_empty()
|
|
});
|
|
|
|
// pop pool
|
|
generalize(subs, young_mark, visit_mark, next_rank, next_pools);
|
|
|
|
next_pools.get_mut(next_rank).clear();
|
|
|
|
// check that things went well
|
|
debug_assert!({
|
|
// NOTE the `subs.redundant` check is added for the uniqueness
|
|
// inference, and does not come from elm. It's unclear whether this is
|
|
// a bug with uniqueness inference (something is redundant that
|
|
// shouldn't be) or that it just never came up in elm.
|
|
let failing: Vec<_> = rigid_vars
|
|
.iter()
|
|
.filter(|&var| {
|
|
!subs.redundant(*var)
|
|
&& subs.get_without_compacting(*var).rank != Rank::NONE
|
|
})
|
|
.collect();
|
|
|
|
if !failing.is_empty() {
|
|
println!("Rigids {:?}", &rigid_vars);
|
|
println!("Failing {:?}", failing);
|
|
}
|
|
|
|
failing.is_empty()
|
|
});
|
|
|
|
for (symbol, loc_var) in local_def_vars.iter() {
|
|
if !new_env.vars_by_symbol.contains_key(&symbol) {
|
|
new_env.vars_by_symbol.insert(symbol.clone(), loc_var.value);
|
|
}
|
|
}
|
|
|
|
// Note that this vars_by_symbol is the one returned by the
|
|
// previous call to solve()
|
|
let temp_state = State {
|
|
env: new_state.env,
|
|
mark: final_mark,
|
|
};
|
|
|
|
// Now solve the body, using the new vars_by_symbol which includes
|
|
// the assignments' name-to-variable mappings.
|
|
let new_state = solve(
|
|
&new_env,
|
|
temp_state,
|
|
rank,
|
|
next_pools,
|
|
problems,
|
|
cached_aliases,
|
|
subs,
|
|
&ret_con,
|
|
);
|
|
|
|
for (symbol, loc_var) in local_def_vars {
|
|
check_for_infinite_type(subs, problems, symbol, loc_var);
|
|
}
|
|
|
|
new_state
|
|
};
|
|
|
|
if next_rank.into_usize() < pools.len() {
|
|
work_in_next_pools(pools)
|
|
} else {
|
|
// TODO shouldn't this grow the pool, it does in the elm source
|
|
work_in_next_pools(&mut pools.clone())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn type_to_var(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
cached: &mut MutMap<Symbol, Variable>,
|
|
typ: &Type,
|
|
) -> Variable {
|
|
type_to_variable(subs, rank, pools, cached, typ)
|
|
}
|
|
|
|
fn type_to_variable(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
cached: &mut MutMap<Symbol, Variable>,
|
|
typ: &Type,
|
|
) -> Variable {
|
|
match typ {
|
|
Variable(var) => *var,
|
|
Apply(symbol, args) => {
|
|
let mut arg_vars = Vec::with_capacity(args.len());
|
|
|
|
for arg in args {
|
|
arg_vars.push(type_to_variable(subs, rank, pools, cached, arg))
|
|
}
|
|
|
|
let flat_type = FlatType::Apply(*symbol, arg_vars);
|
|
let content = Content::Structure(flat_type);
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
EmptyRec => {
|
|
let content = Content::Structure(FlatType::EmptyRecord);
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
EmptyTagUnion => {
|
|
let content = Content::Structure(FlatType::EmptyTagUnion);
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
|
|
// This case is important for the rank of boolean variables
|
|
Boolean(boolean_algebra::Bool(Atom::Variable(var), rest)) if rest.is_empty() => *var,
|
|
Boolean(b) => {
|
|
let content = Content::Structure(FlatType::Boolean(b.clone()));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
Function(args, ret_type) => {
|
|
let mut arg_vars = Vec::with_capacity(args.len());
|
|
|
|
for arg in args {
|
|
arg_vars.push(type_to_variable(subs, rank, pools, cached, arg))
|
|
}
|
|
|
|
let ret_var = type_to_variable(subs, rank, pools, cached, ret_type);
|
|
let content = Content::Structure(FlatType::Func(arg_vars, ret_var));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
Record(fields, ext) => {
|
|
let mut field_vars = MutMap::default();
|
|
|
|
for (field, field_type) in fields {
|
|
field_vars.insert(
|
|
field.clone(),
|
|
type_to_variable(subs, rank, pools, cached, field_type),
|
|
);
|
|
}
|
|
|
|
let ext_var = type_to_variable(subs, rank, pools, cached, ext);
|
|
let content = Content::Structure(FlatType::Record(field_vars, ext_var));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
TagUnion(tags, ext) => {
|
|
let mut tag_vars = MutMap::default();
|
|
|
|
for (tag, tag_argument_types) in tags {
|
|
let mut tag_argument_vars = Vec::with_capacity(tag_argument_types.len());
|
|
|
|
for arg_type in tag_argument_types {
|
|
tag_argument_vars.push(type_to_variable(subs, rank, pools, cached, arg_type));
|
|
}
|
|
|
|
tag_vars.insert(tag.clone(), tag_argument_vars);
|
|
}
|
|
|
|
let ext_var = type_to_variable(subs, rank, pools, cached, ext);
|
|
let content = Content::Structure(FlatType::TagUnion(tag_vars, ext_var));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
RecursiveTagUnion(rec_var, tags, ext) => {
|
|
let mut tag_vars = MutMap::default();
|
|
|
|
for (tag, tag_argument_types) in tags {
|
|
let mut tag_argument_vars = Vec::with_capacity(tag_argument_types.len());
|
|
|
|
for arg_type in tag_argument_types {
|
|
tag_argument_vars.push(type_to_variable(subs, rank, pools, cached, arg_type));
|
|
}
|
|
|
|
tag_vars.insert(tag.clone(), tag_argument_vars);
|
|
}
|
|
|
|
let ext_var = type_to_variable(subs, rank, pools, cached, ext);
|
|
let content =
|
|
Content::Structure(FlatType::RecursiveTagUnion(*rec_var, tag_vars, ext_var));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
Alias(symbol, args, alias_type) => {
|
|
// Cache aliases without type arguments. Commonly used aliases like `Int` would otherwise get O(n)
|
|
// different variables (once for each occurence). The recursion restriction is required
|
|
// for uniqueness types only: recursive aliases "introduce" an unbound uniqueness
|
|
// attribute in the body, when
|
|
//
|
|
// Peano : [ S Peano, Z ]
|
|
//
|
|
// becomes
|
|
//
|
|
// Peano : [ S (Attr u Peano), Z ]
|
|
//
|
|
// This `u` variable can be different between lists, so giving just one variable to
|
|
// this type is incorrect.
|
|
let is_recursive = alias_type.is_recursive();
|
|
let no_args = args.is_empty();
|
|
if no_args && !is_recursive {
|
|
if let Some(var) = cached.get(symbol) {
|
|
return *var;
|
|
}
|
|
}
|
|
|
|
let mut arg_vars = Vec::with_capacity(args.len());
|
|
let mut new_aliases = ImMap::default();
|
|
|
|
for (arg, arg_type) in args {
|
|
let arg_var = type_to_variable(subs, rank, pools, cached, arg_type);
|
|
|
|
arg_vars.push((arg.clone(), arg_var));
|
|
new_aliases.insert(arg.clone(), arg_var);
|
|
}
|
|
|
|
let alias_var = type_to_variable(subs, rank, pools, cached, alias_type);
|
|
let content = Content::Alias(*symbol, arg_vars, alias_var);
|
|
|
|
let result = register(subs, rank, pools, content);
|
|
|
|
if no_args && !is_recursive {
|
|
cached.insert(*symbol, result);
|
|
}
|
|
|
|
result
|
|
}
|
|
Erroneous(problem) => {
|
|
let content = Content::Structure(FlatType::Erroneous(problem.clone()));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn check_for_infinite_type(
|
|
subs: &mut Subs,
|
|
problems: &mut Vec<Problem>,
|
|
symbol: Symbol,
|
|
loc_var: Located<Variable>,
|
|
) {
|
|
let var = loc_var.value;
|
|
|
|
let is_uniq_infer = match subs.get(var).content {
|
|
Content::Alias(Symbol::ATTR_ATTR, _, _) => true,
|
|
_ => false,
|
|
};
|
|
|
|
while let Some((recursive, chain)) = subs.occurs(var) {
|
|
let description = subs.get(recursive);
|
|
let content = description.content;
|
|
|
|
// try to make a tag union recursive, see if that helps
|
|
match content {
|
|
Content::Structure(FlatType::TagUnion(tags, ext_var)) => {
|
|
if !is_uniq_infer {
|
|
let rec_var = subs.fresh_unnamed_flex_var();
|
|
subs.set_rank(rec_var, description.rank);
|
|
|
|
let mut new_tags = MutMap::default();
|
|
|
|
for (label, args) in &tags {
|
|
let new_args: Vec<_> = args
|
|
.iter()
|
|
.map(|var| subs.explicit_substitute(recursive, rec_var, *var))
|
|
.collect();
|
|
|
|
new_tags.insert(label.clone(), new_args);
|
|
}
|
|
|
|
let new_ext_var = subs.explicit_substitute(recursive, rec_var, ext_var);
|
|
|
|
let flat_type = FlatType::RecursiveTagUnion(rec_var, new_tags, new_ext_var);
|
|
|
|
subs.set_content(recursive, Content::Structure(flat_type));
|
|
} else {
|
|
// Sometimes, the recursion "starts" at the tag-union, not an `Attr`. Here we
|
|
// We use the path that `occurs` took to find the recursion to go one step
|
|
// forward in the recursion and find the `Attr` there.
|
|
let index = 0;
|
|
match subs.get(chain[index]).content {
|
|
Content::Alias(Symbol::ATTR_ATTR, args, _actual) => {
|
|
debug_assert!(args.len() == 2);
|
|
debug_assert!(
|
|
subs.get_root_key_without_compacting(recursive)
|
|
== subs.get_root_key_without_compacting(args[1].1)
|
|
);
|
|
|
|
// NOTE this ensures we use the same uniqueness var for the whole spine
|
|
// that might add too much uniqueness restriction.
|
|
// using `subs.fresh_unnamed_flex_var()` loosens it.
|
|
let uniq_var = args[0].1;
|
|
let tag_union_var = recursive;
|
|
let recursive = chain[index];
|
|
|
|
correct_recursive_attr(
|
|
subs,
|
|
recursive,
|
|
uniq_var,
|
|
tag_union_var,
|
|
ext_var,
|
|
&tags,
|
|
);
|
|
}
|
|
_ => circular_error(subs, problems, symbol, &loc_var),
|
|
}
|
|
}
|
|
}
|
|
Content::Alias(Symbol::ATTR_ATTR, args, _actual) => {
|
|
debug_assert!(args.len() == 2);
|
|
let uniq_var = args[0].1;
|
|
let tag_union_var = args[1].1;
|
|
let nested_description = subs.get(tag_union_var);
|
|
match nested_description.content {
|
|
Content::Structure(FlatType::TagUnion(tags, ext_var)) => {
|
|
correct_recursive_attr(
|
|
subs,
|
|
recursive,
|
|
uniq_var,
|
|
tag_union_var,
|
|
ext_var,
|
|
&tags,
|
|
);
|
|
}
|
|
_ => circular_error(subs, problems, symbol, &loc_var),
|
|
}
|
|
}
|
|
_ => circular_error(subs, problems, symbol, &loc_var),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn content_attr_alias(subs: &mut Subs, u: Variable, a: Variable) -> Content {
|
|
let actual = subs.fresh_unnamed_flex_var();
|
|
let ext_var = subs.fresh_unnamed_flex_var();
|
|
|
|
let mut attr_at_attr = MutMap::default();
|
|
attr_at_attr.insert(TagName::Private(Symbol::ATTR_AT_ATTR), vec![u, a]);
|
|
let attr_tag = FlatType::TagUnion(attr_at_attr, ext_var);
|
|
|
|
subs.set_content(actual, Content::Structure(attr_tag));
|
|
|
|
Content::Alias(
|
|
Symbol::ATTR_ATTR,
|
|
vec![("u".into(), u), ("a".into(), a)],
|
|
actual,
|
|
)
|
|
}
|
|
|
|
fn correct_recursive_attr(
|
|
subs: &mut Subs,
|
|
recursive: Variable,
|
|
uniq_var: Variable,
|
|
tag_union_var: Variable,
|
|
ext_var: Variable,
|
|
tags: &MutMap<TagName, Vec<Variable>>,
|
|
) {
|
|
let rec_var = subs.fresh_unnamed_flex_var();
|
|
let attr_var = subs.fresh_unnamed_flex_var();
|
|
|
|
let content = content_attr_alias(subs, uniq_var, rec_var);
|
|
subs.set_content(attr_var, content);
|
|
|
|
let mut new_tags = MutMap::default();
|
|
|
|
let new_ext_var = subs.explicit_substitute(recursive, attr_var, ext_var);
|
|
for (label, args) in tags {
|
|
let new_args: Vec<_> = args
|
|
.iter()
|
|
.map(|var| subs.explicit_substitute(recursive, attr_var, *var))
|
|
.collect();
|
|
|
|
new_tags.insert(label.clone(), new_args);
|
|
}
|
|
|
|
let new_tag_type = FlatType::RecursiveTagUnion(rec_var, new_tags, new_ext_var);
|
|
subs.set_content(tag_union_var, Content::Structure(new_tag_type));
|
|
|
|
let new_recursive = content_attr_alias(subs, uniq_var, tag_union_var);
|
|
|
|
subs.set_content(recursive, new_recursive);
|
|
}
|
|
|
|
fn circular_error(
|
|
subs: &mut Subs,
|
|
problems: &mut Vec<Problem>,
|
|
symbol: Symbol,
|
|
loc_var: &Located<Variable>,
|
|
) {
|
|
let var = loc_var.value;
|
|
let error_type = subs.var_to_error_type(var);
|
|
let problem = Problem::CircularType(symbol, error_type, loc_var.region);
|
|
|
|
subs.set_content(var, Content::Error);
|
|
|
|
problems.push(problem);
|
|
}
|
|
|
|
fn generalize(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
visit_mark: Mark,
|
|
young_rank: Rank,
|
|
pools: &mut Pools,
|
|
) {
|
|
let young_vars = pools.get(young_rank);
|
|
let rank_table = pool_to_rank_table(subs, young_mark, young_rank, young_vars);
|
|
|
|
// Get the ranks right for each entry.
|
|
// Start at low ranks so we only have to pass over the information once.
|
|
for (index, table) in rank_table.iter().enumerate() {
|
|
for &var in table.iter() {
|
|
adjust_rank(subs, young_mark, visit_mark, Rank::from(index), var);
|
|
}
|
|
}
|
|
|
|
let (last_pool, all_but_last_pool) = rank_table.split_last();
|
|
|
|
// For variables that have rank lowerer than young_rank, register them in
|
|
// the appropriate old pool if they are not redundant.
|
|
for vars in all_but_last_pool {
|
|
for &var in vars {
|
|
if !subs.redundant(var) {
|
|
let rank = subs.get(var).rank;
|
|
|
|
pools.get_mut(rank).push(var);
|
|
}
|
|
}
|
|
}
|
|
|
|
// For variables with rank young_rank, if rank < young_rank: register in old pool,
|
|
// otherwise generalize
|
|
for &var in last_pool {
|
|
if !subs.redundant(var) {
|
|
let mut desc = subs.get(var);
|
|
|
|
if desc.rank < young_rank {
|
|
pools.get_mut(desc.rank).push(var);
|
|
} else {
|
|
desc.rank = Rank::NONE;
|
|
subs.set(var, desc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn pool_to_rank_table(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
young_rank: Rank,
|
|
young_vars: &[Variable],
|
|
) -> Pools {
|
|
let mut pools = Pools::new(young_rank.into_usize() + 1);
|
|
|
|
// Sort the variables into buckets by rank.
|
|
for &var in young_vars.iter() {
|
|
let desc = subs.get(var);
|
|
let rank = desc.rank;
|
|
|
|
subs.set(
|
|
var,
|
|
Descriptor {
|
|
rank,
|
|
mark: young_mark,
|
|
content: desc.content,
|
|
copy: desc.copy,
|
|
},
|
|
);
|
|
|
|
debug_assert!(rank.into_usize() < young_rank.into_usize() + 1);
|
|
pools.get_mut(rank).push(var);
|
|
}
|
|
|
|
pools
|
|
}
|
|
|
|
/// Adjust variable ranks such that ranks never increase as you move deeper.
|
|
/// This way the outermost rank is representative of the entire structure.
|
|
fn adjust_rank(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
visit_mark: Mark,
|
|
group_rank: Rank,
|
|
var: Variable,
|
|
) -> Rank {
|
|
let mut desc = subs.get(var);
|
|
let mark = desc.mark;
|
|
|
|
if mark == young_mark {
|
|
desc.mark = visit_mark;
|
|
|
|
let content = desc.content.clone();
|
|
let mut marked_desc = desc.clone();
|
|
|
|
// Mark the variable as visited before adjusting content, as it may be cyclic.
|
|
subs.set(var, desc);
|
|
|
|
let max_rank = adjust_rank_content(subs, young_mark, visit_mark, group_rank, content);
|
|
marked_desc.rank = max_rank;
|
|
|
|
debug_assert_eq!(marked_desc.mark, visit_mark);
|
|
|
|
subs.set(var, marked_desc);
|
|
|
|
max_rank
|
|
} else if mark == visit_mark {
|
|
desc.rank
|
|
} else {
|
|
let min_rank = group_rank.min(desc.rank);
|
|
|
|
// TODO from elm-compiler: how can min_rank ever be group_rank?
|
|
desc.rank = min_rank;
|
|
desc.mark = visit_mark;
|
|
|
|
subs.set(var, desc);
|
|
|
|
min_rank
|
|
}
|
|
}
|
|
|
|
fn adjust_rank_content(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
visit_mark: Mark,
|
|
group_rank: Rank,
|
|
content: Content,
|
|
) -> Rank {
|
|
use roc_types::subs::Content::*;
|
|
use roc_types::subs::FlatType::*;
|
|
|
|
match content {
|
|
FlexVar(_) | RigidVar(_) | Error => group_rank,
|
|
|
|
Structure(flat_type) => {
|
|
match flat_type {
|
|
Apply(_, args) => {
|
|
let mut rank = Rank::toplevel();
|
|
|
|
for var in args {
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
Func(arg_vars, ret_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, ret_var);
|
|
|
|
for var in arg_vars {
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
EmptyRecord => {
|
|
// from elm-compiler: THEORY: an empty record never needs to get generalized
|
|
Rank::toplevel()
|
|
}
|
|
|
|
EmptyTagUnion => Rank::toplevel(),
|
|
|
|
Record(fields, ext_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, ext_var);
|
|
|
|
for (_, var) in fields {
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
TagUnion(tags, ext_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, ext_var);
|
|
|
|
for var in tags.values().flatten() {
|
|
rank =
|
|
rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, *var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
RecursiveTagUnion(rec_var, tags, ext_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, rec_var);
|
|
rank = rank.max(adjust_rank(
|
|
subs, young_mark, visit_mark, group_rank, ext_var,
|
|
));
|
|
|
|
for var in tags.values().flatten() {
|
|
rank =
|
|
rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, *var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
Boolean(b) => {
|
|
let mut rank = Rank::toplevel();
|
|
for var in b.variables() {
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
Erroneous(_) => group_rank,
|
|
}
|
|
}
|
|
|
|
Alias(_, args, _) => {
|
|
let mut rank = Rank::toplevel();
|
|
|
|
// from elm-compiler: THEORY: anything in the real_var would be Rank::toplevel()
|
|
for (_, var) in args {
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Introduce some variables to Pools at the given rank.
|
|
/// Also, set each of their ranks in Subs to be the given rank.
|
|
fn introduce(subs: &mut Subs, rank: Rank, pools: &mut Pools, vars: &[Variable]) {
|
|
let pool: &mut Vec<Variable> = pools.get_mut(rank);
|
|
|
|
for &var in vars.iter() {
|
|
subs.set_rank(var, rank);
|
|
}
|
|
|
|
pool.extend(vars);
|
|
}
|
|
|
|
fn deep_copy_var(subs: &mut Subs, rank: Rank, pools: &mut Pools, var: Variable) -> Variable {
|
|
let copy = deep_copy_var_help(subs, rank, pools, var);
|
|
|
|
subs.restore(var);
|
|
|
|
copy
|
|
}
|
|
|
|
fn deep_copy_var_help(
|
|
subs: &mut Subs,
|
|
max_rank: Rank,
|
|
pools: &mut Pools,
|
|
var: Variable,
|
|
) -> Variable {
|
|
use roc_types::subs::Content::*;
|
|
use roc_types::subs::FlatType::*;
|
|
|
|
let desc = subs.get_without_compacting(var);
|
|
|
|
if let Some(copy) = desc.copy.into_variable() {
|
|
return copy;
|
|
} else if desc.rank != Rank::NONE {
|
|
return var;
|
|
}
|
|
|
|
let make_descriptor = |content| Descriptor {
|
|
content,
|
|
rank: max_rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
};
|
|
|
|
let content = desc.content;
|
|
let copy = subs.fresh(make_descriptor(content.clone()));
|
|
|
|
pools.get_mut(max_rank).push(copy);
|
|
|
|
// Link the original variable to the new variable. This lets us
|
|
// avoid making multiple copies of the variable we are instantiating.
|
|
//
|
|
// Need to do this before recursively copying to avoid looping.
|
|
subs.set(
|
|
var,
|
|
Descriptor {
|
|
content: content.clone(),
|
|
rank: desc.rank,
|
|
mark: Mark::NONE,
|
|
copy: copy.into(),
|
|
},
|
|
);
|
|
|
|
// Now we recursively copy the content of the variable.
|
|
// We have already marked the variable as copied, so we
|
|
// will not repeat this work or crawl this variable again.
|
|
match content {
|
|
Structure(flat_type) => {
|
|
let new_flat_type = match flat_type {
|
|
Apply(symbol, args) => {
|
|
let args = args
|
|
.into_iter()
|
|
.map(|var| deep_copy_var_help(subs, max_rank, pools, var))
|
|
.collect();
|
|
|
|
Apply(symbol, args)
|
|
}
|
|
|
|
Func(arg_vars, ret_var) => {
|
|
let new_ret_var = deep_copy_var_help(subs, max_rank, pools, ret_var);
|
|
let arg_vars = arg_vars
|
|
.into_iter()
|
|
.map(|var| deep_copy_var_help(subs, max_rank, pools, var))
|
|
.collect();
|
|
|
|
Func(arg_vars, new_ret_var)
|
|
}
|
|
|
|
same @ EmptyRecord | same @ EmptyTagUnion | same @ Erroneous(_) => same,
|
|
|
|
Record(fields, ext_var) => {
|
|
let mut new_fields = MutMap::default();
|
|
|
|
for (label, var) in fields {
|
|
new_fields.insert(label, deep_copy_var_help(subs, max_rank, pools, var));
|
|
}
|
|
|
|
Record(
|
|
new_fields,
|
|
deep_copy_var_help(subs, max_rank, pools, ext_var),
|
|
)
|
|
}
|
|
|
|
TagUnion(tags, ext_var) => {
|
|
let mut new_tags = MutMap::default();
|
|
|
|
for (tag, vars) in tags {
|
|
let new_vars: Vec<Variable> = vars
|
|
.into_iter()
|
|
.map(|var| deep_copy_var_help(subs, max_rank, pools, var))
|
|
.collect();
|
|
new_tags.insert(tag, new_vars);
|
|
}
|
|
|
|
TagUnion(new_tags, deep_copy_var_help(subs, max_rank, pools, ext_var))
|
|
}
|
|
|
|
RecursiveTagUnion(rec_var, tags, ext_var) => {
|
|
let mut new_tags = MutMap::default();
|
|
|
|
for (tag, vars) in tags {
|
|
let new_vars: Vec<Variable> = vars
|
|
.into_iter()
|
|
.map(|var| deep_copy_var_help(subs, max_rank, pools, var))
|
|
.collect();
|
|
new_tags.insert(tag, new_vars);
|
|
}
|
|
|
|
RecursiveTagUnion(
|
|
deep_copy_var_help(subs, max_rank, pools, rec_var),
|
|
new_tags,
|
|
deep_copy_var_help(subs, max_rank, pools, ext_var),
|
|
)
|
|
}
|
|
|
|
Boolean(b) => {
|
|
let mut mapper = |var| deep_copy_var_help(subs, max_rank, pools, var);
|
|
|
|
Boolean(b.map_variables(&mut mapper))
|
|
}
|
|
};
|
|
|
|
subs.set(copy, make_descriptor(Structure(new_flat_type)));
|
|
|
|
copy
|
|
}
|
|
|
|
FlexVar(_) | Error => copy,
|
|
|
|
RigidVar(name) => {
|
|
subs.set(copy, make_descriptor(FlexVar(Some(name))));
|
|
|
|
copy
|
|
}
|
|
|
|
Alias(symbol, args, real_type_var) => {
|
|
let new_args = args
|
|
.into_iter()
|
|
.map(|(name, var)| (name, deep_copy_var_help(subs, max_rank, pools, var)))
|
|
.collect();
|
|
let new_real_type_var = deep_copy_var_help(subs, max_rank, pools, real_type_var);
|
|
let new_content = Alias(symbol, new_args, new_real_type_var);
|
|
|
|
subs.set(copy, make_descriptor(new_content));
|
|
|
|
copy
|
|
}
|
|
}
|
|
}
|
|
|
|
fn register(subs: &mut Subs, rank: Rank, pools: &mut Pools, content: Content) -> Variable {
|
|
let var = subs.fresh(Descriptor {
|
|
content,
|
|
rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
});
|
|
|
|
pools.get_mut(rank).push(var);
|
|
|
|
var
|
|
}
|