roc/crates/compiler/builtins/bitcode/build.zig

131 lines
4.2 KiB
Zig

const std = @import("std");
const mem = std.mem;
const Builder = std.build.Builder;
const CrossTarget = std.zig.CrossTarget;
const Arch = std.Target.Cpu.Arch;
pub fn build(b: *Builder) void {
// b.setPreferredReleaseMode(.Debug);
b.setPreferredReleaseMode(.ReleaseFast);
const mode = b.standardReleaseOptions();
// Options
const fallback_main_path = "./src/main.zig";
const main_path_desc = b.fmt("Override path to main.zig. Used by \"ir\" and \"test\". Defaults to \"{s}\". ", .{fallback_main_path});
const main_path = b.option([]const u8, "main-path", main_path_desc) orelse fallback_main_path;
// Tests
var main_tests = b.addTest(main_path);
main_tests.setBuildMode(mode);
main_tests.linkSystemLibrary("c");
const test_step = b.step("test", "Run tests");
test_step.dependOn(&main_tests.step);
// Targets
const host_target = b.standardTargetOptions(.{
.default_target = CrossTarget{
.cpu_model = .baseline,
// TODO allow for native target for maximum speed
},
});
const linux32_target = makeLinux32Target();
const linux64_target = makeLinux64Target();
const wasm32_target = makeWasm32Target();
// LLVM IR
generateLlvmIrFile(b, mode, host_target, main_path, "ir", "builtins-host");
generateLlvmIrFile(b, mode, linux32_target, main_path, "ir-i386", "builtins-i386");
generateLlvmIrFile(b, mode, linux64_target, main_path, "ir-x86_64", "builtins-x86_64");
generateLlvmIrFile(b, mode, wasm32_target, main_path, "ir-wasm32", "builtins-wasm32");
// Generate Object Files
generateObjectFile(b, mode, host_target, main_path, "object", "builtins-host");
generateObjectFile(b, mode, wasm32_target, main_path, "wasm32-object", "builtins-wasm32");
removeInstallSteps(b);
}
// TODO zig 0.9 can generate .bc directly, switch to that when it is released!
fn generateLlvmIrFile(
b: *Builder,
mode: std.builtin.Mode,
target: CrossTarget,
main_path: []const u8,
step_name: []const u8,
object_name: []const u8,
) void {
const obj = b.addObject(object_name, main_path);
obj.setBuildMode(mode);
obj.strip = true;
obj.emit_llvm_ir = .emit;
obj.emit_llvm_bc = .emit;
obj.emit_bin = .no_emit;
obj.target = target;
const ir = b.step(step_name, "Build LLVM ir");
ir.dependOn(&obj.step);
}
// Generate Object File
// TODO: figure out how to get this to emit symbols that are only scoped to linkage (global but hidden).
// @bhansconnect: I believe anything with global scope will still be preserved by the linker even if it
// is never called. I think it could theoretically be called by a dynamic lib that links to the executable
// or something similar.
fn generateObjectFile(
b: *Builder,
mode: std.builtin.Mode,
target: CrossTarget,
main_path: []const u8,
step_name: []const u8,
object_name: []const u8,
) void {
const obj = b.addObject(object_name, main_path);
obj.setBuildMode(mode);
obj.linkSystemLibrary("c");
obj.setOutputDir(".");
obj.strip = true;
obj.target = target;
obj.link_function_sections = true;
const obj_step = b.step(step_name, "Build object file for linking");
obj_step.dependOn(&obj.step);
}
fn makeLinux32Target() CrossTarget {
var target = CrossTarget.parse(.{}) catch unreachable;
target.cpu_arch = std.Target.Cpu.Arch.i386;
target.os_tag = std.Target.Os.Tag.linux;
target.abi = std.Target.Abi.musl;
return target;
}
fn makeLinux64Target() CrossTarget {
var target = CrossTarget.parse(.{}) catch unreachable;
target.cpu_arch = std.Target.Cpu.Arch.x86_64;
target.os_tag = std.Target.Os.Tag.linux;
target.abi = std.Target.Abi.musl;
return target;
}
fn makeWasm32Target() CrossTarget {
var target = CrossTarget.parse(.{}) catch unreachable;
// 32-bit wasm
target.cpu_arch = std.Target.Cpu.Arch.wasm32;
target.os_tag = std.Target.Os.Tag.freestanding;
target.abi = std.Target.Abi.none;
return target;
}
fn removeInstallSteps(b: *Builder) void {
for (b.top_level_steps.items) |top_level_step, i| {
const name = top_level_step.step.name;
if (mem.eql(u8, name, "install") or mem.eql(u8, name, "uninstall")) {
_ = b.top_level_steps.swapRemove(i);
}
}
}