roc/compiler/load/src/file.rs
2020-08-01 15:42:22 -04:00

1066 lines
40 KiB
Rust

use bumpalo::Bump;
use roc_builtins::std::{Mode, StdLib};
use roc_can::constraint::Constraint;
use roc_can::def::Declaration;
use roc_can::module::{canonicalize_module_defs, Module};
use roc_collections::all::{default_hasher, MutMap, MutSet};
use roc_constrain::module::{
constrain_imports, load_builtin_aliases, pre_constrain_imports, ConstrainableImports,
};
use roc_constrain::module::{constrain_module, ExposedModuleTypes, SubsByModule};
use roc_module::ident::{Ident, ModuleName};
use roc_module::symbol::{IdentIds, Interns, ModuleId, ModuleIds, Symbol};
use roc_parse::ast::{self, Attempting, ExposesEntry, ImportsEntry};
use roc_parse::module::module_defs;
use roc_parse::parser::{Fail, Parser, State};
use roc_region::all::{Located, Region};
use roc_solve::module::SolvedModule;
use roc_solve::solve;
use roc_types::solved_types::Solved;
use roc_types::subs::{Subs, VarStore, Variable};
use std::collections::{HashMap, HashSet};
use std::fs;
use std::io;
use std::path::{Path, PathBuf};
use std::str::from_utf8_unchecked;
use std::sync::{Arc, Mutex};
use tokio::sync::mpsc;
use tokio::task::spawn_blocking;
/// Filename extension for normal Roc modules
const ROC_FILE_EXTENSION: &str = "roc";
/// The . in between module names like Foo.Bar.Baz
const MODULE_SEPARATOR: char = '.';
#[derive(Debug)]
pub struct LoadedModule {
pub module_id: ModuleId,
pub interns: Interns,
pub solved: Solved<Subs>,
pub can_problems: Vec<roc_problem::can::Problem>,
pub type_problems: Vec<solve::TypeError>,
pub declarations_by_id: MutMap<ModuleId, Vec<Declaration>>,
pub exposed_vars_by_symbol: Vec<(Symbol, Variable)>,
pub src: Box<str>,
}
#[derive(Debug, Clone)]
struct Env {
pub src_dir: PathBuf,
}
#[derive(Debug)]
pub enum BuildProblem<'a> {
FileNotFound(&'a Path),
}
#[derive(Debug)]
struct ModuleHeader {
module_id: ModuleId,
module_name: ModuleName,
exposed_ident_ids: IdentIds,
deps_by_name: MutMap<ModuleName, ModuleId>,
imported_modules: MutSet<ModuleId>,
exposes: Vec<Symbol>,
exposed_imports: MutMap<Ident, (Symbol, Region)>,
src: Box<[u8]>,
}
#[derive(Debug)]
enum Msg {
Header(ModuleHeader),
Constrained {
module: Module,
declarations: Vec<Declaration>,
imported_modules: MutSet<ModuleId>,
src: Box<str>,
constraint: Constraint,
ident_ids: IdentIds,
problems: Vec<roc_problem::can::Problem>,
var_store: VarStore,
},
Solved {
src: Box<str>,
module_id: ModuleId,
solved_module: SolvedModule,
solved_subs: Arc<Solved<Subs>>,
},
}
#[derive(Debug)]
pub enum LoadingProblem {
FileProblem {
filename: PathBuf,
error: io::ErrorKind,
},
ParsingFailed {
filename: PathBuf,
fail: Fail,
},
MsgChannelDied,
TriedToImportAppModule,
}
enum MaybeShared<'a, 'b, A, B> {
Shared(Arc<Mutex<A>>, Arc<Mutex<B>>),
Unique(&'a mut A, &'b mut B),
}
type SharedModules<'a, 'b> = MaybeShared<'a, 'b, ModuleIds, IdentIdsByModule>;
type IdentIdsByModule = MutMap<ModuleId, IdentIds>;
type MsgSender = mpsc::Sender<Msg>;
type MsgReceiver = mpsc::Receiver<Msg>;
/// The loading process works like this, starting from the given filename (e.g. "main.roc"):
///
/// 1. Open the file.
/// 2. Parse the module's header.
/// 3. For each of its imports, send a message on the channel to the coordinator thread, which
/// will repeat this process to load that module - starting with step 1.
/// 4. Add everything we were able to import unqualified to the module's default scope.
/// 5. Parse the module's defs.
/// 6. Canonicalize the module.
/// 7. Before type checking, block on waiting for type checking to complete on all imports.
/// (Since Roc doesn't allow cyclic dependencies, this ctypeot deadlock.)
/// 8. Type check the module and create type annotations for its top-level declarations.
/// 9. Report the completed type annotation to the coordinator thread, so other modules
/// that are waiting in step 7 can unblock.
///
/// The loaded_modules argument specifies which modules have already been loaded.
/// It typically contains *at least* the standard modules, but is empty when loading
/// the standard modules themselves.
///
/// If we're just type-checking everything (e.g. running `roc check` at the command line),
/// we can stop there. However, if we're generating code, then there are additional steps.
///
/// 10. After reporting the completed type annotation, we have all the information necessary
/// to monomorphize. However, since we want to monomorphize in parallel without
/// duplicating work, we do monomorphization in two steps. First, we go through and
/// determine all the specializations this module *wants*. We compute the hashes
/// and report them to the coordinator thread, along with the mono::expr::Expr values of
/// the current function's body. At this point, we have not yet begun to assemble Procs;
/// all we've done is send a list of requetsted specializations to the coordinator.
/// 11. The coordinator works through the specialization requests in parallel, adding them
/// to a global map once they're finished. Performing one specialization may result
/// in requests for others; these are added to the queue and worked through as normal.
/// This process continues until *both* all modules have reported that they've finished
/// adding specialization requests to the queue, *and* the queue is empty (including
/// of any requestss that were added in the course of completing other requests). Now
/// we have a map of specializations, and everything was assembled in parallel with
/// no unique specialization ever getting assembled twice (meanaing no wasted effort).
/// 12. Now that we have our final map of specializations, we can proceed to code gen!
/// As long as the specializations are stored in a per-ModuleId map, we can also
/// parallelize this code gen. (e.g. in dev builds, building separate LLVM modules
/// and then linking them together, and possibly caching them by the hash of their
/// specializations, so if none of their specializations changed, we don't even need
/// to rebuild the module and can link in the cached one directly.)
#[allow(clippy::cognitive_complexity)]
pub async fn load<'a>(
stdlib: &StdLib,
src_dir: PathBuf,
filename: PathBuf,
mut exposed_types: SubsByModule,
) -> Result<LoadedModule, LoadingProblem> {
use self::MaybeShared::*;
let mut type_problems = Vec::new();
let mut can_problems = Vec::new();
let env = Env {
src_dir: src_dir.clone(),
};
let (msg_tx, mut msg_rx): (MsgSender, MsgReceiver) = mpsc::channel(1024);
let mut module_ids = ModuleIds::default();
let mut root_exposed_ident_ids: IdentIdsByModule = IdentIds::exposed_builtins(0);
// This is the "final" list of IdentIds, after canonicalization and constraint gen
// have completed for a given module.
let mut constrained_ident_ids = IdentIds::exposed_builtins(0);
let mut headers_parsed = MutSet::default();
// Load the root module synchronously; we can't proceed until we have its id.
let root_id = load_filename(
filename,
msg_tx.clone(),
Unique(&mut module_ids, &mut root_exposed_ident_ids),
)?;
headers_parsed.insert(root_id);
// From now on, these will be used by multiple threads; time to make an Arc<Mutex<_>>!
let arc_modules = Arc::new(Mutex::new(module_ids));
let ident_ids_by_module: Arc<Mutex<IdentIdsByModule>> =
Arc::new(Mutex::new(root_exposed_ident_ids));
// All the dependent modules we've already begun loading -
// meaning we should never kick off another load_module on them!
let mut loading_started: MutSet<ModuleId> = MutSet::default();
// If the root module we're compiling happens to be an interface,
// it's possible that something else will import it. That will
// necessarily cause a cyclic import error, but in the meantime
// we still shouldn't load it.
loading_started.insert(root_id);
// The declarations we'll ultimately be returning
let mut declarations_by_id: MutMap<ModuleId, Vec<Declaration>> = MutMap::default();
let mut exposed_symbols_by_module: MutMap<ModuleId, MutSet<Symbol>> = MutMap::default();
// Modules which are waiting for certain headers to be parsed
let mut waiting_for_headers: MutMap<ModuleId, MutSet<ModuleId>> = MutMap::default();
// When the key ModuleId gets solved, iterate through each of the given modules
// and remove that ModuleId from the appropriate waiting_for_headers entry.
// If the relevant module's waiting_for_headers entry is now empty, canonicalize the module.
let mut header_listeners: MutMap<ModuleId, Vec<ModuleId>> = MutMap::default();
let mut unparsed_modules: MutMap<ModuleId, ModuleHeader> = MutMap::default();
// Modules which are waiting for certain deps to be solved
let mut waiting_for_solve: MutMap<ModuleId, MutSet<ModuleId>> = MutMap::default();
// When the key ModuleId gets solved, iterate through each of the given modules
// and remove that ModuleId from the appropriate waiting_for_solve entry.
// If the relevant module's waiting_for_solve entry is now empty, solve the module.
let mut solve_listeners: MutMap<ModuleId, Vec<ModuleId>> = MutMap::default();
#[allow(clippy::type_complexity)]
let mut unsolved_modules: MutMap<
ModuleId,
(Module, Box<str>, MutSet<ModuleId>, Constraint, VarStore),
> = MutMap::default();
// Parse and canonicalize the module's deps
while let Some(msg) = msg_rx.recv().await {
use self::Msg::*;
match msg {
Header(header) => {
let home = header.module_id;
let deps_by_name = &header.deps_by_name;
let mut headers_needed =
HashSet::with_capacity_and_hasher(deps_by_name.len(), default_hasher());
headers_parsed.insert(home);
for dep_id in deps_by_name.values() {
if !headers_parsed.contains(&dep_id) {
headers_needed.insert(*dep_id);
}
}
// This was a dependency. Write it down and keep processing messaages.
let mut exposed_symbols: MutSet<Symbol> =
HashSet::with_capacity_and_hasher(header.exposes.len(), default_hasher());
// TODO can we avoid this loop by storing them as a Set in Header to begin with?
for symbol in header.exposes.iter() {
exposed_symbols.insert(*symbol);
}
debug_assert!(!exposed_symbols_by_module.contains_key(&home));
exposed_symbols_by_module.insert(home, exposed_symbols);
// Notify all the listeners that headers are now available for this module.
if let Some(listeners) = header_listeners.remove(&home) {
for listener_id in listeners {
// This listener is longer waiting for this module,
// because this module's headers are now available!
let waiting_for = waiting_for_headers
.get_mut(&listener_id)
.expect("Unable to find module ID in waiting_for_headers");
waiting_for.remove(&home);
// If it's no longer waiting for anything else, solve it.
if waiting_for.is_empty() {
let header = unparsed_modules
.remove(&listener_id)
.expect("Could not find listener ID in unparsed_modules");
let exposed_symbols = exposed_symbols_by_module
.remove(&listener_id)
.expect("Could not find listener ID in exposed_symbols_by_module");
spawn_parse_and_constrain(
header,
stdlib.mode,
Arc::clone(&arc_modules),
Arc::clone(&ident_ids_by_module),
&exposed_types,
exposed_symbols.clone(),
&mut waiting_for_solve,
msg_tx.clone(),
)
}
}
}
// If any of our deps weren't loaded before, start loading them.
for (dep_name, dep_id) in deps_by_name.iter() {
if !loading_started.contains(&dep_id) {
// Record that we've started loading the module *before*
// we actually start loading it.
loading_started.insert(*dep_id);
let env = env.clone();
let msg_tx = msg_tx.clone();
let dep_name = dep_name.clone();
// Provide mutexes of ModuleIds and IdentIds by module,
// so other modules can populate them as they load.
let shared =
Shared(Arc::clone(&arc_modules), Arc::clone(&ident_ids_by_module));
// Start loading this module in the background.
spawn_blocking(move || load_module(env, dep_name, msg_tx, shared));
}
}
if headers_needed.is_empty() {
let exposed_symbols = exposed_symbols_by_module
.remove(&home)
.expect("Could not find listener ID in exposed_symbols_by_module");
spawn_parse_and_constrain(
header,
stdlib.mode,
Arc::clone(&arc_modules),
Arc::clone(&ident_ids_by_module),
&exposed_types,
exposed_symbols,
&mut waiting_for_solve,
msg_tx.clone(),
)
} else {
// We will have to wait for our deps' headers to be parsed,
// so we can access their IdentId, which we need for canonicalization.
debug_assert!(!unparsed_modules.contains_key(&home));
unparsed_modules.insert(home, header);
// Register a listener with each of these.
for dep_id in headers_needed.iter() {
let listeners = header_listeners
.entry(*dep_id)
.or_insert_with(|| Vec::with_capacity(1));
(*listeners).push(home);
}
debug_assert!(!waiting_for_headers.contains_key(&home));
waiting_for_headers.insert(home, headers_needed);
}
}
Constrained {
module,
declarations,
src,
ident_ids,
imported_modules,
constraint,
problems,
var_store,
} => {
can_problems.extend(problems);
let module_id = module.module_id;
let waiting_for = waiting_for_solve.get_mut(&module_id).unwrap_or_else(|| {
panic!(
"Could not find module ID {:?} in waiting_for_solve",
module_id
)
});
// Record the final IdentIds
debug_assert!(!constrained_ident_ids.contains_key(&module_id));
constrained_ident_ids.insert(module_id, ident_ids);
// It's possible that some modules have been solved since
// we began waiting for them. Remove those from waiting_for,
// because we no longer need to wait for them!
waiting_for.retain(|id| !exposed_types.contains_key(id));
declarations_by_id.insert(module_id, declarations);
if waiting_for.is_empty() {
// All of our dependencies have already been solved. Great!
// That means we can proceed directly to solving.
spawn_solve_module(
module,
src,
constraint,
var_store,
imported_modules,
msg_tx.clone(),
&mut exposed_types,
stdlib,
);
} else {
// We will have to wait for our dependencies to be solved.
debug_assert!(!unsolved_modules.contains_key(&module_id));
unsolved_modules.insert(
module_id,
(module, src, imported_modules, constraint, var_store),
);
// Register a listener with each of these.
for dep_id in waiting_for.iter() {
let listeners = solve_listeners
.entry(*dep_id)
.or_insert_with(|| Vec::with_capacity(1));
(*listeners).push(module_id);
}
}
}
Solved {
src,
module_id,
solved_module,
solved_subs,
} => {
type_problems.extend(solved_module.problems);
if module_id == root_id {
// Once we've solved the originally requested module, we're done!
msg_rx.close();
let solved = Arc::try_unwrap(solved_subs).unwrap_or_else(|_| {
panic!("There were still outstanding Arc references to Solved<Subs>")
});
let module_ids = Arc::try_unwrap(arc_modules)
.unwrap_or_else(|_| {
panic!("There were still outstanding Arc references to module_ids")
})
.into_inner()
.expect("Unwrapping mutex for module_ids");
let interns = Interns {
module_ids,
all_ident_ids: constrained_ident_ids,
};
return Ok(LoadedModule {
module_id: root_id,
interns,
solved,
can_problems,
type_problems,
declarations_by_id,
exposed_vars_by_symbol: solved_module.exposed_vars_by_symbol,
src,
});
} else {
// This was a dependency. Write it down and keep processing messages.
debug_assert!(!exposed_types.contains_key(&module_id));
exposed_types.insert(
module_id,
ExposedModuleTypes::Valid(
solved_module.solved_types,
solved_module.aliases,
),
);
// Notify all the listeners that this solved.
if let Some(listeners) = solve_listeners.remove(&module_id) {
for listener_id in listeners {
// This listener is longer waiting for this module,
// because this module has now been solved!
let waiting_for = waiting_for_solve
.get_mut(&listener_id)
.expect("Unable to find module ID in waiting_for_solve");
waiting_for.remove(&module_id);
// If it's no longer waiting for anything else, solve it.
if waiting_for.is_empty() {
let (module, src, imported_modules, constraint, var_store) =
unsolved_modules
.remove(&listener_id)
.expect("Could not find listener ID in unsolved_modules");
spawn_solve_module(
module,
src,
constraint,
var_store,
imported_modules,
msg_tx.clone(),
&mut exposed_types,
stdlib,
);
}
}
}
}
}
}
}
// The msg_rx receiver closed unexpectedly before we finished solving everything
Err(LoadingProblem::MsgChannelDied)
}
/// Load a module by its module name, rather than by its filename
fn load_module(
env: Env,
module_name: ModuleName,
msg_tx: MsgSender,
module_ids: SharedModules<'_, '_>,
) -> Result<ModuleId, LoadingProblem> {
let mut filename = PathBuf::new();
filename.push(env.src_dir);
// Convert dots in module name to directories
for part in module_name.as_str().split(MODULE_SEPARATOR) {
filename.push(part);
}
// End with .roc
filename.set_extension(ROC_FILE_EXTENSION);
load_filename(filename, msg_tx, module_ids)
}
fn parse_src(
filename: PathBuf,
msg_tx: MsgSender,
module_ids: SharedModules<'_, '_>,
src_bytes: &[u8],
) -> Result<ModuleId, LoadingProblem> {
let state = State::new(src_bytes, Attempting::Module);
let arena = Bump::new();
// TODO figure out if there's a way to address this clippy error
// without introducing a borrow error. ("let and return" is literally
// what the borrow checker suggested using here to fix the problem, so...)
#[allow(clippy::let_and_return)]
let answer = match roc_parse::module::header().parse(&arena, state) {
Ok((ast::Module::Interface { header }, state)) => {
let module_id = send_header(
header.name,
header.exposes.into_bump_slice(),
header.imports.into_bump_slice(),
state,
module_ids,
msg_tx,
);
Ok(module_id)
}
Ok((ast::Module::App { header }, state)) => match module_ids {
MaybeShared::Shared(_, _) => {
// If this is Shared, it means we're trying to import
// an app module which is not the root. Not alllowed!
Err(LoadingProblem::TriedToImportAppModule)
}
unique_modules @ MaybeShared::Unique(_, _) => {
let module_id = send_header(
header.name,
header.provides.into_bump_slice(),
header.imports.into_bump_slice(),
state,
unique_modules,
msg_tx,
);
Ok(module_id)
}
},
Err((fail, _)) => Err(LoadingProblem::ParsingFailed { filename, fail }),
};
answer
}
/// Load a module by its filename
fn load_filename(
filename: PathBuf,
msg_tx: MsgSender,
module_ids: SharedModules<'_, '_>,
) -> Result<ModuleId, LoadingProblem> {
match fs::read(&filename) {
Ok(bytes) => parse_src(filename, msg_tx, module_ids, bytes.as_ref()),
Err(err) => Err(LoadingProblem::FileProblem {
filename,
error: err.kind(),
}),
}
}
fn send_header<'a>(
name: Located<roc_parse::header::ModuleName<'a>>,
exposes: &'a [Located<ExposesEntry<'a>>],
imports: &'a [Located<ImportsEntry<'a>>],
state: State<'a>,
shared_modules: SharedModules<'_, '_>,
msg_tx: MsgSender,
) -> ModuleId {
use MaybeShared::*;
let declared_name: ModuleName = name.value.as_str().into();
// TODO check to see if declared_name is consistent with filename.
// If it isn't, report a problem!
let mut imported: Vec<(ModuleName, Vec<Ident>, Region)> = Vec::with_capacity(imports.len());
let mut imported_modules: MutSet<ModuleId> = MutSet::default();
let mut scope_size = 0;
for loc_entry in imports {
let (module_name, exposed) = exposed_from_import(&loc_entry.value);
scope_size += exposed.len();
imported.push((module_name, exposed, loc_entry.region));
}
let num_exposes = exposes.len();
let mut deps_by_name: MutMap<ModuleName, ModuleId> =
HashMap::with_capacity_and_hasher(num_exposes, default_hasher());
let mut exposed: Vec<Symbol> = Vec::with_capacity(num_exposes);
// Make sure the module_ids has ModuleIds for all our deps,
// then record those ModuleIds in can_module_ids for later.
let mut scope: MutMap<Ident, (Symbol, Region)> =
HashMap::with_capacity_and_hasher(scope_size, default_hasher());
let home: ModuleId;
let ident_ids = match shared_modules {
Shared(arc_module_ids, arc_ident_ids) => {
// Lock just long enough to perform the minimal operations necessary.
let mut module_ids = (*arc_module_ids).lock().expect("Failed to acquire lock for interning module IDs, presumably because a thread panicked.");
let mut ident_ids_by_module = (*arc_ident_ids).lock().expect("Failed to acquire lock for interning ident IDs, presumably because a thread panicked.");
home = module_ids.get_or_insert(&declared_name.as_inline_str());
// Ensure this module has an entry in the exposed_ident_ids map.
ident_ids_by_module
.entry(home)
.or_insert_with(IdentIds::default);
// This can't possibly fail, because we just ensured it
// has an entry with this key.
let ident_ids = ident_ids_by_module.get_mut(&home).unwrap();
let mut imports_to_expose = Vec::with_capacity(imports.len());
// For each of our imports, add an entry to deps_by_name
//
// e.g. for `imports [ Foo.{ bar } ]`, add `Foo` to deps_by_name
for (module_name, exposed, region) in imported.into_iter() {
let cloned_module_name = module_name.clone();
let module_id = module_ids.get_or_insert(&module_name.into());
deps_by_name.insert(cloned_module_name, module_id);
imported_modules.insert(module_id);
imports_to_expose.push((module_id, exposed, region));
}
// For each of our imports, add any exposed values to scope.
//
// e.g. for `imports [ Foo.{ bar } ]`, add `bar` to scope.
for (module_id, exposed, region) in imports_to_expose.into_iter() {
if !exposed.is_empty() {
add_exposed_to_scope(module_id, &mut scope, exposed, ident_ids, region);
}
}
// Generate IdentIds entries for all values this module exposes.
// This way, when we encounter them in Defs later, they already
// have an IdentIds entry.
//
// We must *not* add them to scope yet, or else the Defs will
// incorrectly think they're shadowing them!
for loc_exposed in exposes.iter() {
// Use get_or_insert here because the ident_ids may already
// created an IdentId for this, when it was imported exposed
// in a dependent module.
//
// For example, if module A has [ B.{ foo } ], then
// when we get here for B, `foo` will already have
// an IdentId. We must reuse that!
let ident_id = ident_ids.get_or_insert(&loc_exposed.value.as_str().into());
let symbol = Symbol::new(home, ident_id);
exposed.push(symbol);
}
if cfg!(debug_assertions) {
home.register_debug_idents(&ident_ids);
}
ident_ids.clone()
}
Unique(module_ids, ident_ids_by_module) => {
// If this is the original file the user loaded,
// then we already have a mutable reference,
// and won't need to pay locking costs.
home = module_ids.get_or_insert(declared_name.as_inline_str());
// For each of our imports, add it to deps_by_name,
// and also add any exposed values to scope.
//
// e.g. for `imports [ Foo.{ bar } ]`, add `Foo` to deps_by_name and `bar` to scope.
for (module_name, exposed, region) in imported.into_iter() {
let module_id = module_ids.get_or_insert(&module_name.clone().into());
deps_by_name.insert(module_name, module_id);
imported_modules.insert(module_id);
if !exposed.is_empty() {
let mut ident_ids = IdentIds::default();
add_exposed_to_scope(module_id, &mut scope, exposed, &mut ident_ids, region);
ident_ids_by_module.insert(module_id, ident_ids);
}
}
let mut ident_ids = IdentIds::default();
// Generate IdentIds entries for all values this module exposes.
// This way, when we encounter them in Defs later, they already
// have an IdentIds entry.
//
// We must *not* add them to scope yet, or else the Defs will
// incorrectly think they're shadowing them!
for loc_exposed in exposes.iter() {
let ident_id = ident_ids.add(loc_exposed.value.as_str().into());
let symbol = Symbol::new(home, ident_id);
exposed.push(symbol);
}
if cfg!(debug_assertions) {
home.register_debug_idents(&ident_ids);
}
// Record this entry into ident_ids_by_module. It should not
// have been recorded previously, since this was Unique.
debug_assert!(!ident_ids_by_module.contains_key(&home));
ident_ids_by_module.insert(home, ident_ids.clone());
ident_ids
}
};
// Box up the input &str for transfer over the wire.
// We'll need this in order to continue parsing later.
let src: Box<[u8]> = state.bytes.into();
// Send the deps to the coordinator thread for processing,
// then continue on to parsing and canonicalizing defs.
//
// We always need to send these, even if deps is empty,
// because the coordinator thread needs to receive this message
// to decrement its "pending" count.
let mut tx = msg_tx;
tokio::spawn(async move {
// Send the header the main thread for processing,
tx.send(Msg::Header(ModuleHeader {
module_id: home,
exposed_ident_ids: ident_ids,
module_name: declared_name,
imported_modules,
deps_by_name,
exposes: exposed,
src,
exposed_imports: scope,
}))
.await
.unwrap_or_else(|_| panic!("Failed to send Header message for module ID: {:?}", home));
});
home
}
fn add_exposed_to_scope(
module_id: ModuleId,
scope: &mut MutMap<Ident, (Symbol, Region)>,
exposed: Vec<Ident>,
ident_ids: &mut IdentIds,
region: Region,
) {
for ident in exposed {
// Since this value is exposed, add it to our module's default scope.
debug_assert!(!scope.contains_key(&ident.clone()));
let ident_id = ident_ids.add(ident.clone().into());
let symbol = Symbol::new(module_id, ident_id);
scope.insert(ident, (symbol, region));
}
}
// TODO trim down these arguments - possibly by moving Constraint into Module
#[allow(clippy::too_many_arguments)]
fn spawn_solve_module(
module: Module,
src: Box<str>,
constraint: Constraint,
mut var_store: VarStore,
imported_modules: MutSet<ModuleId>,
msg_tx: MsgSender,
exposed_types: &mut SubsByModule,
stdlib: &StdLib,
) {
let home = module.module_id;
// Get the constraints for this module's imports. We do this on the main thread
// to avoid having to lock the map of exposed types, or to clone it
// (which would be more expensive for the main thread).
let ConstrainableImports {
imported_symbols,
imported_aliases,
unused_imports,
} = pre_constrain_imports(
home,
&module.references,
imported_modules,
exposed_types,
stdlib,
);
for unused_import in unused_imports {
todo!(
"TODO gracefully handle unused import {:?} from module {:?}",
unused_import,
home
);
}
// We can't pass the reference to stdlib to the thread, but we can pass mode.
let mode = stdlib.mode;
// Start solving this module in the background.
spawn_blocking(move || {
// Rebuild the aliases in this thread, so we don't have to clone all of
// stdlib.aliases on the main thread.
let aliases = match mode {
Mode::Standard => roc_builtins::std::aliases(),
Mode::Uniqueness => roc_builtins::unique::aliases(),
};
// Finish constraining the module by wrapping the existing Constraint
// in the ones we just computed. We can do this off the main thread.
let constraint = constrain_imports(
imported_symbols,
imported_aliases,
constraint,
&mut var_store,
);
let mut constraint = load_builtin_aliases(aliases, constraint, &mut var_store);
// Turn Apply into Alias
constraint.instantiate_aliases(&mut var_store);
let (solved_subs, solved_module) =
roc_solve::module::solve_module(module, constraint, var_store);
tokio::spawn(async move {
let mut tx = msg_tx;
// Send the subs to the main thread for processing,
tx.send(Msg::Solved {
src,
module_id: home,
solved_subs: Arc::new(solved_subs),
solved_module,
})
.await
.unwrap_or_else(|_| panic!("Failed to send Solved message"));
});
});
}
#[allow(clippy::too_many_arguments)]
fn spawn_parse_and_constrain(
header: ModuleHeader,
mode: Mode,
module_ids: Arc<Mutex<ModuleIds>>,
ident_ids_by_module: Arc<Mutex<IdentIdsByModule>>,
exposed_types: &SubsByModule,
exposed_symbols: MutSet<Symbol>,
waiting_for_solve: &mut MutMap<ModuleId, MutSet<ModuleId>>,
msg_tx: MsgSender,
) {
let module_id = header.module_id;
let deps_by_name = &header.deps_by_name;
let num_deps = deps_by_name.len();
let mut dep_idents: IdentIdsByModule = IdentIds::exposed_builtins(num_deps);
{
let ident_ids_by_module = (*ident_ids_by_module).lock().expect(
"Failed to acquire lock for interning ident IDs, presumably because a thread panicked.",
);
// Populate dep_idents with each of their IdentIds,
// which we'll need during canonicalization to translate
// identifier strings into IdentIds, which we need to build Symbols.
// We only include the modules we care about (the ones we import).
//
// At the end of this loop, dep_idents contains all the information to
// resolve a symbol from another module: if it's in here, that means
// we have both imported the module and the ident was exported by that mdoule.
for dep_id in header.deps_by_name.values() {
// We already verified that these are all present,
// so unwrapping should always succeed here.
let idents = ident_ids_by_module.get(&dep_id).unwrap();
dep_idents.insert(*dep_id, idents.clone());
}
}
// Once this step has completed, the next thing we'll need
// is solving. Register the modules we'll need to have been
// solved before we can solve.
let mut solve_needed = HashSet::with_capacity_and_hasher(num_deps, default_hasher());
for dep_id in deps_by_name.values() {
if !exposed_types.contains_key(dep_id) {
solve_needed.insert(*dep_id);
}
}
waiting_for_solve.insert(module_id, solve_needed);
let module_ids = {
(*module_ids).lock().expect(
"Failed to acquire lock for obtaining module IDs, presumably because a thread panicked.",
).clone()
};
// Now that we have waiting_for_solve populated, continue parsing,
// canonicalizing, and constraining the module.
spawn_blocking(move || {
parse_and_constrain(
header,
mode,
module_ids,
dep_idents,
exposed_symbols,
msg_tx,
);
});
}
/// Parse the module, canonicalize it, and generate constraints for it.
fn parse_and_constrain(
header: ModuleHeader,
mode: Mode,
module_ids: ModuleIds,
dep_idents: IdentIdsByModule,
exposed_symbols: MutSet<Symbol>,
msg_tx: MsgSender,
) {
let module_id = header.module_id;
let mut var_store = VarStore::default();
let arena = Bump::new();
let state = State::new(&header.src, Attempting::Module);
let (parsed_defs, _) = module_defs()
.parse(&arena, state)
.expect("TODO gracefully handle parse error on module defs. IMPORTANT: Bail out entirely if there are any BadUtf8 problems! That means the whole source file is not valid UTF-8 and any other errors we report may get mis-reported. We rely on this for safety in an `unsafe` block later on in this function.");
let (module, declarations, ident_ids, constraint, problems) = match canonicalize_module_defs(
&arena,
parsed_defs,
module_id,
&module_ids,
header.exposed_ident_ids,
dep_idents,
header.exposed_imports,
exposed_symbols,
&mut var_store,
) {
Ok(module_output) => {
let constraint = constrain_module(&module_output, module_id, mode, &mut var_store);
let module = Module {
module_id,
exposed_imports: module_output.exposed_imports,
exposed_vars_by_symbol: module_output.exposed_vars_by_symbol,
references: module_output.references,
aliases: module_output.aliases,
rigid_variables: module_output.rigid_variables,
};
(
module,
module_output.declarations,
module_output.ident_ids,
constraint,
module_output.problems,
)
}
Err(runtime_error) => {
panic!(
"TODO gracefully handle module canonicalization error {:?}",
runtime_error
);
}
};
let imported_modules = header.imported_modules;
// SAFETY: By this point we've already incrementally verified that there
// are no UTF-8 errors in these bytes. If there had been any UTF-8 errors,
// we'd have bailed out before now.
let src: Box<str> = unsafe { from_utf8_unchecked(header.src.as_ref()).to_string().into() };
tokio::spawn(async move {
let mut tx = msg_tx;
// Send the constraint to the main thread for processing.
tx.send(Msg::Constrained {
module,
src,
declarations,
imported_modules,
ident_ids,
constraint,
problems,
var_store,
})
.await
.unwrap_or_else(|_| panic!("Failed to send Constrained message"));
});
}
fn exposed_from_import(entry: &ImportsEntry<'_>) -> (ModuleName, Vec<Ident>) {
use roc_parse::ast::ImportsEntry::*;
match entry {
Module(module_name, exposes) => {
let mut exposed = Vec::with_capacity(exposes.len());
for loc_entry in exposes {
exposed.push(ident_from_exposed(&loc_entry.value));
}
(module_name.as_str().into(), exposed)
}
SpaceBefore(sub_entry, _) | SpaceAfter(sub_entry, _) => {
// Ignore spaces.
exposed_from_import(*sub_entry)
}
}
}
fn ident_from_exposed(entry: &ExposesEntry<'_>) -> Ident {
use roc_parse::ast::ExposesEntry::*;
match entry {
Ident(ident) => (*ident).into(),
SpaceBefore(sub_entry, _) | SpaceAfter(sub_entry, _) => ident_from_exposed(sub_entry),
}
}