roc/compiler/builtins/bitcode/src/list.zig
Folkert baef33fc0c llvm bindings
map the lowlevel op into LLVM code; it calls zig code, but the zig code does not do anything yet
2021-03-04 14:54:41 +01:00

330 lines
11 KiB
Zig

const std = @import("std");
const utils = @import("utils.zig");
const RocResult = utils.RocResult;
const mem = std.mem;
const Allocator = mem.Allocator;
const EqFn = fn (?[*]u8, ?[*]u8) callconv(.C) bool;
const Opaque = ?[*]u8;
const Inc = fn (?[*]u8) callconv(.C) void;
const Dec = fn (?[*]u8) callconv(.C) void;
pub const RocList = extern struct {
bytes: ?[*]u8,
length: usize,
pub fn len(self: RocList) usize {
return self.length;
}
pub fn isEmpty(self: RocList) bool {
return self.len() == 0;
}
pub fn empty() RocList {
return RocList{ .bytes = null, .length = 0 };
}
pub fn isUnique(self: RocList) bool {
// the empty list is unique (in the sense that copying it will not leak memory)
if (self.isEmpty()) {
return true;
}
// otherwise, check if the refcount is one
const ptr: [*]usize = @ptrCast([*]usize, @alignCast(8, self.bytes));
return (ptr - 1)[0] == utils.REFCOUNT_ONE;
}
pub fn allocate(
allocator: *Allocator,
alignment: usize,
length: usize,
element_size: usize,
) RocList {
const data_bytes = length * element_size;
return RocList{
.bytes = utils.allocateWithRefcount(allocator, alignment, data_bytes),
.length = length,
};
}
pub fn makeUnique(self: RocList, allocator: *Allocator, alignment: usize, element_width: usize) RocList {
if (self.isEmpty()) {
return self;
}
if (self.isUnique()) {
return self;
}
// unfortunately, we have to clone
var new_list = RocList.allocate(allocator, alignment, self.length, element_width);
var old_bytes: [*]u8 = @ptrCast([*]u8, self.bytes);
var new_bytes: [*]u8 = @ptrCast([*]u8, new_list.bytes);
const number_of_bytes = self.len() * element_width;
@memcpy(new_bytes, old_bytes, number_of_bytes);
// NOTE we fuse an increment of all keys/values with a decrement of the input dict
const data_bytes = self.len() * element_width;
utils.decref(allocator, alignment, self.bytes, data_bytes);
return new_list;
}
pub fn reallocate(
self: RocList,
allocator: *Allocator,
alignment: usize,
new_length: usize,
element_width: usize,
) RocList {
const old_length = self.length;
const delta_length = new_length - old_length;
const data_bytes = new_capacity * slot_size;
const first_slot = allocateWithRefcount(allocator, alignment, data_bytes);
// transfer the memory
if (self.bytes) |source_ptr| {
const dest_ptr = first_slot;
@memcpy(dest_ptr, source_ptr, old_length);
}
// NOTE the newly added elements are left uninitialized
const result = RocList{
.dict_bytes = first_slot,
.length = new_length,
};
// NOTE we fuse an increment of all keys/values with a decrement of the input dict
utils.decref(allocator, alignment, self.bytes, old_length * element_width);
return result;
}
};
const Caller1 = fn (?[*]u8, ?[*]u8, ?[*]u8) callconv(.C) void;
const Caller2 = fn (?[*]u8, ?[*]u8, ?[*]u8, ?[*]u8) callconv(.C) void;
pub fn listMap(list: RocList, transform: Opaque, caller: Caller1, alignment: usize, old_element_width: usize, new_element_width: usize) callconv(.C) RocList {
if (list.bytes) |source_ptr| {
const size = list.len();
var i: usize = 0;
const output = RocList.allocate(std.heap.c_allocator, alignment, size, new_element_width);
const target_ptr = output.bytes orelse unreachable;
while (i < size) : (i += 1) {
caller(transform, source_ptr + (i * old_element_width), target_ptr + (i * new_element_width));
}
utils.decref(std.heap.c_allocator, alignment, list.bytes, size * old_element_width);
return output;
} else {
return RocList.empty();
}
}
pub fn listMapWithIndex(list: RocList, transform: Opaque, caller: Caller2, alignment: usize, old_element_width: usize, new_element_width: usize) callconv(.C) RocList {
if (list.bytes) |source_ptr| {
const size = list.len();
var i: usize = 0;
const output = RocList.allocate(std.heap.c_allocator, alignment, size, new_element_width);
const target_ptr = output.bytes orelse unreachable;
while (i < size) : (i += 1) {
caller(transform, @ptrCast(?[*]u8, &i), source_ptr + (i * old_element_width), target_ptr + (i * new_element_width));
}
utils.decref(std.heap.c_allocator, alignment, list.bytes, size * old_element_width);
return output;
} else {
return RocList.empty();
}
}
pub fn listMap2(list: RocList, transform: Opaque, caller: Caller1, alignment: usize, old_element_width: usize, new_element_width: usize) callconv(.C) RocList {
unreachable;
}
pub fn listKeepIf(list: RocList, transform: Opaque, caller: Caller1, alignment: usize, element_width: usize, inc: Inc, dec: Dec) callconv(.C) RocList {
if (list.bytes) |source_ptr| {
const size = list.len();
var i: usize = 0;
var output = RocList.allocate(std.heap.c_allocator, alignment, list.len(), list.len() * element_width);
const target_ptr = output.bytes orelse unreachable;
var kept: usize = 0;
while (i < size) : (i += 1) {
var keep = false;
const element = source_ptr + (i * element_width);
inc(element);
caller(transform, element, @ptrCast(?[*]u8, &keep));
if (keep) {
@memcpy(target_ptr + (kept * element_width), element, element_width);
kept += 1;
} else {
dec(element);
}
}
// consume the input list
utils.decref(std.heap.c_allocator, alignment, list.bytes, size * element_width);
if (kept == 0) {
// if the output is empty, deallocate the space we made for the result
utils.decref(std.heap.c_allocator, alignment, output.bytes, size * element_width);
return RocList.empty();
} else {
output.length = kept;
return output;
}
} else {
return RocList.empty();
}
}
pub fn listKeepOks(list: RocList, transform: Opaque, caller: Caller1, alignment: usize, before_width: usize, result_width: usize, after_width: usize, inc_closure: Inc, dec_result: Dec) callconv(.C) RocList {
return listKeepResult(list, RocResult.isOk, transform, caller, alignment, before_width, result_width, after_width, inc_closure, dec_result);
}
pub fn listKeepErrs(list: RocList, transform: Opaque, caller: Caller1, alignment: usize, before_width: usize, result_width: usize, after_width: usize, inc_closure: Inc, dec_result: Dec) callconv(.C) RocList {
return listKeepResult(list, RocResult.isErr, transform, caller, alignment, before_width, result_width, after_width, inc_closure, dec_result);
}
pub fn listKeepResult(list: RocList, is_good_constructor: fn (RocResult) bool, transform: Opaque, caller: Caller1, alignment: usize, before_width: usize, result_width: usize, after_width: usize, inc_closure: Inc, dec_result: Dec) RocList {
if (list.bytes) |source_ptr| {
const size = list.len();
var i: usize = 0;
var output = RocList.allocate(std.heap.c_allocator, alignment, list.len(), list.len() * after_width);
const target_ptr = output.bytes orelse unreachable;
var temporary = @ptrCast([*]u8, std.heap.c_allocator.alloc(u8, result_width) catch unreachable);
var kept: usize = 0;
while (i < size) : (i += 1) {
const before_element = source_ptr + (i * before_width);
inc_closure(transform);
caller(transform, before_element, temporary);
const result = utils.RocResult{ .bytes = temporary };
const after_element = temporary + @sizeOf(i64);
if (is_good_constructor(result)) {
@memcpy(target_ptr + (kept * after_width), after_element, after_width);
kept += 1;
} else {
dec_result(temporary);
}
}
utils.decref(std.heap.c_allocator, alignment, list.bytes, size * before_width);
std.heap.c_allocator.free(temporary[0..result_width]);
if (kept == 0) {
utils.decref(std.heap.c_allocator, alignment, output.bytes, size * after_width);
return RocList.empty();
} else {
output.length = kept;
return output;
}
} else {
return RocList.empty();
}
}
pub fn listWalk(list: RocList, stepper: Opaque, stepper_caller: Caller2, accum: Opaque, alignment: usize, element_width: usize, accum_width: usize, output: Opaque) callconv(.C) void {
if (accum_width == 0) {
return;
}
@memcpy(output orelse unreachable, accum orelse unreachable, accum_width);
if (list.bytes) |source_ptr| {
var i: usize = 0;
const size = list.len();
while (i < size) : (i += 1) {
const element = source_ptr + i * element_width;
stepper_caller(stepper, element, output, output);
}
const data_bytes = list.len() * element_width;
utils.decref(std.heap.c_allocator, alignment, list.bytes, data_bytes);
}
}
pub fn listWalkBackwards(list: RocList, stepper: Opaque, stepper_caller: Caller2, accum: Opaque, alignment: usize, element_width: usize, accum_width: usize, output: Opaque) callconv(.C) void {
if (accum_width == 0) {
return;
}
@memcpy(output orelse unreachable, accum orelse unreachable, accum_width);
if (list.bytes) |source_ptr| {
const size = list.len();
var i: usize = size;
while (i > 0) {
i -= 1;
const element = source_ptr + i * element_width;
stepper_caller(stepper, element, output, output);
}
const data_bytes = list.len() * element_width;
utils.decref(std.heap.c_allocator, alignment, list.bytes, data_bytes);
}
}
// List.contains : List k, k -> Bool
pub fn listContains(list: RocList, key: Opaque, key_width: usize, is_eq: EqFn) callconv(.C) bool {
if (list.bytes) |source_ptr| {
const size = list.len();
var i: usize = 0;
while (i < size) : (i += 1) {
const element = source_ptr + i * key_width;
if (is_eq(element, key)) {
return true;
}
}
}
return false;
}
pub fn listRepeat(count: usize, alignment: usize, element: Opaque, element_width: usize, inc_n_element: Inc) callconv(.C) RocList {
if (count == 0) {
return RocList.empty();
}
const allocator = std.heap.c_allocator;
var output = RocList.allocate(allocator, alignment, count, element_width);
if (output.bytes) |target_ptr| {
var i: usize = 0;
const source = element orelse unreachable;
while (i < count) : (i += 1) {
@memcpy(target_ptr + i * element_width, source, element_width);
}
// TODO do all increments at once!
i = 0;
while (i < count) : (i += 1) {
inc_n_element(element);
}
return output;
} else {
unreachable;
}
}