roc/compiler/builtins/src/unique.rs
Sébastien Besnier fdc2b6ad86 add bitwise xor
2021-01-14 16:12:46 +01:00

1374 lines
40 KiB
Rust

use crate::std::StdLib;
use roc_collections::all::{default_hasher, MutMap};
use roc_module::ident::TagName;
use roc_module::symbol::Symbol;
use roc_region::all::Region;
use roc_types::builtin_aliases;
use roc_types::solved_types::{SolvedBool, SolvedType};
use roc_types::subs::VarId;
use std::collections::HashMap;
/// Example:
///
/// let_tvars! { a, b, c }
///
/// This is equivalent to:
///
/// let a = VarId::from_u32(1);
/// let b = VarId::from_u32(2);
/// let c = VarId::from_u32(3);
///
/// The idea is that this is less error-prone than assigning hardcoded IDs by hand.
macro_rules! let_tvars {
($($name:ident,)+) => { let_tvars!($($name),+) };
($($name:ident),*) => {
let mut _current_tvar = 0;
$(
_current_tvar += 1;
let $name = VarId::from_u32(_current_tvar);
)*
};
}
/// Keep this up to date by hand!
///
const NUM_BUILTIN_IMPORTS: usize = 7;
/// These can be shared between definitions, they will get instantiated when converted to Type
const FUVAR: VarId = VarId::from_u32(1000);
const TOP_LEVEL_CLOSURE_VAR: VarId = VarId::from_u32(1001);
fn shared(base: SolvedType) -> SolvedType {
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![SolvedType::Boolean(SolvedBool::SolvedShared), base],
)
}
fn boolean(b: VarId) -> SolvedType {
SolvedType::Boolean(SolvedBool::SolvedContainer(b, vec![]))
}
fn container(cvar: VarId, mvars: Vec<VarId>) -> SolvedType {
SolvedType::Boolean(SolvedBool::SolvedContainer(cvar, mvars))
}
pub fn uniq_stdlib() -> StdLib {
use crate::std::Mode;
let types = types();
/*
debug_assert!({
let normal_types: MutSet<Symbol> = builtins::types().keys().copied().collect();
let normal_aliases: MutSet<Symbol> = builtins::aliases().keys().copied().collect();
let unique_types = types.keys().copied().collect();
let unique_aliases = aliases.keys().copied().collect();
let missing_unique_types: MutSet<Symbol> =
normal_types.difference(&unique_types).copied().collect();
let missing_normal_types: MutSet<Symbol> =
unique_types.difference(&normal_types).copied().collect();
let missing_unique_aliases: MutSet<Symbol> = normal_aliases
.difference(&unique_aliases)
.copied()
.collect();
let missing_normal_aliases: MutSet<Symbol> = unique_aliases
.difference(&normal_aliases)
.copied()
.filter(|v| *v != Symbol::ATTR_ATTR)
.collect();
let cond = missing_normal_types.is_empty()
&& missing_unique_types.is_empty()
&& missing_normal_aliases.is_empty()
&& missing_unique_aliases.is_empty();
if !cond {
println!("Missing hardcoded types for:");
println!("normal types: {:?}", missing_normal_types);
println!("unique types: {:?}", missing_unique_types);
println!("normal aliases: {:?}", missing_normal_aliases);
println!("unique aliases: {:?}", missing_unique_aliases);
}
cond
});
*/
StdLib {
mode: Mode::Uniqueness,
types,
applies: vec![
Symbol::ATTR_ATTR,
Symbol::LIST_LIST,
Symbol::SET_SET,
Symbol::DICT_DICT,
Symbol::STR_STR,
]
.into_iter()
.collect(),
}
}
pub fn types() -> MutMap<Symbol, (SolvedType, Region)> {
let mut types = HashMap::with_capacity_and_hasher(NUM_BUILTIN_IMPORTS, default_hasher());
let mut add_type = |symbol, typ| {
debug_assert!(
!types.contains_key(&symbol),
"Duplicate type definition for {:?}",
symbol
);
// TODO instead of using Region::zero for all of these,
// instead use the Region where they were defined in their
// source .roc files! This can give nicer error messages.
types.insert(symbol, (typ, Region::zero()));
};
fn div_by_zero() -> SolvedType {
SolvedType::TagUnion(
vec![(TagName::Global("DivByZero".into()), vec![])],
Box::new(SolvedType::Wildcard),
)
}
// Num module
// add or (+) : Attr u (Num (Attr u num))
// , Attr v (Num (Attr v num))
// -> Attr w (Num (Attr w num))
add_type(Symbol::NUM_ADD, {
let_tvars! { u, v, w, num };
unique_function(vec![num_type(u, num), num_type(v, num)], num_type(w, num))
});
fn overflow() -> SolvedType {
SolvedType::TagUnion(
vec![(TagName::Global("Overflow".into()), vec![])],
Box::new(SolvedType::Wildcard),
)
}
// addChecked : Num a, Num a -> Result (Num a) [ Overflow ]*
add_type(Symbol::NUM_ADD_CHECKED, {
let_tvars! { u, v, w, num, result, star };
unique_function(
vec![num_type(u, num), num_type(v, num)],
result_type(result, num_type(w, num), lift(star, overflow())),
)
});
// addWrap : Int, Int -> Int
add_type(Symbol::NUM_ADD_WRAP, {
let_tvars! { u, v, w, int };
unique_function(vec![int_type(u, int), int_type(v, int)], int_type(w, int))
});
// sub or (-) : Num a, Num a -> Num a
add_type(Symbol::NUM_SUB, {
let_tvars! { u, v, w, num };
unique_function(vec![num_type(u, num), num_type(v, num)], num_type(w, num))
});
// subWrap : Int, Int -> Int
add_type(Symbol::NUM_SUB_WRAP, {
let_tvars! { u, v, w, num };
unique_function(vec![num_type(u, num), num_type(v, num)], num_type(w, num))
});
// subChecked : Num a, Num a -> Result (Num a) [ Overflow ]*
add_type(Symbol::NUM_SUB_CHECKED, {
let_tvars! { u, v, w, num, result, star };
unique_function(
vec![num_type(u, num), num_type(v, num)],
result_type(result, num_type(w, num), lift(star, overflow())),
)
});
// mul or (*) : Num a, Num a -> Num a
add_type(Symbol::NUM_MUL, {
let_tvars! { u, v, w, num };
unique_function(vec![num_type(u, num), num_type(v, num)], num_type(w, num))
});
// mulWrap : Int, Int -> Int
add_type(Symbol::NUM_MUL_WRAP, {
let_tvars! { u, v, w , int };
unique_function(vec![int_type(u, int), int_type(v, int)], int_type(w, int))
});
// mulChecked : Num a, Num a -> Result (Num a) [ Overflow ]*
add_type(Symbol::NUM_MUL_CHECKED, {
let_tvars! { u, v, w, num, result, star };
unique_function(
vec![num_type(u, num), num_type(v, num)],
result_type(result, num_type(w, num), lift(star, overflow())),
)
});
// abs : Num a -> Num a
add_type(Symbol::NUM_ABS, {
let_tvars! { u, v, num };
unique_function(vec![num_type(u, num)], num_type(v, num))
});
// neg : Num a -> Num a
add_type(Symbol::NUM_NEG, {
let_tvars! { u, v, num };
unique_function(vec![num_type(u, num)], num_type(v, num))
});
let mut add_num_comparison = |symbol| {
add_type(symbol, {
let_tvars! { u, v, w, num };
unique_function(vec![num_type(u, num), num_type(v, num)], bool_type(w))
});
};
// isLt or (<) : Num a, Num a -> Bool
add_num_comparison(Symbol::NUM_LT);
// isLte or (<=) : Num a, Num a -> Bool
add_num_comparison(Symbol::NUM_LTE);
// isGt or (>) : Num a, Num a -> Bool
add_num_comparison(Symbol::NUM_GT);
// isGte or (>=) : Num a, Num a -> Bool
add_num_comparison(Symbol::NUM_GTE);
// compare : Num a, Num a -> [ LT, EQ, GT ]
add_type(Symbol::NUM_COMPARE, {
let_tvars! { u, v, w, num };
unique_function(vec![num_type(u, num), num_type(v, num)], ordering_type(w))
});
// toFloat : Num a -> Float
add_type(Symbol::NUM_TO_FLOAT, {
let_tvars! { star1, star2, a };
unique_function(vec![num_type(star1, a)], float_type(star2))
});
// rem : Attr * Int, Attr * Int -> Attr * (Result (Attr * Int) (Attr * [ DivByZero ]*))
add_type(Symbol::NUM_REM, {
let_tvars! { star1, star2, star3, star4, star5, int };
unique_function(
vec![int_type(star1, int), int_type(star2, int)],
result_type(star3, int_type(star4, int), lift(star5, div_by_zero())),
)
});
// maxInt : Int
add_type(Symbol::NUM_MAX_INT, {
let_tvars! { star, int };
int_type(star, int)
});
// minInt : Int
add_type(Symbol::NUM_MIN_INT, {
let_tvars! { star, int };
int_type(star, int)
});
// divFloor or (//) : Int, Int -> Result Int [ DivByZero ]*
add_type(Symbol::NUM_DIV_INT, {
let_tvars! { star1, star2, star3, star4, star5, int };
unique_function(
vec![int_type(star1, int), int_type(star2, int)],
result_type(star3, int_type(star4, int), lift(star5, div_by_zero())),
)
});
// bitwiseAnd : Attr * Int, Attr * Int -> Attr * Int
add_type(Symbol::NUM_BITWISE_AND, {
let_tvars! { star1, star2, star3, int };
unique_function(
vec![int_type(star1, int), int_type(star2, int)],
int_type(star3, int),
)
});
// bitwiseAnd : Attr * Int, Attr * Int -> Attr * Int
add_type(Symbol::NUM_BITWISE_XOR, {
let_tvars! { star1, star2, star3, int };
unique_function(
vec![int_type(star1, int), int_type(star2, int)],
int_type(star3, int),
)
});
// divFloat : Float, Float -> Float
add_type(Symbol::NUM_DIV_FLOAT, {
let_tvars! { star1, star2, star3, star4, star5};
unique_function(
vec![float_type(star1), float_type(star2)],
result_type(star3, float_type(star4), lift(star5, div_by_zero())),
)
});
// round : Float -> Int
add_type(Symbol::NUM_ROUND, {
let_tvars! { star1, star2, int };
unique_function(vec![float_type(star1)], int_type(star2, int))
});
// sqrt : Float -> Float
let sqrt_of_negative = SolvedType::TagUnion(
vec![(TagName::Global("SqrtOfNegative".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_type(Symbol::NUM_SQRT, {
let_tvars! { star1, star2, star3, star4 };
unique_function(
vec![float_type(star1)],
result_type(star2, float_type(star3), lift(star4, sqrt_of_negative)),
)
});
// sin : Float -> Float
add_type(Symbol::NUM_SIN, {
let_tvars! { star1, star2 };
unique_function(vec![float_type(star1)], float_type(star2))
});
// cos : Float -> Float
add_type(Symbol::NUM_COS, {
let_tvars! { star1, star2 };
unique_function(vec![float_type(star1)], float_type(star2))
});
// tan : Float -> Float
add_type(Symbol::NUM_TAN, {
let_tvars! { star1, star2 };
unique_function(vec![float_type(star1)], float_type(star2))
});
// maxFloat : Float
add_type(Symbol::NUM_MAX_FLOAT, {
let_tvars! { star };
float_type(star)
});
// minFloat : Float
add_type(Symbol::NUM_MIN_FLOAT, {
let_tvars! { star };
float_type(star)
});
// isNegative : Num a -> Bool
add_type(Symbol::NUM_IS_NEGATIVE, {
let_tvars! { star1, star2, a };
unique_function(vec![num_type(star1, a)], bool_type(star2))
});
// isPositive : Num a -> Bool
add_type(Symbol::NUM_IS_POSITIVE, {
let_tvars! { star1, star2, a };
unique_function(vec![num_type(star1, a)], bool_type(star2))
});
// isZero : Num a -> Bool
add_type(Symbol::NUM_IS_ZERO, {
let_tvars! { star1, star2, a };
unique_function(vec![num_type(star1, a)], bool_type(star2))
});
// isEven : Num a -> Bool
add_type(Symbol::NUM_IS_EVEN, {
let_tvars! { star1, star2, a };
unique_function(vec![num_type(star1, a)], bool_type(star2))
});
// isOdd : Num a -> Bool
add_type(Symbol::NUM_IS_ODD, {
let_tvars! { star1, star2, a };
unique_function(vec![num_type(star1, a)], bool_type(star2))
});
// pow : Float, Float -> Float
add_type(Symbol::NUM_POW, {
let_tvars! { star1, star2, star3 };
unique_function(
vec![float_type(star1), float_type(star2)],
float_type(star3),
)
});
// ceiling : Float -> Int
add_type(Symbol::NUM_CEILING, {
let_tvars! { star1, star2, int };
unique_function(vec![float_type(star1)], int_type(star2, int))
});
// powInt : Int, Int -> Int
add_type(Symbol::NUM_POW_INT, {
let_tvars! { star1, star2, star3 , int };
unique_function(
vec![int_type(star1, int), int_type(star2, int)],
int_type(star3, int),
)
});
// floor : Float -> Int
add_type(Symbol::NUM_FLOOR, {
let_tvars! { star1, star2 , int};
unique_function(vec![float_type(star1)], int_type(star2, int))
});
// atan : Float -> Float
add_type(Symbol::NUM_ATAN, {
let_tvars! { star1, star2 };
unique_function(vec![float_type(star1)], float_type(star2))
});
// acos : Float -> Float
add_type(Symbol::NUM_ACOS, {
let_tvars! { star1, star2 };
unique_function(vec![float_type(star1)], float_type(star2))
});
// asin : Float -> Float
add_type(Symbol::NUM_ASIN, {
let_tvars! { star1, star2 };
unique_function(vec![float_type(star1)], float_type(star2))
});
// Bool module
// isEq or (==) : Attr * a, Attr * a -> Attr * Bool
add_type(Symbol::BOOL_EQ, {
let_tvars! { star1, star2, star3, a };
unique_function(
vec![attr_type(star1, a), attr_type(star2, a)],
bool_type(star3),
)
});
// isNeq or (!=) : Attr * a, Attr * a -> Attr * Bool
add_type(Symbol::BOOL_NEQ, {
let_tvars! { star1, star2, star3, a };
unique_function(
vec![attr_type(star1, a), attr_type(star2, a)],
bool_type(star3),
)
});
// and or (&&) : Attr u1 Bool, Attr u2 Bool -> Attr u3 Bool
add_type(Symbol::BOOL_AND, {
let_tvars! { star1, star2, star3};
unique_function(vec![bool_type(star1), bool_type(star2)], bool_type(star3))
});
// or or (||) : Attr u1 Bool, Attr u2 Bool -> Attr u3 Bool
add_type(Symbol::BOOL_OR, {
let_tvars! { star1, star2, star3};
unique_function(vec![bool_type(star1), bool_type(star2)], bool_type(star3))
});
// xor : Attr u1 Bool, Attr u2 Bool -> Attr u3 Bool
add_type(Symbol::BOOL_XOR, {
let_tvars! { star1, star2, star3};
unique_function(vec![bool_type(star1), bool_type(star2)], bool_type(star3))
});
// not : Attr u1 Bool -> Attr u2 Bool
add_type(Symbol::BOOL_NOT, {
let_tvars! { star1, star2 };
unique_function(vec![bool_type(star1)], bool_type(star2))
});
// List module
// isEmpty : Attr * (List *) -> Attr * Bool
add_type(Symbol::LIST_IS_EMPTY, {
let_tvars! { star1, a, star2 };
unique_function(vec![list_type(star1, a)], bool_type(star2))
});
// len : Attr * (List *) -> Attr * Int
add_type(Symbol::LIST_LEN, {
let_tvars! { star1, a, star2 , int };
unique_function(vec![list_type(star1, a)], int_type(star2, int))
});
fn list_was_empty() -> SolvedType {
SolvedType::TagUnion(
vec![(TagName::Global("ListWasEmpty".into()), vec![])],
Box::new(SolvedType::Wildcard),
)
}
// List.first :
// Attr (* | u) (List (Attr u a)),
// -> Attr * (Result (Attr u a) (Attr * [ OutOfBounds ]*))
add_type(Symbol::LIST_FIRST, {
let_tvars! { a, u, star1, star2, star3 };
unique_function(
vec![SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
container(star1, vec![u]),
SolvedType::Apply(Symbol::LIST_LIST, vec![attr_type(u, a)]),
],
)],
result_type(star2, attr_type(u, a), lift(star3, list_was_empty())),
)
});
// List.last :
// Attr (* | u) (List (Attr u a)),
// -> Attr * (Result (Attr u a) (Attr * [ OutOfBounds ]*))
add_type(Symbol::LIST_LAST, {
let_tvars! { a, u, star1, star2, star3 };
unique_function(
vec![SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
container(star1, vec![u]),
SolvedType::Apply(Symbol::LIST_LIST, vec![attr_type(u, a)]),
],
)],
result_type(star2, attr_type(u, a), lift(star3, list_was_empty())),
)
});
// List.get :
// Attr (* | u) (List (Attr u a)),
// Attr * Int
// -> Attr * (Result (Attr u a) (Attr * [ OutOfBounds ]*))
let index_out_of_bounds = SolvedType::TagUnion(
vec![(TagName::Global("OutOfBounds".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_type(Symbol::LIST_GET, {
let_tvars! { a, u, star1, star2, star3, star4, int};
unique_function(
vec![
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
container(star1, vec![u]),
SolvedType::Apply(Symbol::LIST_LIST, vec![attr_type(u, a)]),
],
),
int_type(star2, int),
],
result_type(star3, attr_type(u, a), lift(star4, index_out_of_bounds)),
)
});
// List.set :
// Attr (w | u | v) (List (Attr u a)),
// Attr * Int,
// Attr (u | v) a
// -> Attr * (List (Attr u a))
add_type(Symbol::LIST_SET, {
let_tvars! { u, v, w, star1, star2, a, int};
unique_function(
vec![
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
container(w, vec![u, v]),
SolvedType::Apply(Symbol::LIST_LIST, vec![attr_type(u, a)]),
],
),
int_type(star1, int),
SolvedType::Apply(Symbol::ATTR_ATTR, vec![container(u, vec![v]), flex(a)]),
],
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
boolean(star2),
SolvedType::Apply(Symbol::LIST_LIST, vec![attr_type(u, a)]),
],
),
)
});
// single : a -> Attr * (List a)
add_type(Symbol::LIST_SINGLE, {
let_tvars! { a, star };
unique_function(
vec![flex(a)],
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
boolean(star),
SolvedType::Apply(Symbol::LIST_LIST, vec![flex(a)]),
],
),
)
});
// reverse : Attr * (List (Attr * a)) -> Attr * (List (Attr * a))
add_type(Symbol::LIST_REVERSE, {
let_tvars! { a, star1, star2 };
unique_function(
vec![SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star1),
SolvedType::Apply(Symbol::LIST_LIST, vec![flex(a)]),
],
)],
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
boolean(star2),
SolvedType::Apply(Symbol::LIST_LIST, vec![flex(a)]),
],
),
)
});
// To repeat an item, it must be shared!
//
// repeat : Attr * Int
// , Attr Shared a
// -> Attr * (List (Attr Shared a))
add_type(Symbol::LIST_REPEAT, {
let_tvars! { a, star1, star2, int };
unique_function(
vec![int_type(star1, int), shared(flex(a))],
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
boolean(star2),
SolvedType::Apply(Symbol::LIST_LIST, vec![shared(flex(a))]),
],
),
)
});
// concat : Attr * (List (Attr * a)), Attr * (List (Attr * a)) -> Attr * (List (Attr * a))
add_type(Symbol::LIST_CONCAT, {
let_tvars! { a, star1, star2, star3 };
unique_function(
vec![
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star1),
SolvedType::Apply(Symbol::LIST_LIST, vec![flex(a)]),
],
),
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star2),
SolvedType::Apply(Symbol::LIST_LIST, vec![flex(a)]),
],
),
],
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
boolean(star3),
SolvedType::Apply(Symbol::LIST_LIST, vec![flex(a)]),
],
),
)
});
// append : Attr * (List a)
// , a
// -> Attr * (List a)
//
// NOTE: we demand the new item to have the same uniqueness as the other list items.
// It could be allowed to add unique items to shared lists, but that requires special code gen
add_type(Symbol::LIST_APPEND, {
let_tvars! { a, star1, star2 };
unique_function(
vec![
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star1),
SolvedType::Apply(Symbol::LIST_LIST, vec![flex(a)]),
],
),
flex(a),
],
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
boolean(star2),
SolvedType::Apply(Symbol::LIST_LIST, vec![flex(a)]),
],
),
)
});
// prepend : Attr * (List a)
// , a
// -> Attr * (List a)
//
// NOTE: we demand the new item to have the same uniqueness as the other list items.
// It could be allowed to add unique items to shared lists, but that requires special code gen
add_type(Symbol::LIST_PREPEND, {
let_tvars! { a, star1, star2 };
unique_function(
vec![
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star1),
SolvedType::Apply(Symbol::LIST_LIST, vec![flex(a)]),
],
),
flex(a),
],
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
boolean(star2),
SolvedType::Apply(Symbol::LIST_LIST, vec![flex(a)]),
],
),
)
});
// contains : Attr * (List a)
// , a
// -> Attr * Bool
add_type(Symbol::LIST_CONTAINS, {
let_tvars! { a, star1, star2 };
unique_function(vec![list_type(star1, a), flex(a)], bool_type(star2))
});
// sum : Attr * (List (Attr u (Num (Attr u num))))
// -> Attr v (Num (Attr v num))
add_type(Symbol::LIST_SUM, {
let_tvars! { star1, u, v, num };
unique_function(
vec![SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star1),
SolvedType::Apply(Symbol::LIST_LIST, vec![num_type(u, num)]),
],
)],
num_type(v, num),
)
});
// join : Attr * (List (Attr * (List a)))
// -> Attr * (List a)
add_type(Symbol::LIST_JOIN, {
let_tvars! { a, star1, star2, star3 };
unique_function(
vec![SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star1),
SolvedType::Apply(Symbol::LIST_LIST, vec![list_type(star2, a)]),
],
)],
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
boolean(star3),
SolvedType::Apply(Symbol::LIST_LIST, vec![flex(a)]),
],
),
)
});
// List.map does not need to check the container rule on the input list.
// There is no way in which this signature can cause unique values to be duplicated
//
// foo : Attr Shared (List (Attr u a))
//
// List.map : Attr * (List (Attr u a)) -> (Attr u a -> b) -> Attr * (List b)
// List.unsafeGet : Attr (* | u) (List (Attr u a)) -> Attr u a
//
// -- the elements still have uniqueness `u`, and will be made shared whenever accessing an element in `foo`
// bar1 : Attr * (List (Attr u a))
// bar1 = List.map foo (\x -> x)
//
// -- no reference to `foo`'s elements can escape
// bar2 : Attr * (List (Attr * Int))
// bar2 = List.map foo (\_ -> 32)
// map : Attr * (List a)
// , Attr Shared (a -> b)
// -> Attr * (List b)
add_type(Symbol::LIST_MAP, {
let_tvars! { a, b, star1, star2, closure };
unique_function(
vec![
list_type(star1, a),
shared(SolvedType::Func(
vec![flex(a)],
Box::new(flex(closure)),
Box::new(flex(b)),
)),
],
list_type(star2, b),
)
});
// keepIf : Attr * (List a)
// , Attr Shared (a -> Attr * Bool)
// -> Attr * (List a)
add_type(Symbol::LIST_KEEP_IF, {
let_tvars! { a, star1, star2, star3, closure };
unique_function(
vec![
list_type(star1, a),
shared(SolvedType::Func(
vec![flex(a)],
Box::new(flex(closure)),
Box::new(bool_type(star2)),
)),
],
list_type(star3, a),
)
});
// walk : Attr (* | u) (List (Attr u a))
// , Attr Shared (Attr u a -> b -> b)
// , b
// -> b
add_type(Symbol::LIST_WALK, {
let_tvars! { u, a, b, star1, closure };
unique_function(
vec![
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
container(star1, vec![u]),
SolvedType::Apply(Symbol::LIST_LIST, vec![attr_type(u, a)]),
],
),
shared(SolvedType::Func(
vec![attr_type(u, a), flex(b)],
Box::new(flex(closure)),
Box::new(flex(b)),
)),
flex(b),
],
flex(b),
)
});
// walkBackwards : Attr (* | u) (List (Attr u a))
// , Attr Shared (Attr u a -> b -> b)
// , b
// -> b
add_type(Symbol::LIST_WALK_BACKWARDS, {
let_tvars! { u, a, b, star1, closure };
unique_function(
vec![
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
container(star1, vec![u]),
SolvedType::Apply(Symbol::LIST_LIST, vec![attr_type(u, a)]),
],
),
shared(SolvedType::Func(
vec![attr_type(u, a), flex(b)],
Box::new(flex(closure)),
Box::new(flex(b)),
)),
flex(b),
],
flex(b),
)
});
// Dict module
// empty : Attr * (Dict k v)
add_type(Symbol::DICT_EMPTY, {
let_tvars! { star, k , v };
dict_type(star, k, v)
});
// singleton : k, v -> Attr * (Dict k v)
add_type(Symbol::DICT_SINGLETON, {
let_tvars! { star, k , v };
unique_function(vec![flex(k), flex(v)], dict_type(star, k, v))
});
let key_not_found = SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
SolvedType::Wildcard,
SolvedType::TagUnion(
vec![(TagName::Global("KeyNotFound".into()), vec![])],
Box::new(SolvedType::Wildcard),
),
],
);
// get : Attr (* | u) (Dict (Attr * key) (Attr u val))
// , Attr * key
// -> Attr * (Result (Attr u val) [ KeyNotFound ]*)
add_type(Symbol::DICT_GET, {
let_tvars! { u, key, val, star1, star2, star3, star4 };
unique_function(
vec![
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
container(star1, vec![u]),
SolvedType::Apply(
Symbol::DICT_DICT,
vec![attr_type(star2, key), attr_type(u, val)],
),
],
),
SolvedType::Apply(Symbol::ATTR_ATTR, vec![flex(star3), flex(key)]),
],
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star4),
SolvedType::Apply(
Symbol::RESULT_RESULT,
vec![attr_type(u, val), key_not_found],
),
],
),
)
});
// insert : Attr * (Dict key value)
// , key
// , value
// , Attr * (Dict key value)
add_type(Symbol::DICT_INSERT, {
let_tvars! { star1, star2, key, value };
unique_function(
vec![
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star1),
SolvedType::Apply(Symbol::DICT_DICT, vec![flex(key), flex(value)]),
],
),
flex(key),
flex(value),
],
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star2),
SolvedType::Apply(Symbol::DICT_DICT, vec![flex(key), flex(value)]),
],
),
)
});
// Set module
// empty : Set a
add_type(Symbol::SET_EMPTY, {
let_tvars! { star, a };
set_type(star, a)
});
// singleton : a -> Set a
add_type(Symbol::SET_SINGLETON, {
let_tvars! { star, a };
unique_function(vec![flex(a)], set_type(star, a))
});
// union : Attr * (Set * a)
// , Attr * (Set * a)
// -> Attr * (Set * a)
let set_combine = {
let_tvars! { star1, star2, star3, star4, star5, star6, a };
unique_function(
vec![
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star1),
SolvedType::Apply(Symbol::SET_SET, vec![attr_type(star2, a)]),
],
),
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star3),
SolvedType::Apply(Symbol::SET_SET, vec![attr_type(star4, a)]),
],
),
],
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star5),
SolvedType::Apply(Symbol::SET_SET, vec![attr_type(star6, a)]),
],
),
)
};
// union : Attr * (Set * a)
// , Attr * (Set * a)
// -> Attr * (Set * a)
add_type(Symbol::SET_UNION, set_combine.clone());
// diff : Attr * (Set * a)
// , Attr * (Set * a)
// -> Attr * (Set * a)
add_type(Symbol::SET_DIFF, set_combine);
// foldl : Attr (* | u) (Set (Attr u a))
// , Attr Shared (Attr u a -> b -> b)
// , b
// -> b
add_type(Symbol::SET_FOLDL, {
let_tvars! { star, u, a, b, closure };
unique_function(
vec![
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
container(star, vec![u]),
SolvedType::Apply(Symbol::SET_SET, vec![attr_type(u, a)]),
],
),
shared(SolvedType::Func(
vec![attr_type(u, a), flex(b)],
Box::new(flex(closure)),
Box::new(flex(b)),
)),
flex(b),
],
flex(b),
)
});
// insert : Attr * (Set a)
// , a
// , Attr * (Set a)
add_type(Symbol::SET_INSERT, {
let_tvars! { star1, star2, a };
unique_function(
vec![
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star1),
SolvedType::Apply(Symbol::SET_SET, vec![flex(a)]),
],
),
flex(a),
],
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star2),
SolvedType::Apply(Symbol::SET_SET, vec![flex(a)]),
],
),
)
});
// we can remove a key that is shared from a set of unique keys
//
// remove : Attr * (Set (Attr u a))
// , Attr * a
// , Attr * (Set (Attr u a))
add_type(Symbol::SET_REMOVE, {
let_tvars! { u, a, star1, star2, star3 };
unique_function(
vec![
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star1),
SolvedType::Apply(Symbol::SET_SET, vec![attr_type(u, a)]),
],
),
SolvedType::Apply(Symbol::ATTR_ATTR, vec![flex(star2), flex(a)]),
],
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star3),
SolvedType::Apply(Symbol::SET_SET, vec![attr_type(u, a)]),
],
),
)
});
// Str module
// Str.split :
// Attr * Str,
// Attr * Str
// -> Attr * (List (Attr * Str))
add_type(Symbol::STR_SPLIT, {
let_tvars! { star1, star2, star3, star4 };
unique_function(
vec![str_type(star1), str_type(star2)],
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star3),
SolvedType::Apply(Symbol::LIST_LIST, vec![str_type(star4)]),
],
),
)
});
// isEmpty : Attr * Str -> Attr * Bool
add_type(Symbol::STR_IS_EMPTY, {
let_tvars! { star1, star2 };
unique_function(vec![str_type(star1)], bool_type(star2))
});
// Str.concat : Attr * Str, Attr * Str -> Attr * Str
add_type(Symbol::STR_CONCAT, {
let_tvars! { star1, star2, star3 };
unique_function(vec![str_type(star1), str_type(star2)], str_type(star3))
});
// Str.startsWith : Attr * Str, Attr * Str -> Attr * Bool
add_type(Symbol::STR_STARTS_WITH, {
let_tvars! { star1, star2, star3 };
unique_function(vec![str_type(star1), str_type(star2)], bool_type(star3))
});
// Str.endsWith : Attr * Str, Attr * Str -> Attr * Bool
add_type(Symbol::STR_ENDS_WITH, {
let_tvars! { star1, star2, star3 };
unique_function(vec![str_type(star1), str_type(star2)], bool_type(star3))
});
// Str.countGraphemes : Attr * Str, -> Attr * Int
add_type(Symbol::STR_COUNT_GRAPHEMES, {
let_tvars! { star1, star2, int };
unique_function(vec![str_type(star1)], int_type(star2, int))
});
// fromInt : Attr * Int -> Attr * Str
add_type(Symbol::STR_FROM_INT, {
let_tvars! { star1, star2, int };
unique_function(vec![int_type(star1, int)], str_type(star2))
});
// Result module
// map : Attr * (Result (Attr a e))
// , Attr * (a -> b)
// -> Attr * (Result b e)
add_type(Symbol::RESULT_MAP, {
let_tvars! { star1, star2, star3, a, b, e, closure };
unique_function(
vec![
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star1),
SolvedType::Apply(Symbol::RESULT_RESULT, vec![flex(a), flex(e)]),
],
),
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star2),
SolvedType::Func(vec![flex(a)], Box::new(flex(closure)), Box::new(flex(b))),
],
),
],
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(star3),
SolvedType::Apply(Symbol::RESULT_RESULT, vec![flex(b), flex(e)]),
],
),
)
});
types
}
#[inline(always)]
fn flex(tvar: VarId) -> SolvedType {
SolvedType::Flex(tvar)
}
#[inline(always)]
fn unique_function(args: Vec<SolvedType>, ret: SolvedType) -> SolvedType {
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(FUVAR),
SolvedType::Func(
args,
Box::new(SolvedType::Flex(TOP_LEVEL_CLOSURE_VAR)),
Box::new(ret),
),
],
)
}
#[allow(dead_code)]
#[inline(always)]
fn attr_type(u: VarId, a: VarId) -> SolvedType {
SolvedType::Apply(Symbol::ATTR_ATTR, vec![flex(u), flex(a)])
}
#[inline(always)]
fn lift(u: VarId, a: SolvedType) -> SolvedType {
SolvedType::Apply(Symbol::ATTR_ATTR, vec![flex(u), a])
}
#[inline(always)]
fn float_type(u: VarId) -> SolvedType {
let inner_type = lift(u, flex(u));
let fp = builtin_aliases::floatingpoint_type(inner_type.clone());
let attr_fb = lift(u, fp);
let num = builtin_aliases::num_type(attr_fb);
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(u),
SolvedType::Alias(
Symbol::NUM_FLOAT,
vec![("range".into(), inner_type)],
Box::new(num),
),
],
)
}
#[inline(always)]
fn int_type(u: VarId, range: VarId) -> SolvedType {
let inner_type = lift(u, flex(range));
let integer = builtin_aliases::integer_type(inner_type.clone());
let attr_fb = lift(u, integer);
let num = builtin_aliases::num_type(attr_fb);
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(u),
SolvedType::Alias(
Symbol::NUM_INT,
vec![("range".into(), inner_type)],
Box::new(num),
),
],
)
}
#[inline(always)]
fn bool_type(u: VarId) -> SolvedType {
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![flex(u), builtin_aliases::bool_type()],
)
}
#[inline(always)]
fn str_type(u: VarId) -> SolvedType {
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![flex(u), SolvedType::Apply(Symbol::STR_STR, Vec::new())],
)
}
#[inline(always)]
fn num_type(u: VarId, a: VarId) -> SolvedType {
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![flex(u), builtin_aliases::num_type(attr_type(u, a))],
)
}
#[inline(always)]
fn result_type(u: VarId, a: SolvedType, e: SolvedType) -> SolvedType {
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![flex(u), builtin_aliases::result_type(a, e)],
)
}
#[inline(always)]
fn list_type(u: VarId, a: VarId) -> SolvedType {
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![flex(u), SolvedType::Apply(Symbol::LIST_LIST, vec![flex(a)])],
)
}
#[inline(always)]
fn set_type(u: VarId, a: VarId) -> SolvedType {
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![flex(u), SolvedType::Apply(Symbol::SET_SET, vec![flex(a)])],
)
}
#[inline(always)]
fn dict_type(u: VarId, key: VarId, value: VarId) -> SolvedType {
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(u),
SolvedType::Apply(Symbol::DICT_DICT, vec![flex(key), flex(value)]),
],
)
}
#[inline(always)]
fn ordering_type(u: VarId) -> SolvedType {
// [ LT, EQ, GT ]
SolvedType::Apply(
Symbol::ATTR_ATTR,
vec![
flex(u),
SolvedType::TagUnion(
vec![
(TagName::Global("GT".into()), vec![]),
(TagName::Global("EQ".into()), vec![]),
(TagName::Global("LT".into()), vec![]),
],
Box::new(SolvedType::EmptyTagUnion),
),
],
)
}