mirror of
https://github.com/roc-lang/roc.git
synced 2025-08-20 12:00:16 +00:00
818 lines
31 KiB
Rust
818 lines
31 KiB
Rust
//! Module [specialize] is resolves specialization lambda sets.
|
|
|
|
use std::collections::VecDeque;
|
|
|
|
use roc_can::abilities::{AbilitiesStore, ImplKey};
|
|
use roc_collections::{VecMap, VecSet};
|
|
use roc_debug_flags::dbg_do;
|
|
#[cfg(debug_assertions)]
|
|
use roc_debug_flags::ROC_TRACE_COMPACTION;
|
|
use roc_derive_key::{DeriveError, DeriveKey};
|
|
use roc_error_macros::{internal_error, todo_abilities};
|
|
use roc_module::symbol::{ModuleId, Symbol};
|
|
use roc_types::{
|
|
subs::{
|
|
get_member_lambda_sets_at_region, Content, Descriptor, GetSubsSlice, LambdaSet, Mark,
|
|
OptVariable, Rank, Subs, SubsSlice, UlsOfVar, Variable,
|
|
},
|
|
types::{AliasKind, MemberImpl, Polarity, Uls},
|
|
};
|
|
use roc_unify::unify::{unify, Mode, MustImplementConstraints};
|
|
|
|
use crate::{
|
|
ability::builtin_module_with_unlisted_ability_impl,
|
|
deep_copy::deep_copy_var_in,
|
|
env::{DerivedEnv, SolveEnv},
|
|
};
|
|
|
|
/// What phase in the compiler is reaching out to specialize lambda sets?
|
|
/// This is important to distinguish subtle differences in the behavior of the solving algorithm.
|
|
//
|
|
// TODO the APIs of this trait suck, this needs a nice cleanup.
|
|
pub trait Phase {
|
|
/// The regular type-solving phase, or during some later phase of compilation.
|
|
/// During the solving phase we must anticipate that some information is still unknown and react to
|
|
/// that; during late phases, we expect that all information is resolved.
|
|
const IS_LATE: bool;
|
|
|
|
fn with_module_abilities_store<T, F>(&self, module: ModuleId, f: F) -> T
|
|
where
|
|
F: FnMut(&AbilitiesStore) -> T;
|
|
|
|
/// Given a known lambda set's ambient function in an external module, copy that ambient
|
|
/// function into the given subs.
|
|
fn copy_lambda_set_ambient_function_to_home_subs(
|
|
&self,
|
|
external_lambda_set_var: Variable,
|
|
external_module_id: ModuleId,
|
|
home_subs: &mut Subs,
|
|
) -> Variable;
|
|
|
|
/// Find the ambient function var at a given region for an ability member definition (not a
|
|
/// specialization!), and copy that into the given subs.
|
|
fn get_and_copy_ability_member_ambient_function(
|
|
&self,
|
|
ability_member: Symbol,
|
|
region: u8,
|
|
home_subs: &mut Subs,
|
|
) -> Variable;
|
|
}
|
|
|
|
pub(crate) struct SolvePhase<'a> {
|
|
pub abilities_store: &'a AbilitiesStore,
|
|
}
|
|
impl Phase for SolvePhase<'_> {
|
|
const IS_LATE: bool = false;
|
|
|
|
fn with_module_abilities_store<T, F>(&self, _module: ModuleId, mut f: F) -> T
|
|
where
|
|
F: FnMut(&AbilitiesStore) -> T,
|
|
{
|
|
// During solving we're only aware of our module's abilities store.
|
|
f(self.abilities_store)
|
|
}
|
|
|
|
fn copy_lambda_set_ambient_function_to_home_subs(
|
|
&self,
|
|
external_lambda_set_var: Variable,
|
|
_external_module_id: ModuleId,
|
|
home_subs: &mut Subs,
|
|
) -> Variable {
|
|
// During solving we're only aware of our module's abilities store, the var must
|
|
// be in our module store. Even if the specialization lambda set comes from another
|
|
// module, we should have taken care to import it before starting solving in this module.
|
|
let LambdaSet {
|
|
ambient_function, ..
|
|
} = home_subs.get_lambda_set(external_lambda_set_var);
|
|
ambient_function
|
|
}
|
|
|
|
fn get_and_copy_ability_member_ambient_function(
|
|
&self,
|
|
ability_member: Symbol,
|
|
region: u8,
|
|
home_subs: &mut Subs,
|
|
) -> Variable {
|
|
// During solving we're only aware of our module's abilities store, the var must
|
|
// be in our module store. Even if the specialization lambda set comes from another
|
|
// module, we should have taken care to import it before starting solving in this module.
|
|
let member_def = self
|
|
.abilities_store
|
|
.member_def(ability_member)
|
|
.unwrap_or_else(|| {
|
|
internal_error!(
|
|
"{:?} is not resolved, or not an ability member!",
|
|
ability_member
|
|
)
|
|
});
|
|
let member_var = member_def.signature_var();
|
|
|
|
let region_lset = get_member_lambda_sets_at_region(home_subs, member_var, region);
|
|
|
|
let LambdaSet {
|
|
ambient_function, ..
|
|
} = home_subs.get_lambda_set(region_lset);
|
|
|
|
ambient_function
|
|
}
|
|
}
|
|
|
|
#[derive(Default)]
|
|
pub struct AwaitingSpecializations {
|
|
// What variables' specialized lambda sets in `uls_of_var` will be unlocked for specialization
|
|
// when an implementation key's specialization is resolved?
|
|
waiting: VecMap<ImplKey, VecSet<Variable>>,
|
|
uls_of_var: UlsOfVar,
|
|
}
|
|
|
|
impl AwaitingSpecializations {
|
|
pub fn remove_for_specialized(&mut self, subs: &Subs, impl_key: ImplKey) -> UlsOfVar {
|
|
let spec_variables = self
|
|
.waiting
|
|
.remove(&impl_key)
|
|
.map(|(_, set)| set)
|
|
.unwrap_or_default();
|
|
|
|
let mut result = UlsOfVar::default();
|
|
for var in spec_variables {
|
|
let target_lambda_sets = self
|
|
.uls_of_var
|
|
.remove_dependent_unspecialized_lambda_sets(subs, var);
|
|
|
|
result.extend(var, target_lambda_sets);
|
|
}
|
|
result
|
|
}
|
|
|
|
pub fn add(
|
|
&mut self,
|
|
impl_key: ImplKey,
|
|
var: Variable,
|
|
lambda_sets: impl IntoIterator<Item = Variable>,
|
|
) {
|
|
self.uls_of_var.extend(var, lambda_sets);
|
|
let waiting = self.waiting.get_or_insert(impl_key, Default::default);
|
|
waiting.insert(var);
|
|
}
|
|
|
|
pub fn union(&mut self, other: Self) {
|
|
for (impl_key, waiting_vars) in other.waiting {
|
|
let waiting = self.waiting.get_or_insert(impl_key, Default::default);
|
|
waiting.extend(waiting_vars);
|
|
}
|
|
self.uls_of_var.union(other.uls_of_var);
|
|
}
|
|
|
|
pub fn waiting_for(&self, impl_key: ImplKey) -> bool {
|
|
self.waiting.contains_key(&impl_key)
|
|
}
|
|
}
|
|
|
|
pub struct CompactionResult {
|
|
pub obligations: MustImplementConstraints,
|
|
pub awaiting_specialization: AwaitingSpecializations,
|
|
}
|
|
|
|
#[cfg(debug_assertions)]
|
|
fn trace_compaction_step_1(subs: &Subs, c_a: Variable, uls_a: &[Variable]) {
|
|
let c_a = roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(c_a), subs);
|
|
let uls_a = uls_a
|
|
.iter()
|
|
.map(|v| {
|
|
format!(
|
|
"{:?}",
|
|
roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(*v), subs)
|
|
)
|
|
})
|
|
.collect::<Vec<_>>()
|
|
.join(",");
|
|
eprintln!("===lambda set compaction===");
|
|
eprintln!(" concrete type: {c_a:?}");
|
|
eprintln!(" step 1:");
|
|
eprintln!(" uls_a = {{ {uls_a} }}");
|
|
}
|
|
|
|
#[cfg(debug_assertions)]
|
|
fn trace_compaction_step_2(subs: &Subs, uls_a: &[Variable]) {
|
|
let uls_a = uls_a
|
|
.iter()
|
|
.map(|v| {
|
|
format!(
|
|
"{:?}",
|
|
roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(*v), subs)
|
|
)
|
|
})
|
|
.collect::<Vec<_>>()
|
|
.join(",");
|
|
eprintln!(" step 2:");
|
|
eprintln!(" uls_a' = {{ {uls_a} }}");
|
|
}
|
|
|
|
#[cfg(debug_assertions)]
|
|
fn trace_compaction_step_3start() {
|
|
eprintln!(" step 3:");
|
|
}
|
|
|
|
#[cfg(debug_assertions)]
|
|
fn trace_compaction_step_3iter_start(
|
|
subs: &Subs,
|
|
iteration_lambda_set: Variable,
|
|
t_f1: Variable,
|
|
t_f2: Variable,
|
|
) {
|
|
let iteration_lambda_set = roc_types::subs::SubsFmtContent(
|
|
subs.get_content_without_compacting(iteration_lambda_set),
|
|
subs,
|
|
);
|
|
let t_f1 = roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(t_f1), subs);
|
|
let t_f2 = roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(t_f2), subs);
|
|
eprintln!(" - iteration: {iteration_lambda_set:?}");
|
|
eprintln!(" {t_f1:?}");
|
|
eprintln!(" ~ {t_f2:?}");
|
|
}
|
|
|
|
#[cfg(debug_assertions)]
|
|
#[rustfmt::skip]
|
|
fn trace_compaction_step_3iter_end(subs: &Subs, t_f_result: Variable, skipped: bool) {
|
|
let t_f_result =
|
|
roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(t_f_result), subs);
|
|
if skipped {
|
|
eprintln!(" SKIP");
|
|
}
|
|
eprintln!(" = {t_f_result:?}\n");
|
|
}
|
|
|
|
macro_rules! trace_compact {
|
|
(1. $subs:expr, $c_a:expr, $uls_a:expr) => {{
|
|
dbg_do!(ROC_TRACE_COMPACTION, {
|
|
trace_compaction_step_1($subs, $c_a, $uls_a)
|
|
})
|
|
}};
|
|
(2. $subs:expr, $uls_a:expr) => {{
|
|
dbg_do!(ROC_TRACE_COMPACTION, {
|
|
trace_compaction_step_2($subs, $uls_a)
|
|
})
|
|
}};
|
|
(3start.) => {{
|
|
dbg_do!(ROC_TRACE_COMPACTION, { trace_compaction_step_3start() })
|
|
}};
|
|
(3iter_start. $subs:expr, $iteration_lset:expr, $t_f1:expr, $t_f2:expr) => {{
|
|
dbg_do!(ROC_TRACE_COMPACTION, {
|
|
trace_compaction_step_3iter_start($subs, $iteration_lset, $t_f1, $t_f2)
|
|
})
|
|
}};
|
|
(3iter_end. $subs:expr, $t_f_result:expr) => {{
|
|
dbg_do!(ROC_TRACE_COMPACTION, {
|
|
trace_compaction_step_3iter_end($subs, $t_f_result, false)
|
|
})
|
|
}};
|
|
(3iter_end_skipped. $subs:expr, $t_f_result:expr) => {{
|
|
dbg_do!(ROC_TRACE_COMPACTION, {
|
|
trace_compaction_step_3iter_end($subs, $t_f_result, true)
|
|
})
|
|
}};
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn iter_concrete_of_unspecialized<'a>(
|
|
subs: &'a Subs,
|
|
c_a: Variable,
|
|
uls: &'a [Uls],
|
|
) -> impl Iterator<Item = &'a Uls> {
|
|
uls.iter()
|
|
.filter(move |Uls(var, _, _)| subs.equivalent_without_compacting(*var, c_a))
|
|
}
|
|
|
|
/// Gets the unique unspecialized lambda resolving to concrete type `c_a` in a list of
|
|
/// unspecialized lambda sets.
|
|
#[inline(always)]
|
|
fn unique_unspecialized_lambda(subs: &Subs, c_a: Variable, uls: &[Uls]) -> Option<Uls> {
|
|
let mut iter_concrete = iter_concrete_of_unspecialized(subs, c_a, uls);
|
|
let uls = iter_concrete.next()?;
|
|
debug_assert!(iter_concrete.next().is_none(), "multiple concrete");
|
|
Some(*uls)
|
|
}
|
|
|
|
#[must_use]
|
|
pub fn compact_lambda_sets_of_vars<P: Phase>(
|
|
env: &mut SolveEnv,
|
|
uls_of_var: UlsOfVar,
|
|
phase: &P,
|
|
) -> CompactionResult {
|
|
let mut must_implement = MustImplementConstraints::default();
|
|
let mut awaiting_specialization = AwaitingSpecializations::default();
|
|
|
|
let mut uls_of_var_queue = VecDeque::with_capacity(uls_of_var.len());
|
|
uls_of_var_queue.extend(uls_of_var.drain());
|
|
|
|
// Suppose a type variable `a` with `uls_of_var` mapping `uls_a = {l1, ... ln}` has been instantiated to a concrete type `C_a`.
|
|
while let Some((c_a, uls_a)) = uls_of_var_queue.pop_front() {
|
|
let c_a = env.subs.get_root_key_without_compacting(c_a);
|
|
// 1. Let each `l` in `uls_a` be of form `[solved_lambdas + ... + C:f:r + ...]`.
|
|
// NB: There may be multiple unspecialized lambdas of form `C:f:r, C:f1:r1, ..., C:fn:rn` in `l`.
|
|
// In this case, let `t1, ... tm` be the other unspecialized lambdas not of form `C:_:_`,
|
|
// that is, none of which are now specialized to the type `C`. Then, deconstruct
|
|
// `l` such that `l' = [solved_lambdas + t1 + ... + tm + C:f:r]` and `l1 = [[] + C:f1:r1], ..., ln = [[] + C:fn:rn]`.
|
|
// Replace `l` with `l', l1, ..., ln` in `uls_a`, flattened.
|
|
// TODO: the flattening step described above
|
|
let uls_a = {
|
|
let mut uls = uls_a.into_vec();
|
|
|
|
// De-duplicate lambdas by root key.
|
|
uls.iter_mut().for_each(|v| *v = env.subs.get_root_key(*v));
|
|
uls.sort();
|
|
uls.dedup();
|
|
uls
|
|
};
|
|
|
|
trace_compact!(1. env.subs, c_a, &uls_a);
|
|
|
|
// The flattening step - remove lambda sets that don't reference the concrete var, and for
|
|
// flatten lambda sets that reference it more than once.
|
|
let mut uls_a: Vec<_> = uls_a
|
|
.into_iter()
|
|
.flat_map(|lambda_set| {
|
|
let LambdaSet {
|
|
solved,
|
|
recursion_var,
|
|
unspecialized,
|
|
ambient_function,
|
|
} = env.subs.get_lambda_set(lambda_set);
|
|
let lambda_set_rank = env.subs.get_rank(lambda_set);
|
|
let unspecialized = env.subs.get_subs_slice(unspecialized);
|
|
// TODO: is it faster to traverse once, see if we only have one concrete lambda, and
|
|
// bail in that happy-path, rather than always splitting?
|
|
let (concrete, mut not_concrete): (Vec<_>, Vec<_>) = unspecialized
|
|
.iter()
|
|
.copied()
|
|
.partition(|Uls(var, _, _)| env.subs.equivalent_without_compacting(*var, c_a));
|
|
if concrete.len() == 1 {
|
|
// No flattening needs to be done, just return the lambda set as-is
|
|
return vec![lambda_set];
|
|
}
|
|
// Must flatten
|
|
concrete
|
|
.into_iter()
|
|
.enumerate()
|
|
.map(|(i, concrete_lambda)| {
|
|
let (var, unspecialized) = if i == 0 {
|
|
// The first lambda set contains one concrete lambda, plus all solved
|
|
// lambdas, plus all other unspecialized lambdas.
|
|
// l' = [solved_lambdas + t1 + ... + tm + C:f:r]
|
|
let unspecialized = SubsSlice::extend_new(
|
|
&mut env.subs.unspecialized_lambda_sets,
|
|
not_concrete
|
|
.drain(..)
|
|
.chain(std::iter::once(concrete_lambda)),
|
|
);
|
|
(lambda_set, unspecialized)
|
|
} else {
|
|
// All the other lambda sets consists only of their respective concrete
|
|
// lambdas.
|
|
// ln = [[] + C:fn:rn]
|
|
let unspecialized = SubsSlice::extend_new(
|
|
&mut env.subs.unspecialized_lambda_sets,
|
|
[concrete_lambda],
|
|
);
|
|
let var = env.subs.fresh(Descriptor {
|
|
content: Content::Error,
|
|
rank: lambda_set_rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
});
|
|
(var, unspecialized)
|
|
};
|
|
|
|
env.subs.set_content(
|
|
var,
|
|
Content::LambdaSet(LambdaSet {
|
|
solved,
|
|
recursion_var,
|
|
unspecialized,
|
|
ambient_function,
|
|
}),
|
|
);
|
|
var
|
|
})
|
|
.collect()
|
|
})
|
|
.collect();
|
|
|
|
// 2. Now, each `l` in `uls_a` has a unique unspecialized lambda of form `C:f:r`.
|
|
// Sort `uls_a` primarily by `f` (arbitrary order), and secondarily by `r` in descending order.
|
|
uls_a.sort_by(|v1, v2| {
|
|
let unspec_1 = env
|
|
.subs
|
|
.get_subs_slice(env.subs.get_lambda_set(*v1).unspecialized);
|
|
let unspec_2 = env
|
|
.subs
|
|
.get_subs_slice(env.subs.get_lambda_set(*v2).unspecialized);
|
|
|
|
let Uls(_, f1, r1) = unique_unspecialized_lambda(env.subs, c_a, unspec_1).unwrap();
|
|
let Uls(_, f2, r2) = unique_unspecialized_lambda(env.subs, c_a, unspec_2).unwrap();
|
|
|
|
match f1.cmp(&f2) {
|
|
std::cmp::Ordering::Equal => {
|
|
// Order by descending order of region.
|
|
r2.cmp(&r1)
|
|
}
|
|
ord => ord,
|
|
}
|
|
});
|
|
|
|
trace_compact!(2. env.subs, &uls_a);
|
|
|
|
// 3. For each `l` in `uls_a` with unique unspecialized lambda `C:f:r`:
|
|
// 1. Let `t_f1` be the directly ambient function of the lambda set containing `C:f:r`. Remove `C:f:r` from `t_f1`'s lambda set.
|
|
// - For example, `(b' -[[] + Fo:f:2]-> {})` if `C:f:r=Fo:f:2`. Removing `Fo:f:2`, we get `(b' -[[]]-> {})`.
|
|
// 2. Let `t_f2` be the directly ambient function of the specialization lambda set resolved by `C:f:r`.
|
|
// - For example, `(b -[[] + b:g:1]-> {})` if `C:f:r=Fo:f:2`, running on example from above.
|
|
// 3. Unify `t_f1 ~ t_f2`.
|
|
trace_compact!(3start.);
|
|
for l in uls_a {
|
|
let compaction_result = compact_lambda_set(env, c_a, l, phase);
|
|
|
|
match compaction_result {
|
|
OneCompactionResult::Compacted {
|
|
new_obligations,
|
|
new_lambda_sets_to_specialize,
|
|
} => {
|
|
must_implement.extend(new_obligations);
|
|
uls_of_var_queue.extend(new_lambda_sets_to_specialize.drain());
|
|
}
|
|
OneCompactionResult::MustWaitForSpecialization(impl_key) => {
|
|
awaiting_specialization.add(impl_key, c_a, [l])
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
CompactionResult {
|
|
obligations: must_implement,
|
|
awaiting_specialization,
|
|
}
|
|
}
|
|
|
|
enum OneCompactionResult {
|
|
Compacted {
|
|
new_obligations: MustImplementConstraints,
|
|
new_lambda_sets_to_specialize: UlsOfVar,
|
|
},
|
|
MustWaitForSpecialization(ImplKey),
|
|
}
|
|
|
|
#[must_use]
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn compact_lambda_set<P: Phase>(
|
|
env: &mut SolveEnv,
|
|
resolved_concrete: Variable,
|
|
this_lambda_set: Variable,
|
|
phase: &P,
|
|
) -> OneCompactionResult {
|
|
// 3. For each `l` in `uls_a` with unique unspecialized lambda `C:f:r`:
|
|
// 1. Let `t_f1` be the directly ambient function of the lambda set containing `C:f:r`. Remove `C:f:r` from `t_f1`'s lambda set.
|
|
// - For example, `(b' -[[] + Fo:f:2]-> {})` if `C:f:r=Fo:f:2`. Removing `Fo:f:2`, we get `(b' -[[]]-> {})`.
|
|
// 2. Let `t_f2` be the directly ambient function of the specialization lambda set resolved by `C:f:r`.
|
|
// - For example, `(b -[[] + b:g:1]-> {})` if `C:f:r=Fo:f:2`, from the algorithm's running example.
|
|
// 3. Unify `t_f1 ~ t_f2`.
|
|
let LambdaSet {
|
|
solved,
|
|
recursion_var,
|
|
unspecialized,
|
|
ambient_function: t_f1,
|
|
} = env.subs.get_lambda_set(this_lambda_set);
|
|
let target_rank = env.subs.get_rank(this_lambda_set);
|
|
|
|
debug_assert!(!unspecialized.is_empty());
|
|
|
|
let unspecialized = env.subs.get_subs_slice(unspecialized);
|
|
|
|
// 1. Let `t_f1` be the directly ambient function of the lambda set containing `C:f:r`.
|
|
let Uls(c, f, r) =
|
|
unique_unspecialized_lambda(env.subs, resolved_concrete, unspecialized).unwrap();
|
|
|
|
debug_assert!(env.subs.equivalent_without_compacting(c, resolved_concrete));
|
|
|
|
// Now decide: do we
|
|
// - proceed with specialization
|
|
// - simply drop the specialization lambda set (due to an error)
|
|
// - or do we need to wait, because we don't know enough information for the specialization yet?
|
|
let specialization_decision = make_specialization_decision(env.subs, phase, c, f);
|
|
let specialization_key_or_drop = match specialization_decision {
|
|
SpecializeDecision::Specialize(key) => Ok(key),
|
|
SpecializeDecision::Drop => Err(()),
|
|
SpecializeDecision::PendingSpecialization(impl_key) => {
|
|
// Bail, we need to wait for the specialization to be known.
|
|
return OneCompactionResult::MustWaitForSpecialization(impl_key);
|
|
}
|
|
};
|
|
|
|
// 1b. Remove `C:f:r` from `t_f1`'s lambda set.
|
|
let new_unspecialized: Vec<_> = unspecialized
|
|
.iter()
|
|
.filter(|Uls(v, _, _)| {
|
|
!env.subs
|
|
.equivalent_without_compacting(*v, resolved_concrete)
|
|
})
|
|
.copied()
|
|
.collect();
|
|
debug_assert_eq!(new_unspecialized.len(), unspecialized.len() - 1);
|
|
let t_f1_lambda_set_without_concrete = LambdaSet {
|
|
solved,
|
|
recursion_var,
|
|
unspecialized: SubsSlice::extend_new(
|
|
&mut env.subs.unspecialized_lambda_sets,
|
|
new_unspecialized,
|
|
),
|
|
ambient_function: t_f1,
|
|
};
|
|
env.subs.set_content(
|
|
this_lambda_set,
|
|
Content::LambdaSet(t_f1_lambda_set_without_concrete),
|
|
);
|
|
|
|
let specialization_key = match specialization_key_or_drop {
|
|
Ok(specialization_key) => specialization_key,
|
|
Err(()) => {
|
|
// Do nothing other than to remove the concrete lambda to drop from the lambda set,
|
|
// which we already did in 1b above.
|
|
trace_compact!(3iter_end_skipped.env.subs, t_f1);
|
|
return OneCompactionResult::Compacted {
|
|
new_obligations: Default::default(),
|
|
new_lambda_sets_to_specialize: Default::default(),
|
|
};
|
|
}
|
|
};
|
|
|
|
let specialization_ambient_function_var = get_specialization_lambda_set_ambient_function(
|
|
env.subs,
|
|
env.derived_env,
|
|
phase,
|
|
f,
|
|
r,
|
|
specialization_key,
|
|
target_rank,
|
|
);
|
|
|
|
let t_f2 = match specialization_ambient_function_var {
|
|
Ok(lset) => lset,
|
|
Err(()) => {
|
|
// Do nothing other than to remove the concrete lambda to drop from the lambda set,
|
|
// which we already did in 1b above.
|
|
trace_compact!(3iter_end_skipped.env.subs, t_f1);
|
|
return OneCompactionResult::Compacted {
|
|
new_obligations: Default::default(),
|
|
new_lambda_sets_to_specialize: Default::default(),
|
|
};
|
|
}
|
|
};
|
|
|
|
// Ensure the specialized ambient function we'll unify with is not a generalized one, but one
|
|
// at the rank of the lambda set being compacted.
|
|
let t_f2 = deep_copy_var_in(env, target_rank, t_f2, env.arena);
|
|
|
|
// 3. Unify `t_f1 ~ t_f2`.
|
|
trace_compact!(3iter_start.env.subs, this_lambda_set, t_f1, t_f2);
|
|
let (vars, new_obligations, new_lambda_sets_to_specialize, _meta) = unify(
|
|
&mut env.uenv(),
|
|
t_f1,
|
|
t_f2,
|
|
Mode::LAMBDA_SET_SPECIALIZATION,
|
|
Polarity::Pos,
|
|
)
|
|
.expect_success("ambient functions don't unify");
|
|
trace_compact!(3iter_end.env.subs, t_f1);
|
|
|
|
env.introduce(target_rank, &vars);
|
|
|
|
OneCompactionResult::Compacted {
|
|
new_obligations,
|
|
new_lambda_sets_to_specialize,
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum SpecializationTypeKey {
|
|
Opaque(Symbol),
|
|
Derived(DeriveKey),
|
|
Immediate(Symbol),
|
|
SingleLambdaSetImmediate(Symbol),
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum SpecializeDecision {
|
|
Specialize(SpecializationTypeKey),
|
|
Drop,
|
|
|
|
/// Only relevant during module solving of recursive defs - we don't yet know the
|
|
/// specialization type for a declared ability implementation, so we must hold off on
|
|
/// specialization.
|
|
PendingSpecialization(ImplKey),
|
|
}
|
|
|
|
fn make_specialization_decision<P: Phase>(
|
|
subs: &Subs,
|
|
phase: &P,
|
|
var: Variable,
|
|
ability_member: Symbol,
|
|
) -> SpecializeDecision {
|
|
use Content::*;
|
|
use SpecializationTypeKey::*;
|
|
match subs.get_content_without_compacting(var) {
|
|
Alias(opaque, _, _, AliasKind::Opaque)
|
|
if !builtin_module_with_unlisted_ability_impl(opaque.module_id()) =>
|
|
{
|
|
if P::IS_LATE {
|
|
SpecializeDecision::Specialize(Opaque(*opaque))
|
|
} else {
|
|
// Solving within a module.
|
|
phase.with_module_abilities_store(opaque.module_id(), |abilities_store| {
|
|
let impl_key = ImplKey {
|
|
opaque: *opaque,
|
|
ability_member,
|
|
};
|
|
match abilities_store.get_implementation(impl_key) {
|
|
None => {
|
|
// Doesn't specialize; an error will already be reported for this.
|
|
SpecializeDecision::Drop
|
|
}
|
|
Some(MemberImpl::Error) => {
|
|
// TODO: probably not right, we may want to choose a derive decision!
|
|
SpecializeDecision::Specialize(Opaque(*opaque))
|
|
}
|
|
Some(MemberImpl::Impl(specialization_symbol)) => {
|
|
match abilities_store.specialization_info(*specialization_symbol) {
|
|
Some(_) => SpecializeDecision::Specialize(Opaque(*opaque)),
|
|
|
|
// If we expect a specialization impl but don't yet know it, we must hold off
|
|
// compacting the lambda set until the specialization is well-known.
|
|
None => SpecializeDecision::PendingSpecialization(impl_key),
|
|
}
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
Structure(_) | Alias(_, _, _, _) | RecursionVar { .. } => {
|
|
let builtin = match ability_member.try_into() {
|
|
Ok(builtin) => builtin,
|
|
Err(_) => return SpecializeDecision::Drop,
|
|
};
|
|
|
|
// This is a structural type, find the derived ability function it should use.
|
|
match roc_derive_key::Derived::builtin(builtin, subs, var) {
|
|
Ok(derived) => match derived {
|
|
roc_derive_key::Derived::Immediate(imm) => {
|
|
SpecializeDecision::Specialize(Immediate(imm))
|
|
}
|
|
roc_derive_key::Derived::SingleLambdaSetImmediate(imm) => {
|
|
SpecializeDecision::Specialize(SingleLambdaSetImmediate(imm))
|
|
}
|
|
roc_derive_key::Derived::Key(derive_key) => {
|
|
SpecializeDecision::Specialize(Derived(derive_key))
|
|
}
|
|
},
|
|
Err(DeriveError::UnboundVar) => {
|
|
// not specialized yet, but that also means that it can't possibly be derivable
|
|
// at this point?
|
|
// TODO: is this right? Revisit if it causes us problems in the future.
|
|
SpecializeDecision::Drop
|
|
}
|
|
Err(DeriveError::Underivable) => {
|
|
// we should have reported an error for this; drop the lambda set.
|
|
SpecializeDecision::Drop
|
|
}
|
|
}
|
|
}
|
|
Error => SpecializeDecision::Drop,
|
|
FlexAbleVar(_, _)
|
|
| RigidAbleVar(..)
|
|
| FlexVar(..)
|
|
| RigidVar(..)
|
|
| LambdaSet(..)
|
|
| ErasedLambda
|
|
| RangedNumber(..) => {
|
|
internal_error!("unexpected")
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn get_specialization_lambda_set_ambient_function<P: Phase>(
|
|
subs: &mut Subs,
|
|
derived_env: &DerivedEnv,
|
|
phase: &P,
|
|
ability_member: Symbol,
|
|
lset_region: u8,
|
|
specialization_key: SpecializationTypeKey,
|
|
target_rank: Rank,
|
|
) -> Result<Variable, ()> {
|
|
match specialization_key {
|
|
SpecializationTypeKey::Opaque(opaque) => {
|
|
let opaque_home = opaque.module_id();
|
|
let external_specialized_lset =
|
|
phase.with_module_abilities_store(opaque_home, |abilities_store| {
|
|
let impl_key = roc_can::abilities::ImplKey {
|
|
opaque,
|
|
ability_member,
|
|
};
|
|
|
|
let opt_specialization =
|
|
abilities_store.get_implementation(impl_key);
|
|
match opt_specialization {
|
|
None => {
|
|
if P::IS_LATE {
|
|
internal_error!(
|
|
"expected to know a specialization for {:?}#{:?}, but it wasn't found",
|
|
opaque,
|
|
ability_member
|
|
);
|
|
} else {
|
|
// doesn't specialize, we'll have reported an error for this
|
|
Err(())
|
|
}
|
|
}
|
|
Some(member_impl) => match member_impl {
|
|
MemberImpl::Impl(spec_symbol) => {
|
|
let specialization =
|
|
abilities_store.specialization_info(*spec_symbol).expect("expected custom implementations to always have complete specialization info by this point");
|
|
|
|
let specialized_lambda_set = *specialization
|
|
.specialization_lambda_sets
|
|
.get(&lset_region)
|
|
.unwrap_or_else(|| panic!("lambda set region not resolved: {:?}", (spec_symbol, specialization)));
|
|
Ok(specialized_lambda_set)
|
|
}
|
|
MemberImpl::Error => todo_abilities!(),
|
|
},
|
|
}
|
|
})?;
|
|
|
|
let specialized_ambient = phase.copy_lambda_set_ambient_function_to_home_subs(
|
|
external_specialized_lset,
|
|
opaque_home,
|
|
subs,
|
|
);
|
|
|
|
Ok(specialized_ambient)
|
|
}
|
|
|
|
SpecializationTypeKey::Derived(derive_key) => {
|
|
let mut derived_module = derived_env.derived_module.lock().unwrap();
|
|
|
|
let (_, _, specialization_lambda_sets) =
|
|
derived_module.get_or_insert(derived_env.exposed_types, derive_key);
|
|
|
|
let specialized_lambda_set = *specialization_lambda_sets
|
|
.get(&lset_region)
|
|
.expect("lambda set region not resolved");
|
|
|
|
let specialized_ambient = derived_module.copy_lambda_set_ambient_function_to_subs(
|
|
specialized_lambda_set,
|
|
subs,
|
|
target_rank,
|
|
);
|
|
|
|
Ok(specialized_ambient)
|
|
}
|
|
|
|
SpecializationTypeKey::Immediate(imm) => {
|
|
// Immediates are like opaques in that we can simply look up their type definition in
|
|
// the ability store, there is nothing new to synthesize.
|
|
//
|
|
// THEORY: if something can become an immediate, it will always be available in the
|
|
// local ability store, because the transformation is local (?)
|
|
//
|
|
// TODO: I actually think we can get what we need here by examining `derived_env.exposed_types`,
|
|
// since immediates can only refer to builtins - and in userspace, all builtin types
|
|
// are available in `exposed_types`.
|
|
let immediate_lambda_set_at_region =
|
|
phase.get_and_copy_ability_member_ambient_function(imm, lset_region, subs);
|
|
|
|
Ok(immediate_lambda_set_at_region)
|
|
}
|
|
|
|
SpecializationTypeKey::SingleLambdaSetImmediate(imm) => {
|
|
let module_id = imm.module_id();
|
|
debug_assert!(module_id.is_builtin());
|
|
|
|
let module_types = &derived_env
|
|
.exposed_types
|
|
.get(&module_id)
|
|
.unwrap()
|
|
.exposed_types_storage_subs;
|
|
|
|
// Since this immediate has only one lambda set, the region must be pointing to 1, and
|
|
// moreover the imported function type is the ambient function of the single lset.
|
|
debug_assert_eq!(lset_region, 1);
|
|
let storage_var = module_types.stored_vars_by_symbol.get(&imm).unwrap();
|
|
let imported = module_types
|
|
.storage_subs
|
|
.export_variable_to(subs, *storage_var);
|
|
|
|
roc_types::subs::instantiate_rigids(subs, imported.variable);
|
|
|
|
Ok(imported.variable)
|
|
}
|
|
}
|
|
}
|