roc/crates/compiler/builtins/bitcode/benchmark/dec.zig
2023-09-19 10:50:52 +02:00

228 lines
7.6 KiB
Zig

const std = @import("std");
const time = std.time;
const Timer = time.Timer;
const RocStr = @import("../src/str.zig").RocStr;
const RocDec = @import("../src/dec.zig").RocDec;
fn roc_alloc(_: usize, _: u32) callconv(.C) ?*anyopaque {
@panic("Not needed for dec benchmark");
}
fn roc_panic(_: *anyopaque, _: u32) callconv(.C) void {
@panic("Not needed for dec benchmark");
}
comptime {
@export(roc_alloc, .{ .name = "roc_alloc", .linkage = .Strong });
@export(roc_panic, .{ .name = "roc_panic", .linkage = .Strong });
}
var timer: Timer = undefined;
pub fn main() !void {
const stdout = std.io.getStdOut().writer();
try stdout.print("Warning: Timer seems to step in units of 41ns\n\n", .{});
timer = try Timer.start();
const n = 1000;
// Add/Sub are too fast and need a higher n.
const add_sub_n = 10000;
// This number are very close to 1 to avoid over and underflow.
const f1 = 1.00123;
const dec1 = RocDec.fromF64(f1).?;
// `asin` and `acos` have a limited range, so they will use this value.
const f2 = 0.00130000847;
const dec2 = RocDec.fromF64(f2).?;
try stdout.print("Dec:\n", .{});
try stdout.print("{} additions took ", .{add_sub_n});
const decAdd = try avg_runs(RocDec, add_sub_n, RocDec.add, dec1);
try stdout.print("{} subtractions took ", .{add_sub_n});
const decSub = try avg_runs(RocDec, add_sub_n, RocDec.sub, dec1);
try stdout.print("{} multiplications took ", .{n});
const decMul = try avg_runs(RocDec, n, RocDec.mul, dec1);
try stdout.print("{} divisions took ", .{n});
const decDiv = try avg_runs(RocDec, n, RocDec.div, dec1);
try stdout.print("{} sin took ", .{n});
const decSin = try avg_runs(RocDec, n, sinDec, dec1);
try stdout.print("{} cos took ", .{n});
const decCos = try avg_runs(RocDec, n, cosDec, dec1);
try stdout.print("{} tan took ", .{n});
const decTan = try avg_runs(RocDec, n, tanDec, dec1);
try stdout.print("{} asin took ", .{n});
const decAsin = try avg_runs(RocDec, n, asinDec, dec2);
try stdout.print("{} acos took ", .{n});
const decAcos = try avg_runs(RocDec, n, acosDec, dec2);
try stdout.print("{} atan took ", .{n});
const decAtan = try avg_runs(RocDec, n, atanDec, dec1);
try stdout.print("\n\nF64:\n", .{});
try stdout.print("{} additions took ", .{add_sub_n});
const f64Add = try avg_runs(f64, add_sub_n, addF64, f1);
try stdout.print("{} subtractions took ", .{add_sub_n});
const f64Sub = try avg_runs(f64, add_sub_n, subF64, f1);
try stdout.print("{} multiplications took ", .{n});
const f64Mul = try avg_runs(f64, n, mulF64, f1);
try stdout.print("{} divisions took ", .{n});
const f64Div = try avg_runs(f64, n, divF64, f1);
try stdout.print("{} sin took ", .{n});
const f64Sin = try avg_runs(f64, n, sinF64, f1);
try stdout.print("{} cos took ", .{n});
const f64Cos = try avg_runs(f64, n, cosF64, f1);
try stdout.print("{} tan took ", .{n});
const f64Tan = try avg_runs(f64, n, tanF64, f1);
try stdout.print("{} asin took ", .{n});
const f64Asin = try avg_runs(f64, n, asinF64, f2);
try stdout.print("{} acos took ", .{n});
const f64Acos = try avg_runs(f64, n, acosF64, f2);
try stdout.print("{} atan took ", .{n});
const f64Atan = try avg_runs(f64, n, atanF64, f1);
try stdout.print("\n\nDec/F64:\n", .{});
try stdout.print("addition: {d:0.2}\n", .{@intToFloat(f64, decAdd) / @intToFloat(f64, f64Add)});
try stdout.print("subtraction: {d:0.2}\n", .{@intToFloat(f64, decSub) / @intToFloat(f64, f64Sub)});
try stdout.print("multiplication: {d:0.2}\n", .{@intToFloat(f64, decMul) / @intToFloat(f64, f64Mul)});
try stdout.print("division: {d:0.2}\n", .{@intToFloat(f64, decDiv) / @intToFloat(f64, f64Div)});
try stdout.print("sin: {d:0.2}\n", .{@intToFloat(f64, decSin) / @intToFloat(f64, f64Sin)});
try stdout.print("cos: {d:0.2}\n", .{@intToFloat(f64, decCos) / @intToFloat(f64, f64Cos)});
try stdout.print("tan: {d:0.2}\n", .{@intToFloat(f64, decTan) / @intToFloat(f64, f64Tan)});
try stdout.print("asin: {d:0.2}\n", .{@intToFloat(f64, decAsin) / @intToFloat(f64, f64Asin)});
try stdout.print("acos: {d:0.2}\n", .{@intToFloat(f64, decAcos) / @intToFloat(f64, f64Acos)});
try stdout.print("atan: {d:0.2}\n", .{@intToFloat(f64, decAtan) / @intToFloat(f64, f64Atan)});
}
fn avg_runs(comptime T: type, comptime n: usize, comptime op: fn (T, T) T, v: T) !u64 {
const stdout = std.io.getStdOut().writer();
const warmups = 10000;
const repeats = 10000;
var runs = [_]u64{0} ** (warmups + repeats);
var i: usize = 0;
while (i < warmups + repeats) : (i += 1) {
// Never inline run to ensure it doesn't optimize for the value of `v`.
runs[i] = callWrapper(u64, .never_inline, run, .{ T, n, op, v });
}
var real_runs = runs[warmups..runs.len];
std.sort.sort(u64, real_runs, {}, comptime std.sort.asc(u64));
const median = real_runs[real_runs.len / 2];
const highest = real_runs[real_runs.len - 1];
const lowest = real_runs[0];
try stdout.print("{}ns (lowest: {}ns, highest: {}ns)\n", .{ median, lowest, highest });
return median;
}
fn run(comptime T: type, comptime n: usize, comptime op: fn (T, T) T, v: T) u64 {
var a = v;
timer.reset();
// Split into outer and inner loop to avoid breaking comptime.
const max_inline = 100;
comptime var outer = n / max_inline;
comptime var inner = std.math.min(n, max_inline);
var i: usize = 0;
while (i < outer) : (i += 1) {
comptime var j = 0;
inline while (j < inner) : (j += 1) {
a = callWrapper(T, .always_inline, op, .{ a, v });
}
}
const rem = n % max_inline;
comptime var j = 0;
inline while (j < rem) : (j += 1) {
a = callWrapper(T, .always_inline, op, .{ a, v });
}
// Clobber `a` to avoid removal as dead code.
asm volatile (""
:
: [a] "r,m" (&a),
: "memory"
);
return timer.read();
}
// This is needed to work around a bug with using `@call` in loops.
inline fn callWrapper(comptime T: type, call_modifier: anytype, comptime func: anytype, params: anytype) T {
return @call(.{ .modifier = call_modifier }, func, params);
}
fn addF64(x: f64, y: f64) f64 {
return x + y;
}
fn subF64(x: f64, y: f64) f64 {
return x - y;
}
fn mulF64(x: f64, y: f64) f64 {
return x * y;
}
fn divF64(x: f64, y: f64) f64 {
return x / y;
}
fn sinF64(x: f64, _: f64) f64 {
return std.math.sin(x);
}
fn cosF64(x: f64, _: f64) f64 {
return std.math.cos(x);
}
fn tanF64(x: f64, _: f64) f64 {
return std.math.tan(x);
}
fn asinF64(x: f64, _: f64) f64 {
return std.math.asin(x);
}
const pi_over_2 = std.math.pi / 2.0;
fn acosF64(x: f64, _: f64) f64 {
// acos is only stable if we subtract pi/2.
// The perf should be essentially the same because subtraction is much faster than acos.
return std.math.acos(x) - pi_over_2;
}
fn atanF64(x: f64, _: f64) f64 {
return std.math.atan(x);
}
fn sinDec(x: RocDec, _: RocDec) RocDec {
return x.sin();
}
fn cosDec(x: RocDec, _: RocDec) RocDec {
return x.cos();
}
fn tanDec(x: RocDec, _: RocDec) RocDec {
return x.tan();
}
fn asinDec(x: RocDec, _: RocDec) RocDec {
return x.asin();
}
const pi_over_2_dec = RocDec.fromF64(pi_over_2).?;
fn acosDec(x: RocDec, _: RocDec) RocDec {
// acos is only stable if we subtract pi/2.
// The perf should be essentially the same because subtraction is much faster than acos.
return x.acos().sub(pi_over_2_dec);
}
fn atanDec(x: RocDec, _: RocDec) RocDec {
return x.atan();
}