roc/compiler/mono/src/layout.rs
2021-11-20 23:25:30 +01:00

2790 lines
98 KiB
Rust

use crate::ir::Parens;
use bumpalo::collections::Vec;
use bumpalo::Bump;
use roc_builtins::bitcode::{FloatWidth, IntWidth};
use roc_collections::all::{default_hasher, MutMap};
use roc_module::ident::{Lowercase, TagName};
use roc_module::symbol::{Interns, Symbol};
use roc_types::subs::{
Content, FlatType, RecordFields, Subs, UnionTags, Variable, VariableSubsSlice,
};
use roc_types::types::{gather_fields_unsorted_iter, RecordField};
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use ven_pretty::{DocAllocator, DocBuilder};
// if your changes cause this number to go down, great!
// please change it to the lower number.
// if it went up, maybe check that the change is really required
static_assertions::assert_eq_size!([u8; 3 * 8], Builtin);
static_assertions::assert_eq_size!([u8; 4 * 8], Layout);
static_assertions::assert_eq_size!([u8; 3 * 8], UnionLayout);
static_assertions::assert_eq_size!([u8; 3 * 8], LambdaSet);
pub type TagIdIntType = u16;
pub const MAX_ENUM_SIZE: usize = (std::mem::size_of::<TagIdIntType>() * 8) as usize;
const GENERATE_NULLABLE: bool = true;
#[derive(Debug, Clone)]
pub enum LayoutProblem {
UnresolvedTypeVar(Variable),
Erroneous,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum RawFunctionLayout<'a> {
Function(&'a [Layout<'a>], LambdaSet<'a>, &'a Layout<'a>),
ZeroArgumentThunk(Layout<'a>),
}
impl<'a> RawFunctionLayout<'a> {
pub fn is_zero_argument_thunk(&self) -> bool {
matches!(self, RawFunctionLayout::ZeroArgumentThunk(_))
}
fn new_help<'b>(
env: &mut Env<'a, 'b>,
var: Variable,
content: Content,
) -> Result<Self, LayoutProblem> {
use roc_types::subs::Content::*;
match content {
FlexVar(_) | RigidVar(_) => Err(LayoutProblem::UnresolvedTypeVar(var)),
RecursionVar { structure, .. } => {
let structure_content = env.subs.get_content_without_compacting(structure);
Self::new_help(env, structure, structure_content.clone())
}
Structure(flat_type) => Self::layout_from_flat_type(env, flat_type),
// Ints
Alias(Symbol::NUM_I128, args, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::i128()))
}
Alias(Symbol::NUM_I64, args, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::i64()))
}
Alias(Symbol::NUM_I32, args, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::i32()))
}
Alias(Symbol::NUM_I16, args, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::i16()))
}
Alias(Symbol::NUM_I8, args, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::i8()))
}
// I think unsigned and signed use the same layout
Alias(Symbol::NUM_U128, args, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::u128()))
}
Alias(Symbol::NUM_U64, args, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::u64()))
}
Alias(Symbol::NUM_U32, args, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::u32()))
}
Alias(Symbol::NUM_U16, args, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::u16()))
}
Alias(Symbol::NUM_U8, args, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::u8()))
}
// Floats
Alias(Symbol::NUM_F64, args, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::f64()))
}
Alias(Symbol::NUM_F32, args, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::f32()))
}
// Nat
Alias(Symbol::NUM_NAT, args, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::usize()))
}
Alias(symbol, _, _) if symbol.is_builtin() => Ok(Self::ZeroArgumentThunk(
Layout::new_help(env, var, content)?,
)),
Alias(_, _, var) => Self::from_var(env, var),
Error => Err(LayoutProblem::Erroneous),
}
}
fn layout_from_flat_type(
env: &mut Env<'a, '_>,
flat_type: FlatType,
) -> Result<Self, LayoutProblem> {
use roc_types::subs::FlatType::*;
let arena = env.arena;
match flat_type {
Func(args, closure_var, ret_var) => {
let mut fn_args = Vec::with_capacity_in(args.len(), arena);
for index in args.into_iter() {
let arg_var = env.subs[index];
fn_args.push(Layout::from_var(env, arg_var)?);
}
let ret = Layout::from_var(env, ret_var)?;
let fn_args = fn_args.into_bump_slice();
let ret = arena.alloc(ret);
let lambda_set =
LambdaSet::from_var(env.arena, env.subs, closure_var, env.ptr_bytes)?;
Ok(Self::Function(fn_args, lambda_set, ret))
}
TagUnion(tags, ext) if tags.is_newtype_wrapper(env.subs) => {
debug_assert!(ext_var_is_empty_tag_union(env.subs, ext));
let slice_index = tags.variables().into_iter().next().unwrap();
let slice = env.subs[slice_index];
let var_index = slice.into_iter().next().unwrap();
let var = env.subs[var_index];
Self::from_var(env, var)
}
Record(fields, ext) if fields.len() == 1 => {
debug_assert!(ext_var_is_empty_record(env.subs, ext));
let var_index = fields.iter_variables().next().unwrap();
let var = env.subs[var_index];
Self::from_var(env, var)
}
_ => {
let layout = layout_from_flat_type(env, flat_type)?;
Ok(Self::ZeroArgumentThunk(layout))
}
}
}
/// Returns Err(()) if given an error, or Ok(Layout) if given a non-erroneous Structure.
/// Panics if given a FlexVar or RigidVar, since those should have been
/// monomorphized away already!
fn from_var(env: &mut Env<'a, '_>, var: Variable) -> Result<Self, LayoutProblem> {
if env.is_seen(var) {
unreachable!("The initial variable of a signature cannot be seen already")
} else {
let content = env.subs.get_content_without_compacting(var);
Self::new_help(env, var, content.clone())
}
}
}
/// Types for code gen must be monomorphic. No type variables allowed!
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Layout<'a> {
Builtin(Builtin<'a>),
/// A layout that is empty (turns into the empty struct in LLVM IR
/// but for our purposes, not zero-sized, so it does not get dropped from data structures
/// this is important for closures that capture zero-sized values
Struct(&'a [Layout<'a>]),
Union(UnionLayout<'a>),
LambdaSet(LambdaSet<'a>),
RecursivePointer,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum UnionLayout<'a> {
/// A non-recursive tag union
/// e.g. `Result a e : [ Ok a, Err e ]`
NonRecursive(&'a [&'a [Layout<'a>]]),
/// A recursive tag union
/// e.g. `Expr : [ Sym Str, Add Expr Expr ]`
Recursive(&'a [&'a [Layout<'a>]]),
/// A recursive tag union with just one constructor
/// e.g. `RoseTree a : [ Tree a (List (RoseTree a)) ]`
NonNullableUnwrapped(&'a [Layout<'a>]),
/// A recursive tag union where the non-nullable variant(s) store the tag id
/// e.g. `FingerTree a : [ Empty, Single a, More (Some a) (FingerTree (Tuple a)) (Some a) ]`
/// see also: https://youtu.be/ip92VMpf_-A?t=164
NullableWrapped {
nullable_id: u16,
other_tags: &'a [&'a [Layout<'a>]],
},
/// A recursive tag union where the non-nullable variant does NOT store the tag id
/// e.g. `ConsList a : [ Nil, Cons a (ConsList a) ]`
NullableUnwrapped {
nullable_id: bool,
other_fields: &'a [Layout<'a>],
},
}
impl<'a> UnionLayout<'a> {
pub fn to_doc<D, A>(self, alloc: &'a D, _parens: Parens) -> DocBuilder<'a, D, A>
where
D: DocAllocator<'a, A>,
D::Doc: Clone,
A: Clone,
{
use UnionLayout::*;
match self {
NonRecursive(tags) => {
let tags_doc = tags.iter().map(|fields| {
alloc.text("C ").append(alloc.intersperse(
fields.iter().map(|x| x.to_doc(alloc, Parens::InTypeParam)),
" ",
))
});
alloc
.text("[")
.append(alloc.intersperse(tags_doc, ", "))
.append(alloc.text("]"))
}
_ => alloc.text("TODO"),
}
}
pub fn layout_at(self, tag_id: TagIdIntType, index: usize) -> Layout<'a> {
let result = match self {
UnionLayout::NonRecursive(tag_layouts) => {
let field_layouts = tag_layouts[tag_id as usize];
// this cannot be recursive; return immediately
return field_layouts[index];
}
UnionLayout::Recursive(tag_layouts) => {
let field_layouts = tag_layouts[tag_id as usize];
field_layouts[index]
}
UnionLayout::NonNullableUnwrapped(field_layouts) => field_layouts[index],
UnionLayout::NullableWrapped {
nullable_id,
other_tags,
} => {
debug_assert_ne!(nullable_id, tag_id);
let tag_index = if tag_id < nullable_id {
tag_id
} else {
tag_id - 1
};
let field_layouts = other_tags[tag_index as usize];
field_layouts[index]
}
UnionLayout::NullableUnwrapped {
nullable_id,
other_fields,
} => {
debug_assert_ne!(nullable_id, tag_id != 0);
other_fields[index as usize]
}
};
if let Layout::RecursivePointer = result {
Layout::Union(self)
} else {
result
}
}
pub fn number_of_tags(&'a self) -> usize {
match self {
UnionLayout::NonRecursive(tags) | UnionLayout::Recursive(tags) => tags.len(),
UnionLayout::NullableWrapped { other_tags, .. } => other_tags.len() + 1,
UnionLayout::NonNullableUnwrapped(_) => 1,
UnionLayout::NullableUnwrapped { .. } => 2,
}
}
fn tag_id_builtin_help(union_size: usize) -> Builtin<'a> {
if union_size <= u8::MAX as usize {
Builtin::Int(IntWidth::U8)
} else if union_size <= u16::MAX as usize {
Builtin::Int(IntWidth::U16)
} else {
panic!("tag union is too big")
}
}
pub fn tag_id_builtin(&self) -> Builtin<'a> {
match self {
UnionLayout::NonRecursive(_tags) => {
// let union_size = tags.len();
// Self::tag_id_builtin_help(union_size)
// The quicksort-benchmarks version of Quicksort.roc segfaults when
// this number is not I64. There must be some dependence on that fact
// somewhere in the code, I have not found where that is yet...
Builtin::Int(IntWidth::U64)
}
UnionLayout::Recursive(tags) => {
let union_size = tags.len();
Self::tag_id_builtin_help(union_size)
}
UnionLayout::NullableWrapped { other_tags, .. } => {
Self::tag_id_builtin_help(other_tags.len() + 1)
}
UnionLayout::NonNullableUnwrapped(_) => Builtin::Bool,
UnionLayout::NullableUnwrapped { .. } => Builtin::Bool,
}
}
pub fn tag_id_layout(&self) -> Layout<'a> {
Layout::Builtin(self.tag_id_builtin())
}
fn stores_tag_id_in_pointer_bits(tags: &[&[Layout<'a>]], ptr_bytes: u32) -> bool {
tags.len() <= ptr_bytes as usize
}
// i.e. it is not implicit and not stored in the pointer bits
pub fn stores_tag_id_as_data(&self, ptr_bytes: u32) -> bool {
match self {
UnionLayout::NonRecursive(_) => true,
UnionLayout::Recursive(tags)
| UnionLayout::NullableWrapped {
other_tags: tags, ..
} => !Self::stores_tag_id_in_pointer_bits(tags, ptr_bytes),
UnionLayout::NonNullableUnwrapped(_) | UnionLayout::NullableUnwrapped { .. } => false,
}
}
pub fn stores_tag_id_in_pointer(&self, ptr_bytes: u32) -> bool {
match self {
UnionLayout::NonRecursive(_) => false,
UnionLayout::Recursive(tags)
| UnionLayout::NullableWrapped {
other_tags: tags, ..
} => Self::stores_tag_id_in_pointer_bits(tags, ptr_bytes),
UnionLayout::NonNullableUnwrapped(_) | UnionLayout::NullableUnwrapped { .. } => false,
}
}
pub fn tag_is_null(&self, tag_id: TagIdIntType) -> bool {
match self {
UnionLayout::NonRecursive(_)
| UnionLayout::NonNullableUnwrapped(_)
| UnionLayout::Recursive(_) => false,
UnionLayout::NullableWrapped { nullable_id, .. } => *nullable_id == tag_id,
UnionLayout::NullableUnwrapped { nullable_id, .. } => *nullable_id == (tag_id != 0),
}
}
pub fn is_nullable(&self) -> bool {
match self {
UnionLayout::NonRecursive(_)
| UnionLayout::Recursive(_)
| UnionLayout::NonNullableUnwrapped { .. } => false,
UnionLayout::NullableWrapped { .. } | UnionLayout::NullableUnwrapped { .. } => true,
}
}
fn tags_alignment_bytes(tags: &[&[Layout]], pointer_size: u32) -> u32 {
tags.iter()
.map(|fields| Layout::Struct(fields).alignment_bytes(pointer_size))
.max()
.unwrap_or(0)
}
pub fn allocation_alignment_bytes(&self, pointer_size: u32) -> u32 {
let allocation = match self {
UnionLayout::NonRecursive(_) => unreachable!("not heap-allocated"),
UnionLayout::Recursive(tags) => Self::tags_alignment_bytes(tags, pointer_size),
UnionLayout::NonNullableUnwrapped(fields) => {
Layout::Struct(fields).alignment_bytes(pointer_size)
}
UnionLayout::NullableWrapped { other_tags, .. } => {
Self::tags_alignment_bytes(other_tags, pointer_size)
}
UnionLayout::NullableUnwrapped { other_fields, .. } => {
Layout::Struct(other_fields).alignment_bytes(pointer_size)
}
};
// because we store a refcount, the alignment must be at least the size of a pointer
allocation.max(pointer_size)
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct LambdaSet<'a> {
/// collection of function names and their closure arguments
pub set: &'a [(Symbol, &'a [Layout<'a>])],
/// how the closure will be represented at runtime
representation: &'a Layout<'a>,
}
/// representation of the closure *for a particular function*
#[derive(Debug)]
pub enum ClosureRepresentation<'a> {
/// the closure is represented as a union. Includes the tag ID!
Union {
alphabetic_order_fields: &'a [Layout<'a>],
tag_name: TagName,
tag_id: TagIdIntType,
union_layout: UnionLayout<'a>,
},
/// The closure is represented as a struct. The layouts are sorted
/// alphabetically by the identifier that is captured.
///
/// We MUST sort these according to their stack size before code gen!
AlphabeticOrderStruct(&'a [Layout<'a>]),
/// the representation is anything but a union
Other(Layout<'a>),
}
impl<'a> LambdaSet<'a> {
pub fn runtime_representation(&self) -> Layout<'a> {
*self.representation
}
pub fn is_represented(&self) -> Option<Layout<'a>> {
if let Layout::Struct(&[]) = self.representation {
None
} else {
Some(*self.representation)
}
}
pub fn member_does_not_need_closure_argument(&self, function_symbol: Symbol) -> bool {
match self.layout_for_member(function_symbol) {
ClosureRepresentation::Union {
alphabetic_order_fields,
..
} => alphabetic_order_fields.is_empty(),
ClosureRepresentation::AlphabeticOrderStruct(fields) => fields.is_empty(),
ClosureRepresentation::Other(_) => false,
}
}
pub fn layout_for_member(&self, function_symbol: Symbol) -> ClosureRepresentation<'a> {
debug_assert!(
self.set.iter().any(|(s, _)| *s == function_symbol),
"function symbol not in set"
);
match self.representation {
Layout::Union(union) => {
// here we rely on the fact that a union in a closure would be stored in a one-element record.
// a closure representation that is itself union must be a of the shape `Closure1 ... | Closure2 ...`
match union {
UnionLayout::NonRecursive(_) => {
// get the fields from the set, where they are sorted in alphabetic order
// (and not yet sorted by their alignment)
let (index, (_, fields)) = self
.set
.iter()
.enumerate()
.find(|(_, (s, _))| *s == function_symbol)
.unwrap();
ClosureRepresentation::Union {
tag_id: index as TagIdIntType,
alphabetic_order_fields: fields,
tag_name: TagName::Closure(function_symbol),
union_layout: *union,
}
}
UnionLayout::Recursive(_) => todo!("recursive closures"),
UnionLayout::NonNullableUnwrapped(_) => todo!("recursive closures"),
UnionLayout::NullableWrapped {
nullable_id: _,
other_tags: _,
} => todo!("recursive closures"),
UnionLayout::NullableUnwrapped {
nullable_id: _,
other_fields: _,
} => todo!("recursive closures"),
}
}
Layout::Struct(_) => {
// get the fields from the set, where they are sorted in alphabetic order
// (and not yet sorted by their alignment)
let (_, fields) = self
.set
.iter()
.find(|(s, _)| *s == function_symbol)
.unwrap();
ClosureRepresentation::AlphabeticOrderStruct(fields)
}
_ => ClosureRepresentation::Other(*self.representation),
}
}
pub fn extend_argument_list(
&self,
arena: &'a Bump,
argument_layouts: &'a [Layout<'a>],
) -> &'a [Layout<'a>] {
if let [] = self.set {
// TERRIBLE HACK for builting functions
argument_layouts
} else {
match self.representation {
Layout::Struct(&[]) => {
// this function does not have anything in its closure, and the lambda set is a
// singleton, so we pass no extra argument
argument_layouts
}
Layout::Builtin(Builtin::Bool)
| Layout::Builtin(Builtin::Int(IntWidth::I8 | IntWidth::U8)) => {
// we don't pass this along either
argument_layouts
}
_ => {
let mut arguments = Vec::with_capacity_in(argument_layouts.len() + 1, arena);
arguments.extend(argument_layouts);
arguments.push(Layout::LambdaSet(*self));
arguments.into_bump_slice()
}
}
}
}
pub fn from_var(
arena: &'a Bump,
subs: &Subs,
closure_var: Variable,
ptr_bytes: u32,
) -> Result<Self, LayoutProblem> {
let mut tags = std::vec::Vec::new();
match roc_types::pretty_print::chase_ext_tag_union(subs, closure_var, &mut tags) {
Ok(()) | Err((_, Content::FlexVar(_))) if !tags.is_empty() => {
// sort the tags; make sure ordering stays intact!
tags.sort();
let mut set = Vec::with_capacity_in(tags.len(), arena);
let mut env = Env {
arena,
subs,
seen: Vec::new_in(arena),
ptr_bytes,
};
for (tag_name, variables) in tags.iter() {
if let TagName::Closure(function_symbol) = tag_name {
let mut arguments = Vec::with_capacity_in(variables.len(), arena);
for var in variables {
arguments.push(Layout::from_var(&mut env, *var)?);
}
set.push((*function_symbol, arguments.into_bump_slice()));
} else {
unreachable!("non-closure tag name in lambda set");
}
}
let representation =
arena.alloc(Self::make_representation(arena, subs, tags, ptr_bytes));
Ok(LambdaSet {
set: set.into_bump_slice(),
representation,
})
}
Ok(()) | Err((_, Content::FlexVar(_))) => {
// this can happen when there is a type error somewhere
Ok(LambdaSet {
set: &[],
representation: arena.alloc(Layout::Struct(&[])),
})
}
_ => panic!("called LambdaSet.from_var on invalid input"),
}
}
fn make_representation(
arena: &'a Bump,
subs: &Subs,
tags: std::vec::Vec<(TagName, std::vec::Vec<Variable>)>,
ptr_bytes: u32,
) -> Layout<'a> {
// otherwise, this is a closure with a payload
let variant = union_sorted_tags_help(arena, tags, None, subs, ptr_bytes);
use UnionVariant::*;
match variant {
Never => Layout::Union(UnionLayout::NonRecursive(&[])),
BoolUnion { .. } => Layout::bool(),
ByteUnion { .. } => Layout::u8(),
Unit | UnitWithArguments => {
// no useful information to store
Layout::Struct(&[])
}
Newtype {
arguments: layouts, ..
} => Layout::Struct(layouts.into_bump_slice()),
Wrapped(variant) => {
use WrappedVariant::*;
match variant {
NonRecursive {
sorted_tag_layouts: tags,
} => {
debug_assert!(tags.len() > 1);
// if the closed-over value is actually a layout, it should be wrapped in a 1-element record
debug_assert!(matches!(tags[0].0, TagName::Closure(_)));
let mut tag_arguments = Vec::with_capacity_in(tags.len(), arena);
for (_, tag_args) in tags.iter() {
tag_arguments.push(&tag_args[0..]);
}
Layout::Union(UnionLayout::NonRecursive(tag_arguments.into_bump_slice()))
}
_ => panic!("handle recursive layouts"),
}
}
}
}
pub fn stack_size(&self, pointer_size: u32) -> u32 {
self.representation.stack_size(pointer_size)
}
pub fn contains_refcounted(&self) -> bool {
self.representation.contains_refcounted()
}
pub fn safe_to_memcpy(&self) -> bool {
self.representation.safe_to_memcpy()
}
pub fn alignment_bytes(&self, pointer_size: u32) -> u32 {
self.representation.alignment_bytes(pointer_size)
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Builtin<'a> {
Int(IntWidth),
Float(FloatWidth),
Bool,
Usize,
Decimal,
Str,
Dict(&'a Layout<'a>, &'a Layout<'a>),
Set(&'a Layout<'a>),
List(&'a Layout<'a>),
EmptyStr,
EmptyList,
EmptyDict,
EmptySet,
}
pub struct Env<'a, 'b> {
ptr_bytes: u32,
arena: &'a Bump,
seen: Vec<'a, Variable>,
subs: &'b Subs,
}
impl<'a, 'b> Env<'a, 'b> {
fn is_seen(&self, var: Variable) -> bool {
let var = self.subs.get_root_key_without_compacting(var);
self.seen.iter().rev().any(|x| x == &var)
}
fn insert_seen(&mut self, var: Variable) {
let var = self.subs.get_root_key_without_compacting(var);
self.seen.push(var);
}
fn remove_seen(&mut self, var: Variable) -> bool {
let var = self.subs.get_root_key_without_compacting(var);
if let Some(index) = self.seen.iter().rposition(|x| x == &var) {
self.seen.remove(index);
true
} else {
false
}
}
}
const fn round_up_to_alignment(width: u32, alignment: u32) -> u32 {
if alignment != 0 && width % alignment > 0 {
width + alignment - (width % alignment)
} else {
width
}
}
impl<'a> Layout<'a> {
fn new_help<'b>(
env: &mut Env<'a, 'b>,
var: Variable,
content: Content,
) -> Result<Self, LayoutProblem> {
use roc_types::subs::Content::*;
match content {
FlexVar(_) | RigidVar(_) => Err(LayoutProblem::UnresolvedTypeVar(var)),
RecursionVar { structure, .. } => {
let structure_content = env.subs.get_content_without_compacting(structure);
Self::new_help(env, structure, structure_content.clone())
}
Structure(flat_type) => layout_from_flat_type(env, flat_type),
// Ints
Alias(Symbol::NUM_I128, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::i128())
}
Alias(Symbol::NUM_I64, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::i64())
}
Alias(Symbol::NUM_I32, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::i32())
}
Alias(Symbol::NUM_I16, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::i16())
}
Alias(Symbol::NUM_I8, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::i8())
}
// I think unsigned and signed use the same layout
Alias(Symbol::NUM_U128, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::u128())
}
Alias(Symbol::NUM_U64, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::u64())
}
Alias(Symbol::NUM_U32, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::u32())
}
Alias(Symbol::NUM_U16, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::u16())
}
Alias(Symbol::NUM_U8, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::u8())
}
// Floats
Alias(Symbol::NUM_F64, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::f64())
}
Alias(Symbol::NUM_F32, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::f32())
}
// Nat
Alias(Symbol::NUM_NAT, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::usize())
}
Alias(_, _, var) => Self::from_var(env, var),
Error => Err(LayoutProblem::Erroneous),
}
}
/// Returns Err(()) if given an error, or Ok(Layout) if given a non-erroneous Structure.
/// Panics if given a FlexVar or RigidVar, since those should have been
/// monomorphized away already!
fn from_var(env: &mut Env<'a, '_>, var: Variable) -> Result<Self, LayoutProblem> {
if env.is_seen(var) {
Ok(Layout::RecursivePointer)
} else {
let content = env.subs.get_content_without_compacting(var);
Self::new_help(env, var, content.clone())
}
}
pub fn safe_to_memcpy(&self) -> bool {
use Layout::*;
match self {
Builtin(builtin) => builtin.safe_to_memcpy(),
Struct(fields) => fields
.iter()
.all(|field_layout| field_layout.safe_to_memcpy()),
Union(variant) => {
use UnionLayout::*;
match variant {
NonRecursive(tags) => tags
.iter()
.all(|tag_layout| tag_layout.iter().all(|field| field.safe_to_memcpy())),
Recursive(_)
| NullableWrapped { .. }
| NullableUnwrapped { .. }
| NonNullableUnwrapped(_) => {
// a recursive union will always contain a pointer, and is thus not safe to memcpy
false
}
}
}
LambdaSet(lambda_set) => lambda_set.runtime_representation().safe_to_memcpy(),
RecursivePointer => {
// We cannot memcpy pointers, because then we would have the same pointer in multiple places!
false
}
}
}
pub fn is_dropped_because_empty(&self) -> bool {
// For this calculation, we don't need an accurate
// stack size, we just need to know whether it's zero,
// so it's fine to use a pointer size of 1.
false
}
pub fn is_passed_by_reference(&self) -> bool {
match self {
Layout::Union(UnionLayout::NonRecursive(_)) => true,
Layout::LambdaSet(lambda_set) => {
lambda_set.runtime_representation().is_passed_by_reference()
}
_ => false,
}
}
pub fn stack_size(&self, pointer_size: u32) -> u32 {
let width = self.stack_size_without_alignment(pointer_size);
let alignment = self.alignment_bytes(pointer_size);
round_up_to_alignment(width, alignment)
}
fn stack_size_without_alignment(&self, pointer_size: u32) -> u32 {
use Layout::*;
match self {
Builtin(builtin) => builtin.stack_size(pointer_size),
Struct(fields) => {
let mut sum = 0;
for field_layout in *fields {
sum += field_layout.stack_size(pointer_size);
}
sum
}
Union(variant) => {
use UnionLayout::*;
match variant {
NonRecursive(fields) => {
let tag_id_builtin = variant.tag_id_builtin();
fields
.iter()
.map(|tag_layout| {
tag_layout
.iter()
.map(|field| field.stack_size(pointer_size))
.sum::<u32>()
})
.max()
.map(|w| round_up_to_alignment(w, tag_id_builtin.alignment_bytes(pointer_size)))
.unwrap_or_default()
// the size of the tag_id
+ tag_id_builtin.stack_size(pointer_size)
}
Recursive(_)
| NullableWrapped { .. }
| NullableUnwrapped { .. }
| NonNullableUnwrapped(_) => pointer_size,
}
}
LambdaSet(lambda_set) => lambda_set
.runtime_representation()
.stack_size_without_alignment(pointer_size),
RecursivePointer => pointer_size,
}
}
pub fn alignment_bytes(&self, pointer_size: u32) -> u32 {
match self {
Layout::Struct(fields) => fields
.iter()
.map(|x| x.alignment_bytes(pointer_size))
.max()
.unwrap_or(0),
Layout::Union(variant) => {
use UnionLayout::*;
match variant {
NonRecursive(tags) => {
let max_alignment = tags
.iter()
.flat_map(|layouts| {
layouts
.iter()
.map(|layout| layout.alignment_bytes(pointer_size))
})
.max();
let tag_id_builtin = variant.tag_id_builtin();
match max_alignment {
Some(align) => round_up_to_alignment(
align.max(tag_id_builtin.alignment_bytes(pointer_size)),
tag_id_builtin.alignment_bytes(pointer_size),
),
None => {
// none of the tags had any payload, but the tag id still contains information
tag_id_builtin.alignment_bytes(pointer_size)
}
}
}
Recursive(_)
| NullableWrapped { .. }
| NullableUnwrapped { .. }
| NonNullableUnwrapped(_) => pointer_size,
}
}
Layout::LambdaSet(lambda_set) => lambda_set
.runtime_representation()
.alignment_bytes(pointer_size),
Layout::Builtin(builtin) => builtin.alignment_bytes(pointer_size),
Layout::RecursivePointer => pointer_size,
}
}
pub fn allocation_alignment_bytes(&self, pointer_size: u32) -> u32 {
match self {
Layout::Builtin(builtin) => builtin.allocation_alignment_bytes(pointer_size),
Layout::Struct(_) => unreachable!("not heap-allocated"),
Layout::Union(union_layout) => union_layout.allocation_alignment_bytes(pointer_size),
Layout::LambdaSet(lambda_set) => lambda_set
.runtime_representation()
.allocation_alignment_bytes(pointer_size),
Layout::RecursivePointer => unreachable!("should be looked up to get an actual layout"),
}
}
pub fn is_refcounted(&self) -> bool {
use self::Builtin::*;
use Layout::*;
match self {
Union(variant) => {
use UnionLayout::*;
matches!(
variant,
Recursive(_) | NullableWrapped { .. } | NullableUnwrapped { .. }
)
}
RecursivePointer => true,
Builtin(List(_)) | Builtin(Str) => true,
_ => false,
}
}
/// Even if a value (say, a record) is not itself reference counted,
/// it may contains values/fields that are. Therefore when this record
/// goes out of scope, the refcount on those values/fields must be decremented.
pub fn contains_refcounted(&self) -> bool {
use Layout::*;
match self {
Builtin(builtin) => builtin.is_refcounted(),
Struct(fields) => fields.iter().any(|f| f.contains_refcounted()),
Union(variant) => {
use UnionLayout::*;
match variant {
NonRecursive(fields) => fields
.iter()
.map(|ls| ls.iter())
.flatten()
.any(|f| f.contains_refcounted()),
Recursive(_)
| NullableWrapped { .. }
| NullableUnwrapped { .. }
| NonNullableUnwrapped(_) => true,
}
}
LambdaSet(lambda_set) => lambda_set.runtime_representation().contains_refcounted(),
RecursivePointer => true,
}
}
pub fn to_doc<D, A>(self, alloc: &'a D, parens: Parens) -> DocBuilder<'a, D, A>
where
D: DocAllocator<'a, A>,
D::Doc: Clone,
A: Clone,
{
use Layout::*;
match self {
Builtin(builtin) => builtin.to_doc(alloc, parens),
Struct(fields) => {
let fields_doc = fields.iter().map(|x| x.to_doc(alloc, parens));
alloc
.text("{")
.append(alloc.intersperse(fields_doc, ", "))
.append(alloc.text("}"))
}
Union(union_layout) => union_layout.to_doc(alloc, parens),
LambdaSet(lambda_set) => lambda_set.runtime_representation().to_doc(alloc, parens),
RecursivePointer => alloc.text("*self"),
}
}
}
/// Avoid recomputing Layout from Variable multiple times.
/// We use `ena` for easy snapshots and rollbacks of the cache.
/// During specialization, a type variable `a` can be specialized to different layouts,
/// e.g. `identity : a -> a` could be specialized to `Bool -> Bool` or `Str -> Str`.
/// Therefore in general it's invalid to store a map from variables to layouts
/// But if we're careful when to invalidate certain keys, we still get some benefit
#[derive(Debug)]
pub struct LayoutCache<'a> {
ptr_bytes: u32,
_marker: std::marker::PhantomData<&'a u8>,
}
#[derive(Debug, Clone)]
pub enum CachedLayout<'a> {
Cached(Layout<'a>),
NotCached,
Problem(LayoutProblem),
}
impl<'a> LayoutCache<'a> {
pub fn new(ptr_bytes: u32) -> Self {
Self {
ptr_bytes,
_marker: Default::default(),
}
}
pub fn from_var(
&mut self,
arena: &'a Bump,
var: Variable,
subs: &Subs,
) -> Result<Layout<'a>, LayoutProblem> {
// Store things according to the root Variable, to avoid duplicate work.
let var = subs.get_root_key_without_compacting(var);
let mut env = Env {
arena,
subs,
seen: Vec::new_in(arena),
ptr_bytes: self.ptr_bytes,
};
Layout::from_var(&mut env, var)
}
pub fn raw_from_var(
&mut self,
arena: &'a Bump,
var: Variable,
subs: &Subs,
) -> Result<RawFunctionLayout<'a>, LayoutProblem> {
// Store things according to the root Variable, to avoid duplicate work.
let var = subs.get_root_key_without_compacting(var);
let mut env = Env {
arena,
subs,
seen: Vec::new_in(arena),
ptr_bytes: self.ptr_bytes,
};
RawFunctionLayout::from_var(&mut env, var)
}
pub fn snapshot(&mut self) -> SnapshotKeyPlaceholder {
SnapshotKeyPlaceholder
}
pub fn rollback_to(&mut self, _snapshot: SnapshotKeyPlaceholder) {}
}
// placeholder for the type ven_ena::unify::Snapshot<ven_ena::unify::InPlace<CachedVariable<'a>>>
pub struct SnapshotKeyPlaceholder;
impl<'a> Layout<'a> {
pub fn int_width(width: IntWidth) -> Layout<'a> {
Layout::Builtin(Builtin::Int(width))
}
pub fn float_width(width: FloatWidth) -> Layout<'a> {
Layout::Builtin(Builtin::Float(width))
}
pub fn f64() -> Layout<'a> {
Layout::Builtin(Builtin::Float(FloatWidth::F64))
}
pub fn f32() -> Layout<'a> {
Layout::Builtin(Builtin::Float(FloatWidth::F32))
}
pub fn usize() -> Layout<'a> {
Layout::Builtin(Builtin::Usize)
}
pub fn bool() -> Layout<'a> {
Layout::Builtin(Builtin::Bool)
}
pub fn u8() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::U8))
}
pub fn u16() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::U16))
}
pub fn u32() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::U32))
}
pub fn u64() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::U64))
}
pub fn u128() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::U128))
}
pub fn i8() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::I8))
}
pub fn i16() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::I16))
}
pub fn i32() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::I32))
}
pub fn i64() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::I64))
}
pub fn i128() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::I128))
}
pub fn default_integer() -> Layout<'a> {
Layout::i64()
}
}
impl<'a> Builtin<'a> {
const I128_SIZE: u32 = std::mem::size_of::<i128>() as u32;
const I64_SIZE: u32 = std::mem::size_of::<i64>() as u32;
const I32_SIZE: u32 = std::mem::size_of::<i32>() as u32;
const I16_SIZE: u32 = std::mem::size_of::<i16>() as u32;
const I8_SIZE: u32 = std::mem::size_of::<i8>() as u32;
const I1_SIZE: u32 = std::mem::size_of::<bool>() as u32;
const DECIMAL_SIZE: u32 = std::mem::size_of::<i128>() as u32;
const F128_SIZE: u32 = 16;
const F64_SIZE: u32 = std::mem::size_of::<f64>() as u32;
const F32_SIZE: u32 = std::mem::size_of::<f32>() as u32;
/// Number of machine words in an empty one of these
pub const STR_WORDS: u32 = 2;
pub const DICT_WORDS: u32 = 3;
pub const SET_WORDS: u32 = Builtin::DICT_WORDS; // Set is an alias for Dict with {} for value
pub const LIST_WORDS: u32 = 2;
/// Layout of collection wrapper for List and Str - a struct of (pointer, length).
///
/// We choose this layout (with pointer first) because it's how
/// Rust slices are laid out, meaning we can cast to/from them for free.
pub const WRAPPER_PTR: u32 = 0;
pub const WRAPPER_LEN: u32 = 1;
pub fn stack_size(&self, pointer_size: u32) -> u32 {
use Builtin::*;
match self {
Int(int) => int.stack_size(),
Float(float) => float.stack_size(),
Bool => Builtin::I1_SIZE,
Usize => pointer_size,
Decimal => Builtin::DECIMAL_SIZE,
Str | EmptyStr => Builtin::STR_WORDS * pointer_size,
Dict(_, _) | EmptyDict => Builtin::DICT_WORDS * pointer_size,
Set(_) | EmptySet => Builtin::SET_WORDS * pointer_size,
List(_) | EmptyList => Builtin::LIST_WORDS * pointer_size,
}
}
pub fn alignment_bytes(&self, pointer_size: u32) -> u32 {
use std::mem::align_of;
use Builtin::*;
// for our data structures, what counts is the alignment of the `( ptr, len )` tuple, and
// since both of those are one pointer size, the alignment of that structure is a pointer
// size
match self {
Int(int_width) => int_width.alignment_bytes(),
Float(float_width) => float_width.alignment_bytes(),
Bool => align_of::<bool>() as u32,
Usize => pointer_size,
Decimal => align_of::<i128>() as u32,
Dict(_, _) | EmptyDict => pointer_size,
Set(_) | EmptySet => pointer_size,
// we often treat these as i128 (64-bit systems)
// or i64 (32-bit systems).
//
// In webassembly, For that to be safe
// they must be aligned to allow such access
List(_) | EmptyList => pointer_size,
Str | EmptyStr => pointer_size,
}
}
pub fn safe_to_memcpy(&self) -> bool {
use Builtin::*;
match self {
Int(_) | Usize | Float(_) | Bool | Decimal | EmptyStr | EmptyDict | EmptyList
| EmptySet => true,
Str | Dict(_, _) | Set(_) | List(_) => false,
}
}
// Question: does is_refcounted exactly correspond with the "safe to memcpy" property?
pub fn is_refcounted(&self) -> bool {
use Builtin::*;
match self {
Int(_) | Usize | Float(_) | Bool | Decimal | EmptyStr | EmptyDict | EmptyList
| EmptySet => false,
List(_) => true,
Str | Dict(_, _) | Set(_) => true,
}
}
pub fn to_doc<D, A>(self, alloc: &'a D, _parens: Parens) -> DocBuilder<'a, D, A>
where
D: DocAllocator<'a, A>,
D::Doc: Clone,
A: Clone,
{
use Builtin::*;
match self {
Int(int_width) => {
use IntWidth::*;
match int_width {
I128 => alloc.text("I128"),
I64 => alloc.text("I64"),
I32 => alloc.text("I32"),
I16 => alloc.text("I16"),
I8 => alloc.text("I8"),
U128 => alloc.text("U128"),
U64 => alloc.text("U64"),
U32 => alloc.text("U32"),
U16 => alloc.text("U16"),
U8 => alloc.text("U8"),
}
}
Float(float_width) => {
use FloatWidth::*;
match float_width {
F128 => alloc.text("Float128"),
F64 => alloc.text("Float64"),
F32 => alloc.text("Float32"),
}
}
Bool => alloc.text("Int1"),
Usize => alloc.text("Usize"),
Decimal => alloc.text("Decimal"),
EmptyStr => alloc.text("EmptyStr"),
EmptyList => alloc.text("EmptyList"),
EmptyDict => alloc.text("EmptyDict"),
EmptySet => alloc.text("EmptySet"),
Str => alloc.text("Str"),
List(layout) => alloc
.text("List ")
.append(layout.to_doc(alloc, Parens::InTypeParam)),
Set(layout) => alloc
.text("Set ")
.append(layout.to_doc(alloc, Parens::InTypeParam)),
Dict(key_layout, value_layout) => alloc
.text("Dict ")
.append(key_layout.to_doc(alloc, Parens::InTypeParam))
.append(" ")
.append(value_layout.to_doc(alloc, Parens::InTypeParam)),
}
}
pub fn allocation_alignment_bytes(&self, pointer_size: u32) -> u32 {
let allocation = match self {
Builtin::Int(_)
| Builtin::Float(_)
| Builtin::Bool
| Builtin::Usize
| Builtin::Decimal => unreachable!("not heap-allocated"),
Builtin::Str => pointer_size,
Builtin::Dict(k, v) => k
.alignment_bytes(pointer_size)
.max(v.alignment_bytes(pointer_size))
.max(pointer_size),
Builtin::Set(k) => k.alignment_bytes(pointer_size).max(pointer_size),
Builtin::List(e) => e.alignment_bytes(pointer_size).max(pointer_size),
Builtin::EmptyStr | Builtin::EmptyList | Builtin::EmptyDict | Builtin::EmptySet => {
unreachable!("not heap-allocated")
}
};
allocation.max(pointer_size)
}
}
fn layout_from_flat_type<'a>(
env: &mut Env<'a, '_>,
flat_type: FlatType,
) -> Result<Layout<'a>, LayoutProblem> {
use roc_types::subs::FlatType::*;
let arena = env.arena;
let subs = env.subs;
let ptr_bytes = env.ptr_bytes;
match flat_type {
Apply(symbol, args) => {
let args = Vec::from_iter_in(args.into_iter().map(|index| subs[index]), arena);
match symbol {
// Ints
Symbol::NUM_NAT => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::Builtin(Builtin::Usize))
}
Symbol::NUM_I128 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::i128())
}
Symbol::NUM_I64 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::i64())
}
Symbol::NUM_I32 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::i32())
}
Symbol::NUM_I16 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::i16())
}
Symbol::NUM_I8 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::i8())
}
Symbol::NUM_U128 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::u128())
}
Symbol::NUM_U64 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::u64())
}
Symbol::NUM_U32 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::u32())
}
Symbol::NUM_U16 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::u16())
}
Symbol::NUM_U8 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::u8())
}
// Floats
Symbol::NUM_DEC => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::Builtin(Builtin::Decimal))
}
Symbol::NUM_F64 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::f64())
}
Symbol::NUM_F32 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::f32())
}
Symbol::NUM_NUM | Symbol::NUM_AT_NUM => {
// Num.Num should only ever have 1 argument, e.g. Num.Num Int.Integer
debug_assert_eq!(args.len(), 1);
let var = args[0];
let content = subs.get_content_without_compacting(var);
layout_from_num_content(content)
}
Symbol::STR_STR => Ok(Layout::Builtin(Builtin::Str)),
Symbol::LIST_LIST => list_layout_from_elem(env, args[0]),
Symbol::DICT_DICT => dict_layout_from_key_value(env, args[0], args[1]),
Symbol::SET_SET => dict_layout_from_key_value(env, args[0], Variable::EMPTY_RECORD),
_ => {
panic!(
"TODO layout_from_flat_type for Apply({:?}, {:?})",
symbol, args
);
}
}
}
Func(_, closure_var, _) => {
let lambda_set = LambdaSet::from_var(env.arena, env.subs, closure_var, env.ptr_bytes)?;
Ok(Layout::LambdaSet(lambda_set))
}
Record(fields, ext_var) => {
// extract any values from the ext_var
let pairs_it = fields
.unsorted_iterator(subs, ext_var)
.filter_map(|(label, field)| {
// drop optional fields
let var = match field {
RecordField::Optional(_) => return None,
RecordField::Required(var) => var,
RecordField::Demanded(var) => var,
};
Some((
label,
Layout::from_var(env, var).expect("invalid layout from var"),
))
});
let mut pairs = Vec::from_iter_in(pairs_it, arena);
pairs.sort_by(|(label1, layout1), (label2, layout2)| {
let size1 = layout1.alignment_bytes(ptr_bytes);
let size2 = layout2.alignment_bytes(ptr_bytes);
size2.cmp(&size1).then(label1.cmp(label2))
});
let mut layouts = Vec::from_iter_in(pairs.into_iter().map(|t| t.1), arena);
if layouts.len() == 1 {
// If the record has only one field that isn't zero-sized,
// unwrap it.
Ok(layouts.pop().unwrap())
} else {
Ok(Layout::Struct(layouts.into_bump_slice()))
}
}
TagUnion(tags, ext_var) => {
debug_assert!(ext_var_is_empty_tag_union(subs, ext_var));
Ok(layout_from_tag_union(arena, tags, subs, env.ptr_bytes))
}
FunctionOrTagUnion(tag_name, _, ext_var) => {
debug_assert!(ext_var_is_empty_tag_union(subs, ext_var));
let tags = UnionTags::from_tag_name_index(tag_name);
Ok(layout_from_tag_union(arena, tags, subs, env.ptr_bytes))
}
RecursiveTagUnion(rec_var, tags, ext_var) => {
debug_assert!(ext_var_is_empty_tag_union(subs, ext_var));
// some observations
//
// * recursive tag unions are always recursive
// * therefore at least one tag has a pointer (non-zero sized) field
// * they must (to be instantiated) have 2 or more tags
//
// That means none of the optimizations for enums or single tag tag unions apply
let rec_var = subs.get_root_key_without_compacting(rec_var);
let mut tag_layouts = Vec::with_capacity_in(tags.len(), arena);
let tags_vec = cheap_sort_tags(arena, tags, subs);
let mut nullable = None;
if GENERATE_NULLABLE {
for (index, (_name, variables)) in tags_vec.iter().enumerate() {
if variables.is_empty() {
nullable = Some(index as TagIdIntType);
break;
}
}
}
env.insert_seen(rec_var);
for (index, (_name, variables)) in tags_vec.into_iter().enumerate() {
if matches!(nullable, Some(i) if i == index as TagIdIntType) {
// don't add the nullable case
continue;
}
let mut tag_layout = Vec::with_capacity_in(variables.len() + 1, arena);
for var_index in variables {
let var = subs[var_index];
// TODO does this cause problems with mutually recursive unions?
if rec_var == subs.get_root_key_without_compacting(var) {
tag_layout.push(Layout::RecursivePointer);
continue;
}
tag_layout.push(Layout::from_var(env, var)?);
}
tag_layout.sort_by(|layout1, layout2| {
let size1 = layout1.alignment_bytes(ptr_bytes);
let size2 = layout2.alignment_bytes(ptr_bytes);
size2.cmp(&size1)
});
tag_layouts.push(tag_layout.into_bump_slice());
}
env.remove_seen(rec_var);
let union_layout = if let Some(tag_id) = nullable {
match tag_layouts.into_bump_slice() {
[one] => {
let nullable_id = tag_id != 0;
UnionLayout::NullableUnwrapped {
nullable_id,
other_fields: one,
}
}
many => UnionLayout::NullableWrapped {
nullable_id: tag_id,
other_tags: many,
},
}
} else if tag_layouts.len() == 1 {
// drop the tag id
UnionLayout::NonNullableUnwrapped(tag_layouts.pop().unwrap())
} else {
UnionLayout::Recursive(tag_layouts.into_bump_slice())
};
Ok(Layout::Union(union_layout))
}
EmptyTagUnion => {
panic!("TODO make Layout for empty Tag Union");
}
Erroneous(_) => Err(LayoutProblem::Erroneous),
EmptyRecord => Ok(Layout::Struct(&[])),
}
}
pub fn sort_record_fields<'a>(
arena: &'a Bump,
var: Variable,
subs: &Subs,
ptr_bytes: u32,
) -> Vec<'a, (Lowercase, Variable, Result<Layout<'a>, Layout<'a>>)> {
let mut env = Env {
arena,
subs,
seen: Vec::new_in(arena),
ptr_bytes,
};
let (it, _) = gather_fields_unsorted_iter(subs, RecordFields::empty(), var);
let it = it
.into_iter()
.map(|(field, field_type)| (field.clone(), field_type));
sort_record_fields_help(&mut env, it)
}
fn sort_record_fields_help<'a>(
env: &mut Env<'a, '_>,
fields_map: impl Iterator<Item = (Lowercase, RecordField<Variable>)>,
) -> Vec<'a, (Lowercase, Variable, Result<Layout<'a>, Layout<'a>>)> {
let ptr_bytes = env.ptr_bytes;
// Sort the fields by label
let mut sorted_fields = Vec::with_capacity_in(fields_map.size_hint().0, env.arena);
for (label, field) in fields_map {
let var = match field {
RecordField::Demanded(v) => v,
RecordField::Required(v) => v,
RecordField::Optional(v) => {
let layout = Layout::from_var(env, v).expect("invalid layout from var");
sorted_fields.push((label, v, Err(layout)));
continue;
}
};
let layout = Layout::from_var(env, var).expect("invalid layout from var");
sorted_fields.push((label, var, Ok(layout)));
}
sorted_fields.sort_by(
|(label1, _, res_layout1), (label2, _, res_layout2)| match res_layout1 {
Ok(layout1) | Err(layout1) => match res_layout2 {
Ok(layout2) | Err(layout2) => {
let size1 = layout1.alignment_bytes(ptr_bytes);
let size2 = layout2.alignment_bytes(ptr_bytes);
size2.cmp(&size1).then(label1.cmp(label2))
}
},
},
);
sorted_fields
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum UnionVariant<'a> {
Never,
Unit,
UnitWithArguments,
BoolUnion {
ttrue: TagName,
ffalse: TagName,
},
ByteUnion(Vec<'a, TagName>),
Newtype {
tag_name: TagName,
arguments: Vec<'a, Layout<'a>>,
},
Wrapped(WrappedVariant<'a>),
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum WrappedVariant<'a> {
Recursive {
sorted_tag_layouts: Vec<'a, (TagName, &'a [Layout<'a>])>,
},
NonRecursive {
sorted_tag_layouts: Vec<'a, (TagName, &'a [Layout<'a>])>,
},
NullableWrapped {
nullable_id: TagIdIntType,
nullable_name: TagName,
sorted_tag_layouts: Vec<'a, (TagName, &'a [Layout<'a>])>,
},
NonNullableUnwrapped {
tag_name: TagName,
fields: &'a [Layout<'a>],
},
NullableUnwrapped {
nullable_id: bool,
nullable_name: TagName,
other_name: TagName,
other_fields: &'a [Layout<'a>],
},
}
impl<'a> WrappedVariant<'a> {
pub fn tag_name_to_id(&self, tag_name: &TagName) -> (TagIdIntType, &'a [Layout<'a>]) {
use WrappedVariant::*;
match self {
Recursive { sorted_tag_layouts } | NonRecursive { sorted_tag_layouts } => {
let (tag_id, (_, argument_layouts)) = sorted_tag_layouts
.iter()
.enumerate()
.find(|(_, (key, _))| key == tag_name)
.expect("tag name is not in its own type");
debug_assert!(tag_id < 256);
(tag_id as TagIdIntType, *argument_layouts)
}
NullableWrapped {
nullable_id,
nullable_name,
sorted_tag_layouts,
} => {
// assumption: the nullable_name is not included in sorted_tag_layouts
if tag_name == nullable_name {
(*nullable_id as TagIdIntType, &[] as &[_])
} else {
let (mut tag_id, (_, argument_layouts)) = sorted_tag_layouts
.iter()
.enumerate()
.find(|(_, (key, _))| key == tag_name)
.expect("tag name is not in its own type");
if tag_id >= *nullable_id as usize {
tag_id += 1;
}
debug_assert!(tag_id < 256);
(tag_id as TagIdIntType, *argument_layouts)
}
}
NullableUnwrapped {
nullable_id,
nullable_name,
other_name,
other_fields,
} => {
if tag_name == nullable_name {
(*nullable_id as TagIdIntType, &[] as &[_])
} else {
debug_assert_eq!(other_name, tag_name);
(!*nullable_id as TagIdIntType, *other_fields)
}
}
NonNullableUnwrapped { fields, .. } => (0, fields),
}
}
pub fn number_of_tags(&'a self) -> usize {
use WrappedVariant::*;
match self {
Recursive { sorted_tag_layouts } | NonRecursive { sorted_tag_layouts } => {
sorted_tag_layouts.len()
}
NullableWrapped {
sorted_tag_layouts, ..
} => {
// assumption: the nullable_name is not included in sorted_tag_layouts
sorted_tag_layouts.len() + 1
}
NullableUnwrapped { .. } => 2,
NonNullableUnwrapped { .. } => 1,
}
}
}
pub fn union_sorted_tags<'a>(
arena: &'a Bump,
var: Variable,
subs: &Subs,
ptr_bytes: u32,
) -> Result<UnionVariant<'a>, LayoutProblem> {
let var =
if let Content::RecursionVar { structure, .. } = subs.get_content_without_compacting(var) {
*structure
} else {
var
};
let mut tags_vec = std::vec::Vec::new();
let result = match roc_types::pretty_print::chase_ext_tag_union(subs, var, &mut tags_vec) {
Ok(()) | Err((_, Content::FlexVar(_))) | Err((_, Content::RecursionVar { .. })) => {
let opt_rec_var = get_recursion_var(subs, var);
union_sorted_tags_help(arena, tags_vec, opt_rec_var, subs, ptr_bytes)
}
Err((_, Content::Error)) => return Err(LayoutProblem::Erroneous),
Err(other) => panic!("invalid content in tag union variable: {:?}", other),
};
Ok(result)
}
fn get_recursion_var(subs: &Subs, var: Variable) -> Option<Variable> {
match subs.get_content_without_compacting(var) {
Content::Structure(FlatType::RecursiveTagUnion(rec_var, _, _)) => Some(*rec_var),
Content::Alias(_, _, actual) => get_recursion_var(subs, *actual),
_ => None,
}
}
fn is_recursive_tag_union(layout: &Layout) -> bool {
matches!(
layout,
Layout::Union(
UnionLayout::NullableUnwrapped { .. }
| UnionLayout::Recursive(_)
| UnionLayout::NullableWrapped { .. }
| UnionLayout::NonNullableUnwrapped { .. },
)
)
}
fn union_sorted_tags_help_new<'a>(
arena: &'a Bump,
mut tags_vec: Vec<(&'_ TagName, VariableSubsSlice)>,
opt_rec_var: Option<Variable>,
subs: &Subs,
ptr_bytes: u32,
) -> UnionVariant<'a> {
// sort up front; make sure the ordering stays intact!
tags_vec.sort_unstable_by(|(a, _), (b, _)| a.cmp(b));
let mut env = Env {
arena,
subs,
seen: Vec::new_in(arena),
ptr_bytes,
};
match tags_vec.len() {
0 => {
// trying to instantiate a type with no values
UnionVariant::Never
}
1 => {
let (tag_name, arguments) = tags_vec.remove(0);
let tag_name = tag_name.clone();
// just one tag in the union (but with arguments) can be a struct
let mut layouts = Vec::with_capacity_in(tags_vec.len(), arena);
// special-case NUM_AT_NUM: if its argument is a FlexVar, make it Int
match tag_name {
TagName::Private(Symbol::NUM_AT_NUM) => {
let var = subs[arguments.into_iter().next().unwrap()];
layouts.push(unwrap_num_tag(subs, var).expect("invalid num layout"));
}
_ => {
for var_index in arguments {
let var = subs[var_index];
match Layout::from_var(&mut env, var) {
Ok(layout) => {
layouts.push(layout);
}
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// If we encounter an unbound type var (e.g. `Ok *`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty struct
layouts.push(Layout::Struct(&[]))
}
Err(LayoutProblem::Erroneous) => {
// An erroneous type var will code gen to a runtime
// error, so we don't need to store any data for it.
}
}
}
}
}
layouts.sort_by(|layout1, layout2| {
let size1 = layout1.alignment_bytes(ptr_bytes);
let size2 = layout2.alignment_bytes(ptr_bytes);
size2.cmp(&size1)
});
if layouts.is_empty() {
UnionVariant::Unit
} else if opt_rec_var.is_some() {
UnionVariant::Wrapped(WrappedVariant::NonNullableUnwrapped {
tag_name,
fields: layouts.into_bump_slice(),
})
} else {
UnionVariant::Newtype {
tag_name,
arguments: layouts,
}
}
}
num_tags => {
// default path
let mut answer = Vec::with_capacity_in(tags_vec.len(), arena);
let mut has_any_arguments = false;
let mut nullable: Option<(TagIdIntType, TagName)> = None;
// only recursive tag unions can be nullable
let is_recursive = opt_rec_var.is_some();
if is_recursive && GENERATE_NULLABLE {
for (index, (name, variables)) in tags_vec.iter().enumerate() {
if variables.is_empty() {
nullable = Some((index as TagIdIntType, (*name).clone()));
break;
}
}
}
for (index, (tag_name, arguments)) in tags_vec.into_iter().enumerate() {
// reserve space for the tag discriminant
if matches!(nullable, Some((i, _)) if i as usize == index) {
debug_assert!(arguments.is_empty());
continue;
}
let mut arg_layouts = Vec::with_capacity_in(arguments.len() + 1, arena);
for var_index in arguments {
let var = subs[var_index];
match Layout::from_var(&mut env, var) {
Ok(layout) => {
has_any_arguments = true;
// make sure to not unroll recursive types!
let self_recursion = opt_rec_var.is_some()
&& subs.get_root_key_without_compacting(var)
== subs.get_root_key_without_compacting(opt_rec_var.unwrap())
&& is_recursive_tag_union(&layout);
if self_recursion {
arg_layouts.push(Layout::RecursivePointer);
} else {
arg_layouts.push(layout);
}
}
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// If we encounter an unbound type var (e.g. `Ok *`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty struct
arg_layouts.push(Layout::Struct(&[]));
}
Err(LayoutProblem::Erroneous) => {
// An erroneous type var will code gen to a runtime
// error, so we don't need to store any data for it.
}
}
}
arg_layouts.sort_by(|layout1, layout2| {
let size1 = layout1.alignment_bytes(ptr_bytes);
let size2 = layout2.alignment_bytes(ptr_bytes);
size2.cmp(&size1)
});
answer.push((tag_name.clone(), arg_layouts.into_bump_slice()));
}
match num_tags {
2 if !has_any_arguments => {
// type can be stored in a boolean
// tags_vec is sorted, and answer is sorted the same way
let ttrue = answer.remove(1).0;
let ffalse = answer.remove(0).0;
UnionVariant::BoolUnion { ffalse, ttrue }
}
3..=MAX_ENUM_SIZE if !has_any_arguments => {
// type can be stored in a byte
// needs the sorted tag names to determine the tag_id
let mut tag_names = Vec::with_capacity_in(answer.len(), arena);
for (tag_name, _) in answer {
tag_names.push(tag_name);
}
UnionVariant::ByteUnion(tag_names)
}
_ => {
let variant = if let Some((nullable_id, nullable_name)) = nullable {
if answer.len() == 1 {
let (other_name, other_arguments) = answer.drain(..).next().unwrap();
let nullable_id = nullable_id != 0;
WrappedVariant::NullableUnwrapped {
nullable_id,
nullable_name,
other_name,
other_fields: other_arguments,
}
} else {
WrappedVariant::NullableWrapped {
nullable_id,
nullable_name,
sorted_tag_layouts: answer,
}
}
} else if is_recursive {
debug_assert!(answer.len() > 1);
WrappedVariant::Recursive {
sorted_tag_layouts: answer,
}
} else {
WrappedVariant::NonRecursive {
sorted_tag_layouts: answer,
}
};
UnionVariant::Wrapped(variant)
}
}
}
}
}
pub fn union_sorted_tags_help<'a>(
arena: &'a Bump,
mut tags_vec: std::vec::Vec<(TagName, std::vec::Vec<Variable>)>,
opt_rec_var: Option<Variable>,
subs: &Subs,
ptr_bytes: u32,
) -> UnionVariant<'a> {
// sort up front; make sure the ordering stays intact!
tags_vec.sort_unstable_by(|(a, _), (b, _)| a.cmp(b));
let mut env = Env {
arena,
subs,
seen: Vec::new_in(arena),
ptr_bytes,
};
match tags_vec.len() {
0 => {
// trying to instantiate a type with no values
UnionVariant::Never
}
1 => {
let (tag_name, arguments) = tags_vec.remove(0);
// just one tag in the union (but with arguments) can be a struct
let mut layouts = Vec::with_capacity_in(tags_vec.len(), arena);
let mut contains_zero_sized = false;
// special-case NUM_AT_NUM: if its argument is a FlexVar, make it Int
match tag_name {
TagName::Private(Symbol::NUM_AT_NUM) => {
layouts.push(unwrap_num_tag(subs, arguments[0]).expect("invalid num layout"));
}
_ => {
for var in arguments {
match Layout::from_var(&mut env, var) {
Ok(layout) => {
// Drop any zero-sized arguments like {}
if !layout.is_dropped_because_empty() {
layouts.push(layout);
} else {
contains_zero_sized = true;
}
}
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// If we encounter an unbound type var (e.g. `Ok *`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty struct
layouts.push(Layout::Struct(&[]))
}
Err(LayoutProblem::Erroneous) => {
// An erroneous type var will code gen to a runtime
// error, so we don't need to store any data for it.
}
}
}
}
}
layouts.sort_by(|layout1, layout2| {
let size1 = layout1.alignment_bytes(ptr_bytes);
let size2 = layout2.alignment_bytes(ptr_bytes);
size2.cmp(&size1)
});
if layouts.is_empty() {
if contains_zero_sized {
UnionVariant::UnitWithArguments
} else {
UnionVariant::Unit
}
} else if opt_rec_var.is_some() {
UnionVariant::Wrapped(WrappedVariant::NonNullableUnwrapped {
tag_name,
fields: layouts.into_bump_slice(),
})
} else {
UnionVariant::Newtype {
tag_name,
arguments: layouts,
}
}
}
num_tags => {
// default path
let mut answer = Vec::with_capacity_in(tags_vec.len(), arena);
let mut has_any_arguments = false;
let mut nullable = None;
// only recursive tag unions can be nullable
let is_recursive = opt_rec_var.is_some();
if is_recursive && GENERATE_NULLABLE {
for (index, (name, variables)) in tags_vec.iter().enumerate() {
if variables.is_empty() {
nullable = Some((index as TagIdIntType, name.clone()));
break;
}
}
}
for (index, (tag_name, arguments)) in tags_vec.into_iter().enumerate() {
// reserve space for the tag discriminant
if matches!(nullable, Some((i, _)) if i as usize == index) {
debug_assert!(arguments.is_empty());
continue;
}
let mut arg_layouts = Vec::with_capacity_in(arguments.len() + 1, arena);
for var in arguments {
match Layout::from_var(&mut env, var) {
Ok(layout) => {
has_any_arguments = true;
// make sure to not unroll recursive types!
let self_recursion = opt_rec_var.is_some()
&& subs.get_root_key_without_compacting(var)
== subs.get_root_key_without_compacting(opt_rec_var.unwrap())
&& is_recursive_tag_union(&layout);
if self_recursion {
arg_layouts.push(Layout::RecursivePointer);
} else {
arg_layouts.push(layout);
}
}
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// If we encounter an unbound type var (e.g. `Ok *`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty struct
arg_layouts.push(Layout::Struct(&[]));
}
Err(LayoutProblem::Erroneous) => {
// An erroneous type var will code gen to a runtime
// error, so we don't need to store any data for it.
}
}
}
arg_layouts.sort_by(|layout1, layout2| {
let size1 = layout1.alignment_bytes(ptr_bytes);
let size2 = layout2.alignment_bytes(ptr_bytes);
size2.cmp(&size1)
});
answer.push((tag_name.clone(), arg_layouts.into_bump_slice()));
}
match num_tags {
2 if !has_any_arguments => {
// type can be stored in a boolean
// tags_vec is sorted, and answer is sorted the same way
let ttrue = answer.remove(1).0;
let ffalse = answer.remove(0).0;
UnionVariant::BoolUnion { ffalse, ttrue }
}
3..=MAX_ENUM_SIZE if !has_any_arguments => {
// type can be stored in a byte
// needs the sorted tag names to determine the tag_id
let mut tag_names = Vec::with_capacity_in(answer.len(), arena);
for (tag_name, _) in answer {
tag_names.push(tag_name.clone());
}
UnionVariant::ByteUnion(tag_names)
}
_ => {
let variant = if let Some((nullable_id, nullable_name)) = nullable {
if answer.len() == 1 {
let (other_name, other_arguments) = answer.drain(..).next().unwrap();
let nullable_id = nullable_id != 0;
WrappedVariant::NullableUnwrapped {
nullable_id,
nullable_name,
other_name,
other_fields: other_arguments,
}
} else {
WrappedVariant::NullableWrapped {
nullable_id,
nullable_name,
sorted_tag_layouts: answer,
}
}
} else if is_recursive {
debug_assert!(answer.len() > 1);
WrappedVariant::Recursive {
sorted_tag_layouts: answer,
}
} else {
WrappedVariant::NonRecursive {
sorted_tag_layouts: answer,
}
};
UnionVariant::Wrapped(variant)
}
}
}
}
}
fn cheap_sort_tags<'a, 'b>(
arena: &'a Bump,
tags: UnionTags,
subs: &'b Subs,
) -> Vec<'a, (&'b TagName, VariableSubsSlice)> {
let mut tags_vec = Vec::with_capacity_in(tags.len(), arena);
for (tag_index, index) in tags.iter_all() {
let tag = &subs[tag_index];
let slice = subs[index];
tags_vec.push((tag, slice));
}
tags_vec
}
fn layout_from_newtype<'a>(
arena: &'a Bump,
tags: UnionTags,
subs: &Subs,
ptr_bytes: u32,
) -> Layout<'a> {
debug_assert!(tags.is_newtype_wrapper(subs));
let slice_index = tags.variables().into_iter().next().unwrap();
let slice = subs[slice_index];
let var_index = slice.into_iter().next().unwrap();
let var = subs[var_index];
let tag_name_index = tags.tag_names().into_iter().next().unwrap();
let tag_name = &subs[tag_name_index];
if tag_name == &TagName::Private(Symbol::NUM_AT_NUM) {
unwrap_num_tag(subs, var).expect("invalid Num argument")
} else {
let mut env = Env {
arena,
subs,
seen: Vec::new_in(arena),
ptr_bytes,
};
match Layout::from_var(&mut env, var) {
Ok(layout) => layout,
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// If we encounter an unbound type var (e.g. `Ok *`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty struct
Layout::Struct(&[])
}
Err(LayoutProblem::Erroneous) => {
// An erroneous type var will code gen to a runtime
// error, so we don't need to store any data for it.
todo!()
}
}
}
}
fn layout_from_tag_union<'a>(
arena: &'a Bump,
tags: UnionTags,
subs: &Subs,
ptr_bytes: u32,
) -> Layout<'a> {
use UnionVariant::*;
if tags.is_newtype_wrapper(subs) {
return layout_from_newtype(arena, tags, subs, ptr_bytes);
}
let tags_vec = cheap_sort_tags(arena, tags, subs);
match tags_vec.get(0) {
Some((tag_name, arguments)) if *tag_name == &TagName::Private(Symbol::NUM_AT_NUM) => {
debug_assert_eq!(arguments.len(), 1);
let var_index = arguments.into_iter().next().unwrap();
let var = subs[var_index];
unwrap_num_tag(subs, var).expect("invalid Num argument")
}
_ => {
let opt_rec_var = None;
let variant = union_sorted_tags_help_new(arena, tags_vec, opt_rec_var, subs, ptr_bytes);
match variant {
Never => Layout::Union(UnionLayout::NonRecursive(&[])),
Unit | UnitWithArguments => Layout::Struct(&[]),
BoolUnion { .. } => Layout::bool(),
ByteUnion(_) => Layout::u8(),
Newtype {
arguments: field_layouts,
..
} => {
let answer1 = if field_layouts.len() == 1 {
field_layouts[0]
} else {
Layout::Struct(field_layouts.into_bump_slice())
};
answer1
}
Wrapped(variant) => {
use WrappedVariant::*;
match variant {
NonRecursive {
sorted_tag_layouts: tags,
} => {
let mut tag_layouts = Vec::with_capacity_in(tags.len(), arena);
tag_layouts.extend(tags.iter().map(|r| r.1));
Layout::Union(UnionLayout::NonRecursive(tag_layouts.into_bump_slice()))
}
Recursive {
sorted_tag_layouts: tags,
} => {
let mut tag_layouts = Vec::with_capacity_in(tags.len(), arena);
tag_layouts.extend(tags.iter().map(|r| r.1));
debug_assert!(tag_layouts.len() > 1);
Layout::Union(UnionLayout::Recursive(tag_layouts.into_bump_slice()))
}
NullableWrapped {
nullable_id,
nullable_name: _,
sorted_tag_layouts: tags,
} => {
let mut tag_layouts = Vec::with_capacity_in(tags.len(), arena);
tag_layouts.extend(tags.iter().map(|r| r.1));
Layout::Union(UnionLayout::NullableWrapped {
nullable_id,
other_tags: tag_layouts.into_bump_slice(),
})
}
NullableUnwrapped { .. } => todo!(),
NonNullableUnwrapped { .. } => todo!(),
}
}
}
}
}
}
#[cfg(debug_assertions)]
fn ext_var_is_empty_record(subs: &Subs, ext_var: Variable) -> bool {
// the ext_var is empty
let fields = roc_types::types::gather_fields(subs, RecordFields::empty(), ext_var);
fields.fields.is_empty()
}
#[cfg(not(debug_assertions))]
fn ext_var_is_empty_record(_subs: &Subs, _ext_var: Variable) -> bool {
// This should only ever be used in debug_assert! macros
unreachable!();
}
#[cfg(debug_assertions)]
fn ext_var_is_empty_tag_union(subs: &Subs, ext_var: Variable) -> bool {
// the ext_var is empty
let mut ext_fields = std::vec::Vec::new();
match roc_types::pretty_print::chase_ext_tag_union(subs, ext_var, &mut ext_fields) {
Ok(()) | Err((_, Content::FlexVar(_))) => ext_fields.is_empty(),
Err(content) => panic!("invalid content in ext_var: {:?}", content),
}
}
#[cfg(not(debug_assertions))]
fn ext_var_is_empty_tag_union(_: &Subs, _: Variable) -> bool {
// This should only ever be used in debug_assert! macros
unreachable!();
}
fn layout_from_num_content<'a>(content: &Content) -> Result<Layout<'a>, LayoutProblem> {
use roc_types::subs::Content::*;
use roc_types::subs::FlatType::*;
match content {
RecursionVar { .. } => panic!("recursion var in num"),
FlexVar(_) | RigidVar(_) => {
// If a Num makes it all the way through type checking with an unbound
// type variable, then assume it's a 64-bit integer.
//
// (e.g. for (5 + 5) assume both 5s are 64-bit integers.)
Ok(Layout::default_integer())
}
Structure(Apply(symbol, args)) => match *symbol {
// Ints
Symbol::NUM_NAT => Ok(Layout::usize()),
Symbol::NUM_INTEGER => Ok(Layout::i64()),
Symbol::NUM_I128 => Ok(Layout::i128()),
Symbol::NUM_I64 => Ok(Layout::i64()),
Symbol::NUM_I32 => Ok(Layout::i32()),
Symbol::NUM_I16 => Ok(Layout::i16()),
Symbol::NUM_I8 => Ok(Layout::i8()),
Symbol::NUM_U128 => Ok(Layout::u128()),
Symbol::NUM_U64 => Ok(Layout::u64()),
Symbol::NUM_U32 => Ok(Layout::u32()),
Symbol::NUM_U16 => Ok(Layout::u16()),
Symbol::NUM_U8 => Ok(Layout::u8()),
// Floats
Symbol::NUM_FLOATINGPOINT => Ok(Layout::f64()),
Symbol::NUM_F64 => Ok(Layout::f64()),
Symbol::NUM_F32 => Ok(Layout::f32()),
// Dec
Symbol::NUM_DEC => Ok(Layout::Builtin(Builtin::Decimal)),
_ => {
panic!(
"Invalid Num.Num type application: Apply({:?}, {:?})",
symbol, args
);
}
},
Alias(_, _, _) => {
todo!("TODO recursively resolve type aliases in num_from_content");
}
Structure(_) => {
panic!("Invalid Num.Num type application: {:?}", content);
}
Error => Err(LayoutProblem::Erroneous),
}
}
fn unwrap_num_tag<'a>(subs: &Subs, var: Variable) -> Result<Layout<'a>, LayoutProblem> {
match subs.get_content_without_compacting(var) {
Content::Alias(Symbol::NUM_INTEGER, args, _) => {
debug_assert!(args.len() == 1);
let precision_var = subs[args.variables().into_iter().next().unwrap()];
let precision = subs.get_content_without_compacting(precision_var);
match precision {
Content::Alias(symbol, args, _) => {
debug_assert!(args.is_empty());
let width = match *symbol {
Symbol::NUM_SIGNED128 => IntWidth::I128,
Symbol::NUM_SIGNED64 => IntWidth::I64,
Symbol::NUM_SIGNED32 => IntWidth::I32,
Symbol::NUM_SIGNED16 => IntWidth::I16,
Symbol::NUM_SIGNED8 => IntWidth::I8,
Symbol::NUM_UNSIGNED128 => IntWidth::U128,
Symbol::NUM_UNSIGNED64 => IntWidth::U64,
Symbol::NUM_UNSIGNED32 => IntWidth::U32,
Symbol::NUM_UNSIGNED16 => IntWidth::U16,
Symbol::NUM_UNSIGNED8 => IntWidth::U8,
Symbol::NUM_NATURAL => {
return Ok(Layout::usize());
}
_ => unreachable!("not a valid int variant: {:?} {:?}", symbol, args),
};
Ok(Layout::Builtin(Builtin::Int(width)))
}
Content::FlexVar(_) | Content::RigidVar(_) => {
// default to i64
Ok(Layout::i64())
}
_ => unreachable!("not a valid int variant: {:?}", precision),
}
}
Content::Alias(Symbol::NUM_FLOATINGPOINT, args, _) => {
debug_assert!(args.len() == 1);
let precision_var = subs[args.variables().into_iter().next().unwrap()];
let precision = subs.get_content_without_compacting(precision_var);
match precision {
Content::Alias(Symbol::NUM_BINARY32, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::f32())
}
Content::Alias(Symbol::NUM_BINARY64, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::f64())
}
Content::Alias(Symbol::NUM_DECIMAL, args, _) => {
debug_assert!(args.is_empty());
Ok(Layout::Builtin(Builtin::Decimal))
}
Content::FlexVar(_) | Content::RigidVar(_) => {
// default to f64
Ok(Layout::f64())
}
_ => unreachable!("not a valid float variant: {:?}", precision),
}
}
Content::FlexVar(_) | Content::RigidVar(_) => {
// If this was still a (Num *) then default to compiling it to i64
Ok(Layout::default_integer())
}
other => {
todo!("TODO non structure Num.@Num flat_type {:?}", other);
}
}
}
fn dict_layout_from_key_value<'a>(
env: &mut Env<'a, '_>,
key_var: Variable,
value_var: Variable,
) -> Result<Layout<'a>, LayoutProblem> {
match env.subs.get_content_without_compacting(key_var) {
Content::FlexVar(_) | Content::RigidVar(_) => {
// If this was still a (Dict * *) then it must have been an empty dict
Ok(Layout::Builtin(Builtin::EmptyDict))
}
key_content => {
let value_content = env.subs.get_content_without_compacting(value_var);
let key_layout = Layout::new_help(env, key_var, key_content.clone())?;
let value_layout = Layout::new_help(env, value_var, value_content.clone())?;
// This is a normal list.
Ok(Layout::Builtin(Builtin::Dict(
env.arena.alloc(key_layout),
env.arena.alloc(value_layout),
)))
}
}
}
pub fn list_layout_from_elem<'a>(
env: &mut Env<'a, '_>,
elem_var: Variable,
) -> Result<Layout<'a>, LayoutProblem> {
match env.subs.get_content_without_compacting(elem_var) {
Content::FlexVar(_) | Content::RigidVar(_) => {
// If this was still a (List *) then it must have been an empty list
Ok(Layout::Builtin(Builtin::EmptyList))
}
_ => {
let elem_layout = Layout::from_var(env, elem_var)?;
Ok(Layout::Builtin(Builtin::List(env.arena.alloc(elem_layout))))
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct LayoutId(u32);
impl LayoutId {
// Returns something like "foo#1" when given a symbol that interns to "foo"
// and a LayoutId of 1.
pub fn to_symbol_string(self, symbol: Symbol, interns: &Interns) -> String {
let ident_string = symbol.ident_str(interns);
let module_string = interns.module_ids.get_name(symbol.module_id()).unwrap();
format!("{}_{}_{}", module_string, ident_string, self.0)
}
}
struct IdsByLayout<'a> {
by_id: MutMap<Layout<'a>, u32>,
toplevels_by_id: MutMap<crate::ir::ProcLayout<'a>, u32>,
next_id: u32,
}
impl<'a> IdsByLayout<'a> {
#[inline(always)]
fn insert_layout(&mut self, layout: Layout<'a>) -> LayoutId {
match self.by_id.entry(layout) {
Entry::Vacant(vacant) => {
let answer = self.next_id;
vacant.insert(answer);
self.next_id += 1;
LayoutId(answer)
}
Entry::Occupied(occupied) => LayoutId(*occupied.get()),
}
}
#[inline(always)]
fn singleton_layout(layout: Layout<'a>) -> (Self, LayoutId) {
let mut by_id = HashMap::with_capacity_and_hasher(1, default_hasher());
by_id.insert(layout, 1);
let ids_by_layout = IdsByLayout {
by_id,
toplevels_by_id: Default::default(),
next_id: 2,
};
(ids_by_layout, LayoutId(1))
}
#[inline(always)]
fn insert_toplevel(&mut self, layout: crate::ir::ProcLayout<'a>) -> LayoutId {
match self.toplevels_by_id.entry(layout) {
Entry::Vacant(vacant) => {
let answer = self.next_id;
vacant.insert(answer);
self.next_id += 1;
LayoutId(answer)
}
Entry::Occupied(occupied) => LayoutId(*occupied.get()),
}
}
#[inline(always)]
fn singleton_toplevel(layout: crate::ir::ProcLayout<'a>) -> (Self, LayoutId) {
let mut toplevels_by_id = HashMap::with_capacity_and_hasher(1, default_hasher());
toplevels_by_id.insert(layout, 1);
let ids_by_layout = IdsByLayout {
by_id: Default::default(),
toplevels_by_id,
next_id: 2,
};
(ids_by_layout, LayoutId(1))
}
}
#[derive(Default)]
pub struct LayoutIds<'a> {
by_symbol: MutMap<Symbol, IdsByLayout<'a>>,
}
impl<'a> LayoutIds<'a> {
/// Returns a LayoutId which is unique for the given symbol and layout.
/// If given the same symbol and same layout, returns the same LayoutId.
#[inline(always)]
pub fn get<'b>(&mut self, symbol: Symbol, layout: &'b Layout<'a>) -> LayoutId {
match self.by_symbol.entry(symbol) {
Entry::Vacant(vacant) => {
let (ids_by_layout, layout_id) = IdsByLayout::singleton_layout(*layout);
vacant.insert(ids_by_layout);
layout_id
}
Entry::Occupied(mut occupied_ids) => occupied_ids.get_mut().insert_layout(*layout),
}
}
/// Returns a LayoutId which is unique for the given symbol and layout.
/// If given the same symbol and same layout, returns the same LayoutId.
#[inline(always)]
pub fn get_toplevel<'b>(
&mut self,
symbol: Symbol,
layout: &'b crate::ir::ProcLayout<'a>,
) -> LayoutId {
match self.by_symbol.entry(symbol) {
Entry::Vacant(vacant) => {
let (ids_by_layout, layout_id) = IdsByLayout::singleton_toplevel(*layout);
vacant.insert(ids_by_layout);
layout_id
}
Entry::Occupied(mut occupied_ids) => occupied_ids.get_mut().insert_toplevel(*layout),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum ListLayout<'a> {
EmptyList,
List(&'a Layout<'a>),
}
impl<'a> std::convert::TryFrom<&Layout<'a>> for ListLayout<'a> {
type Error = ();
fn try_from(value: &Layout<'a>) -> Result<Self, Self::Error> {
match value {
Layout::Builtin(Builtin::EmptyList) => Ok(ListLayout::EmptyList),
Layout::Builtin(Builtin::List(element)) => Ok(ListLayout::List(element)),
_ => Err(()),
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn width_and_alignment_union_empty_struct() {
let lambda_set = LambdaSet {
set: &[(Symbol::LIST_MAP, &[])],
representation: &Layout::Struct(&[]),
};
let a = &[Layout::Struct(&[])] as &[_];
let b = &[Layout::LambdaSet(lambda_set)] as &[_];
let tt = [a, b];
let layout = Layout::Union(UnionLayout::NonRecursive(&tt));
// at the moment, the tag id uses an I64, so
let ptr_width = 8;
assert_eq!(layout.stack_size(ptr_width), 8);
assert_eq!(layout.alignment_bytes(ptr_width), 8);
}
}