mirror of
https://github.com/roc-lang/roc.git
synced 2025-07-22 22:15:02 +00:00
4497 lines
169 KiB
Rust
4497 lines
169 KiB
Rust
#![allow(clippy::too_many_arguments)]
|
|
|
|
use crate::ability::{
|
|
resolve_ability_specialization, type_implementing_specialization, AbilityImplError,
|
|
CheckedDerives, ObligationCache, PendingDerivesTable, Resolved,
|
|
};
|
|
use crate::module::Solved;
|
|
use crate::specialize::{
|
|
compact_lambda_sets_of_vars, AwaitingSpecializations, CompactionResult, DerivedEnv, SolvePhase,
|
|
};
|
|
use bumpalo::Bump;
|
|
use roc_can::abilities::{AbilitiesStore, MemberSpecializationInfo};
|
|
use roc_can::constraint::Constraint::{self, *};
|
|
use roc_can::constraint::{Constraints, Cycle, LetConstraint, OpportunisticResolve, TypeOrVar};
|
|
use roc_can::expected::{Expected, PExpected};
|
|
use roc_can::expr::PendingDerives;
|
|
use roc_can::module::ExposedByModule;
|
|
use roc_collections::all::MutMap;
|
|
use roc_collections::soa::{Index, Slice};
|
|
use roc_debug_flags::dbg_do;
|
|
#[cfg(debug_assertions)]
|
|
use roc_debug_flags::ROC_VERIFY_RIGID_LET_GENERALIZED;
|
|
use roc_derive::SharedDerivedModule;
|
|
use roc_error_macros::internal_error;
|
|
use roc_module::ident::TagName;
|
|
use roc_module::symbol::{ModuleId, Symbol};
|
|
use roc_problem::can::CycleEntry;
|
|
use roc_region::all::Loc;
|
|
use roc_solve_problem::TypeError;
|
|
use roc_types::subs::{
|
|
self, AliasVariables, Content, Descriptor, FlatType, GetSubsSlice, LambdaSet, Mark,
|
|
OptVariable, Rank, RecordFields, Subs, SubsSlice, TagExt, TupleElems, UlsOfVar, UnionLabels,
|
|
UnionLambdas, UnionTags, Variable, VariableSubsSlice,
|
|
};
|
|
use roc_types::types::{
|
|
gather_fields_unsorted_iter, gather_tuple_elems_unsorted_iter, AliasKind, AliasShared,
|
|
Category, ExtImplicitOpenness, OptAbleVar, Polarity, Reason, RecordField, Type, TypeExtension,
|
|
TypeTag, Types, Uls,
|
|
};
|
|
use roc_unify::unify::{
|
|
unify, unify_introduced_ability_specialization, Env as UEnv, Mode, Obligated,
|
|
SpecializationLsetCollector, Unified::*,
|
|
};
|
|
|
|
// Type checking system adapted from Elm by Evan Czaplicki, BSD-3-Clause Licensed
|
|
// https://github.com/elm/compiler
|
|
// Thank you, Evan!
|
|
|
|
// A lot of energy was put into making type inference fast. That means it's pretty intimidating.
|
|
//
|
|
// Fundamentally, type inference assigns very general types based on syntax, and then tries to
|
|
// make all the pieces fit together. For instance when writing
|
|
//
|
|
// > f x
|
|
//
|
|
// We know that `f` is a function, and thus must have some type `a -> b`.
|
|
// `x` is just a variable, that gets the type `c`
|
|
//
|
|
// Next comes constraint generation. For `f x` to be well-typed,
|
|
// it must be the case that `c = a`, So a constraint `Eq(c, a)` is generated.
|
|
// But `Eq` is a bit special: `c` does not need to equal `a` exactly, but they need to be equivalent.
|
|
// This allows for instance the use of aliases. `c` could be an alias, and so looks different from
|
|
// `a`, but they still represent the same type.
|
|
//
|
|
// Then we get to solving, which happens in this file.
|
|
//
|
|
// When we hit an `Eq` constraint, then we check whether the two involved types are in fact
|
|
// equivalent using unification, and when they are, we can substitute one for the other.
|
|
//
|
|
// When all constraints are processed, and no unification errors have occurred, then the program
|
|
// is type-correct. Otherwise the errors are reported.
|
|
//
|
|
// Now, coming back to efficiency, this type checker uses *ranks* to optimize
|
|
// The rank tracks the number of let-bindings a variable is "under". Top-level definitions
|
|
// have rank 1. A let in a top-level definition gets rank 2, and so on.
|
|
//
|
|
// This has to do with generalization of type variables. This is described here
|
|
//
|
|
// http://okmij.org/ftp/ML/generalization.html#levels
|
|
//
|
|
// The problem is that when doing inference naively, this program would fail to typecheck
|
|
//
|
|
// f =
|
|
// id = \x -> x
|
|
//
|
|
// { a: id 1, b: id "foo" }
|
|
//
|
|
// Because `id` is applied to an integer, the type `Int -> Int` is inferred, which then gives a
|
|
// type error for `id "foo"`.
|
|
//
|
|
// Thus instead the inferred type for `id` is generalized (see the `generalize` function) to `a -> a`.
|
|
// Ranks are used to limit the number of type variables considered for generalization. Only those inside
|
|
// of the let (so those used in inferring the type of `\x -> x`) are considered.
|
|
|
|
use roc_types::types::Alias;
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
struct DelayedAliasVariables {
|
|
start: u32,
|
|
type_variables_len: u8,
|
|
lambda_set_variables_len: u8,
|
|
recursion_variables_len: u8,
|
|
infer_ext_in_output_variables_len: u8,
|
|
}
|
|
|
|
impl DelayedAliasVariables {
|
|
fn recursion_variables(self, variables: &mut [OptAbleVar]) -> &mut [OptAbleVar] {
|
|
let start = self.start as usize
|
|
+ (self.type_variables_len + self.lambda_set_variables_len) as usize;
|
|
let length = self.recursion_variables_len as usize;
|
|
|
|
&mut variables[start..][..length]
|
|
}
|
|
|
|
fn lambda_set_variables(self, variables: &mut [OptAbleVar]) -> &mut [OptAbleVar] {
|
|
let start = self.start as usize + self.type_variables_len as usize;
|
|
let length = self.lambda_set_variables_len as usize;
|
|
|
|
&mut variables[start..][..length]
|
|
}
|
|
|
|
fn type_variables(self, variables: &mut [OptAbleVar]) -> &mut [OptAbleVar] {
|
|
let start = self.start as usize;
|
|
let length = self.type_variables_len as usize;
|
|
|
|
&mut variables[start..][..length]
|
|
}
|
|
|
|
fn infer_ext_in_output_variables(self, variables: &mut [OptAbleVar]) -> &mut [OptAbleVar] {
|
|
let start = self.start as usize
|
|
+ (self.type_variables_len
|
|
+ self.lambda_set_variables_len
|
|
+ self.recursion_variables_len) as usize;
|
|
let length = self.infer_ext_in_output_variables_len as usize;
|
|
|
|
&mut variables[start..][..length]
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Default)]
|
|
pub struct Aliases {
|
|
aliases: Vec<(Symbol, Index<TypeTag>, DelayedAliasVariables, AliasKind)>,
|
|
variables: Vec<OptAbleVar>,
|
|
}
|
|
|
|
impl Aliases {
|
|
pub fn with_capacity(cap: usize) -> Self {
|
|
Self {
|
|
aliases: Vec::with_capacity(cap),
|
|
variables: Vec::with_capacity(cap * 2),
|
|
}
|
|
}
|
|
|
|
pub fn insert(&mut self, types: &mut Types, symbol: Symbol, alias: Alias) {
|
|
let alias_variables =
|
|
{
|
|
let start = self.variables.len() as _;
|
|
|
|
self.variables.extend(
|
|
alias
|
|
.type_variables
|
|
.iter()
|
|
.map(|x| OptAbleVar::from(&x.value)),
|
|
);
|
|
|
|
self.variables.extend(alias.lambda_set_variables.iter().map(
|
|
|x| match x.as_inner() {
|
|
Type::Variable(v) => OptAbleVar::unbound(*v),
|
|
_ => unreachable!("lambda set type is not a variable"),
|
|
},
|
|
));
|
|
|
|
let recursion_variables_len = alias.recursion_variables.len() as _;
|
|
self.variables.extend(
|
|
alias
|
|
.recursion_variables
|
|
.iter()
|
|
.copied()
|
|
.map(OptAbleVar::unbound),
|
|
);
|
|
|
|
self.variables.extend(
|
|
alias
|
|
.infer_ext_in_output_variables
|
|
.iter()
|
|
.map(|v| OptAbleVar::unbound(*v)),
|
|
);
|
|
|
|
DelayedAliasVariables {
|
|
start,
|
|
type_variables_len: alias.type_variables.len() as _,
|
|
lambda_set_variables_len: alias.lambda_set_variables.len() as _,
|
|
recursion_variables_len,
|
|
infer_ext_in_output_variables_len: alias.infer_ext_in_output_variables.len()
|
|
as _,
|
|
}
|
|
};
|
|
|
|
// TODO: can we construct Aliases from TypeTag directly?
|
|
let alias_typ = types.from_old_type(&alias.typ);
|
|
|
|
self.aliases
|
|
.push((symbol, alias_typ, alias_variables, alias.kind));
|
|
}
|
|
|
|
fn instantiate_result_result(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
alias_variables: AliasVariables,
|
|
) -> Variable {
|
|
let tag_names_slice = Subs::RESULT_TAG_NAMES;
|
|
|
|
let err_slice = SubsSlice::new(alias_variables.variables_start + 1, 1);
|
|
let ok_slice = SubsSlice::new(alias_variables.variables_start, 1);
|
|
|
|
let variable_slices =
|
|
SubsSlice::extend_new(&mut subs.variable_slices, [err_slice, ok_slice]);
|
|
|
|
let union_tags = UnionTags::from_slices(tag_names_slice, variable_slices);
|
|
let ext_var = TagExt::Any(Variable::EMPTY_TAG_UNION);
|
|
let flat_type = FlatType::TagUnion(union_tags, ext_var);
|
|
let content = Content::Structure(flat_type);
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
|
|
/// Build an alias of the form `Num range := range`
|
|
fn build_num_opaque(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
symbol: Symbol,
|
|
range_var: Variable,
|
|
) -> Variable {
|
|
let content = Content::Alias(
|
|
symbol,
|
|
AliasVariables::insert_into_subs(subs, [range_var], [], []),
|
|
range_var,
|
|
AliasKind::Opaque,
|
|
);
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
|
|
fn instantiate_builtin_aliases_real_var(
|
|
&mut self,
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
symbol: Symbol,
|
|
alias_variables: AliasVariables,
|
|
) -> Option<(Variable, AliasKind)> {
|
|
match symbol {
|
|
Symbol::RESULT_RESULT => {
|
|
let var = Self::instantiate_result_result(subs, rank, pools, alias_variables);
|
|
|
|
Some((var, AliasKind::Structural))
|
|
}
|
|
Symbol::NUM_NUM | Symbol::NUM_INTEGER | Symbol::NUM_FLOATINGPOINT => {
|
|
// Num range := range | Integer range := range | FloatingPoint range := range
|
|
let range_var = subs.variables[alias_variables.variables_start as usize];
|
|
Some((range_var, AliasKind::Opaque))
|
|
}
|
|
Symbol::NUM_INT => {
|
|
// Int range : Num (Integer range)
|
|
//
|
|
// build `Integer range := range`
|
|
let integer_content_var = Self::build_num_opaque(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
Symbol::NUM_INTEGER,
|
|
subs.variables[alias_variables.variables_start as usize],
|
|
);
|
|
|
|
// build `Num (Integer range) := Integer range`
|
|
let num_content_var =
|
|
Self::build_num_opaque(subs, rank, pools, Symbol::NUM_NUM, integer_content_var);
|
|
|
|
Some((num_content_var, AliasKind::Structural))
|
|
}
|
|
Symbol::NUM_FRAC => {
|
|
// Frac range : Num (FloatingPoint range)
|
|
//
|
|
// build `FloatingPoint range := range`
|
|
let fpoint_content_var = Self::build_num_opaque(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
Symbol::NUM_FLOATINGPOINT,
|
|
subs.variables[alias_variables.variables_start as usize],
|
|
);
|
|
|
|
// build `Num (FloatingPoint range) := FloatingPoint range`
|
|
let num_content_var =
|
|
Self::build_num_opaque(subs, rank, pools, Symbol::NUM_NUM, fpoint_content_var);
|
|
|
|
Some((num_content_var, AliasKind::Structural))
|
|
}
|
|
Symbol::NUM_SIGNED8 => Some((Variable::SIGNED8, AliasKind::Opaque)),
|
|
Symbol::NUM_SIGNED16 => Some((Variable::SIGNED16, AliasKind::Opaque)),
|
|
Symbol::NUM_SIGNED32 => Some((Variable::SIGNED32, AliasKind::Opaque)),
|
|
Symbol::NUM_SIGNED64 => Some((Variable::SIGNED64, AliasKind::Opaque)),
|
|
Symbol::NUM_SIGNED128 => Some((Variable::SIGNED128, AliasKind::Opaque)),
|
|
Symbol::NUM_UNSIGNED8 => Some((Variable::UNSIGNED8, AliasKind::Opaque)),
|
|
Symbol::NUM_UNSIGNED16 => Some((Variable::UNSIGNED16, AliasKind::Opaque)),
|
|
Symbol::NUM_UNSIGNED32 => Some((Variable::UNSIGNED32, AliasKind::Opaque)),
|
|
Symbol::NUM_UNSIGNED64 => Some((Variable::UNSIGNED64, AliasKind::Opaque)),
|
|
Symbol::NUM_UNSIGNED128 => Some((Variable::UNSIGNED128, AliasKind::Opaque)),
|
|
Symbol::NUM_BINARY32 => Some((Variable::BINARY32, AliasKind::Opaque)),
|
|
Symbol::NUM_BINARY64 => Some((Variable::BINARY64, AliasKind::Opaque)),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
fn instantiate_real_var(
|
|
&mut self,
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
problems: &mut Vec<TypeError>,
|
|
abilities_store: &AbilitiesStore,
|
|
obligation_cache: &mut ObligationCache,
|
|
arena: &bumpalo::Bump,
|
|
types: &mut Types,
|
|
symbol: Symbol,
|
|
alias_variables: AliasVariables,
|
|
) -> (Variable, AliasKind) {
|
|
// hardcoded instantiations for builtin aliases
|
|
if let Some((var, kind)) = Self::instantiate_builtin_aliases_real_var(
|
|
self,
|
|
subs,
|
|
rank,
|
|
pools,
|
|
symbol,
|
|
alias_variables,
|
|
) {
|
|
return (var, kind);
|
|
}
|
|
|
|
let (typ, delayed_variables, kind) =
|
|
match self.aliases.iter().find(|(s, _, _, _)| *s == symbol) {
|
|
None => internal_error!(
|
|
"Alias {:?} not registered in delayed aliases! {:?}",
|
|
symbol,
|
|
&self.aliases
|
|
),
|
|
Some(&(_, typ, delayed_variables, kind)) => (typ, delayed_variables, kind),
|
|
};
|
|
|
|
let mut substitutions: MutMap<_, _> = Default::default();
|
|
|
|
let old_type_variables = delayed_variables.type_variables(&mut self.variables);
|
|
let new_type_variables = &subs.variables[alias_variables.type_variables().indices()];
|
|
|
|
for (old, new) in old_type_variables.iter_mut().zip(new_type_variables) {
|
|
// if constraint gen duplicated a type these variables could be the same
|
|
// (happens very often in practice)
|
|
if old.var != *new {
|
|
substitutions.insert(old.var, *new);
|
|
}
|
|
}
|
|
|
|
for OptAbleVar {
|
|
var: rec_var,
|
|
opt_abilities,
|
|
} in delayed_variables
|
|
.recursion_variables(&mut self.variables)
|
|
.iter_mut()
|
|
{
|
|
debug_assert!(opt_abilities.is_none());
|
|
let new_var = subs.fresh_unnamed_flex_var();
|
|
substitutions.insert(*rec_var, new_var);
|
|
}
|
|
|
|
let old_lambda_set_variables = delayed_variables.lambda_set_variables(&mut self.variables);
|
|
let new_lambda_set_variables =
|
|
&subs.variables[alias_variables.lambda_set_variables().indices()];
|
|
|
|
for (old, new) in old_lambda_set_variables
|
|
.iter_mut()
|
|
.zip(new_lambda_set_variables)
|
|
{
|
|
debug_assert!(old.opt_abilities.is_none());
|
|
if old.var != *new {
|
|
substitutions.insert(old.var, *new);
|
|
}
|
|
}
|
|
|
|
let old_infer_ext_vars =
|
|
delayed_variables.infer_ext_in_output_variables(&mut self.variables);
|
|
let new_infer_ext_vars =
|
|
&subs.variables[alias_variables.infer_ext_in_output_variables().indices()];
|
|
|
|
for (old, new) in old_infer_ext_vars.iter_mut().zip(new_infer_ext_vars) {
|
|
debug_assert!(old.opt_abilities.is_none());
|
|
if old.var != *new {
|
|
substitutions.insert(old.var, *new);
|
|
}
|
|
}
|
|
|
|
let typ = if !substitutions.is_empty() {
|
|
types.clone_with_variable_substitutions(typ, &substitutions)
|
|
} else {
|
|
typ
|
|
};
|
|
|
|
let alias_variable = type_to_variable(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
arena,
|
|
self,
|
|
types,
|
|
typ,
|
|
false,
|
|
);
|
|
(alias_variable, kind)
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, Default)]
|
|
pub struct Env {
|
|
symbols: Vec<Symbol>,
|
|
variables: Vec<Variable>,
|
|
}
|
|
|
|
impl Env {
|
|
pub fn vars_by_symbol(&self) -> impl Iterator<Item = (Symbol, Variable)> + '_ {
|
|
let it1 = self.symbols.iter().copied();
|
|
let it2 = self.variables.iter().copied();
|
|
|
|
it1.zip(it2)
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn get_var_by_symbol(&self, symbol: &Symbol) -> Option<Variable> {
|
|
self.symbols
|
|
.iter()
|
|
.position(|s| s == symbol)
|
|
.map(|index| self.variables[index])
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn insert_symbol_var_if_vacant(&mut self, symbol: Symbol, var: Variable) {
|
|
match self.symbols.iter().position(|s| *s == symbol) {
|
|
None => {
|
|
// symbol is not in vars_by_symbol yet; insert it
|
|
self.symbols.push(symbol);
|
|
self.variables.push(var);
|
|
}
|
|
Some(_) => {
|
|
// do nothing
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const DEFAULT_POOLS: usize = 8;
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct Pools(Vec<Vec<Variable>>);
|
|
|
|
impl Default for Pools {
|
|
fn default() -> Self {
|
|
Pools::new(DEFAULT_POOLS)
|
|
}
|
|
}
|
|
|
|
impl Pools {
|
|
pub fn new(num_pools: usize) -> Self {
|
|
Pools(vec![Vec::new(); num_pools])
|
|
}
|
|
|
|
pub fn len(&self) -> usize {
|
|
self.0.len()
|
|
}
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
self.0.is_empty()
|
|
}
|
|
|
|
pub fn get_mut(&mut self, rank: Rank) -> &mut Vec<Variable> {
|
|
match self.0.get_mut(rank.into_usize()) {
|
|
Some(reference) => reference,
|
|
None => panic!("Compiler bug: could not find pool at rank {}", rank),
|
|
}
|
|
}
|
|
|
|
pub fn get(&self, rank: Rank) -> &Vec<Variable> {
|
|
match self.0.get(rank.into_usize()) {
|
|
Some(reference) => reference,
|
|
None => panic!("Compiler bug: could not find pool at rank {}", rank),
|
|
}
|
|
}
|
|
|
|
pub fn iter(&self) -> std::slice::Iter<'_, Vec<Variable>> {
|
|
self.0.iter()
|
|
}
|
|
|
|
pub fn split_last(mut self) -> (Vec<Variable>, Vec<Vec<Variable>>) {
|
|
let last = self
|
|
.0
|
|
.pop()
|
|
.unwrap_or_else(|| panic!("Attempted to split_last() on non-empty Pools"));
|
|
|
|
(last, self.0)
|
|
}
|
|
|
|
pub fn extend_to(&mut self, n: usize) {
|
|
for _ in self.len()..n {
|
|
self.0.push(Vec::new());
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
struct State {
|
|
env: Env,
|
|
mark: Mark,
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)] // TODO: put params in a context/env var
|
|
pub fn run(
|
|
home: ModuleId,
|
|
types: Types,
|
|
constraints: &Constraints,
|
|
problems: &mut Vec<TypeError>,
|
|
mut subs: Subs,
|
|
aliases: &mut Aliases,
|
|
constraint: &Constraint,
|
|
pending_derives: PendingDerives,
|
|
abilities_store: &mut AbilitiesStore,
|
|
exposed_by_module: &ExposedByModule,
|
|
derived_module: SharedDerivedModule,
|
|
) -> (Solved<Subs>, Env) {
|
|
let env = run_in_place(
|
|
home,
|
|
types,
|
|
constraints,
|
|
problems,
|
|
&mut subs,
|
|
aliases,
|
|
constraint,
|
|
pending_derives,
|
|
abilities_store,
|
|
exposed_by_module,
|
|
derived_module,
|
|
);
|
|
|
|
(Solved(subs), env)
|
|
}
|
|
|
|
/// Modify an existing subs in-place instead
|
|
#[allow(clippy::too_many_arguments)] // TODO: put params in a context/env var
|
|
fn run_in_place(
|
|
_home: ModuleId, // TODO: remove me?
|
|
mut types: Types,
|
|
constraints: &Constraints,
|
|
problems: &mut Vec<TypeError>,
|
|
subs: &mut Subs,
|
|
aliases: &mut Aliases,
|
|
constraint: &Constraint,
|
|
pending_derives: PendingDerives,
|
|
abilities_store: &mut AbilitiesStore,
|
|
exposed_by_module: &ExposedByModule,
|
|
derived_module: SharedDerivedModule,
|
|
) -> Env {
|
|
let mut pools = Pools::default();
|
|
|
|
let state = State {
|
|
env: Env::default(),
|
|
mark: Mark::NONE.next(),
|
|
};
|
|
let rank = Rank::toplevel();
|
|
let arena = Bump::new();
|
|
|
|
let mut obligation_cache = ObligationCache::default();
|
|
let mut awaiting_specializations = AwaitingSpecializations::default();
|
|
|
|
let pending_derives = PendingDerivesTable::new(
|
|
subs,
|
|
&mut types,
|
|
aliases,
|
|
pending_derives,
|
|
problems,
|
|
abilities_store,
|
|
&mut obligation_cache,
|
|
);
|
|
let CheckedDerives {
|
|
legal_derives: _,
|
|
problems: derives_problems,
|
|
} = obligation_cache.check_derives(subs, abilities_store, pending_derives);
|
|
problems.extend(derives_problems);
|
|
|
|
let derived_env = DerivedEnv {
|
|
derived_module: &derived_module,
|
|
exposed_types: exposed_by_module,
|
|
};
|
|
|
|
let state = solve(
|
|
&arena,
|
|
types,
|
|
constraints,
|
|
state,
|
|
rank,
|
|
&mut pools,
|
|
problems,
|
|
aliases,
|
|
subs,
|
|
constraint,
|
|
abilities_store,
|
|
&mut obligation_cache,
|
|
&mut awaiting_specializations,
|
|
&derived_env,
|
|
);
|
|
|
|
state.env
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum Work<'a> {
|
|
Constraint {
|
|
env: &'a Env,
|
|
rank: Rank,
|
|
constraint: &'a Constraint,
|
|
},
|
|
CheckForInfiniteTypes(LocalDefVarsVec<(Symbol, Loc<Variable>)>),
|
|
/// The ret_con part of a let constraint that does NOT introduces rigid and/or flex variables
|
|
LetConNoVariables {
|
|
env: &'a Env,
|
|
rank: Rank,
|
|
let_con: &'a LetConstraint,
|
|
|
|
/// The variables used to store imported types in the Subs.
|
|
/// The `Contents` are copied from the source module, but to
|
|
/// mimic `type_to_var`, we must add these variables to `Pools`
|
|
/// at the correct rank
|
|
pool_variables: &'a [Variable],
|
|
},
|
|
/// The ret_con part of a let constraint that introduces rigid and/or flex variables
|
|
///
|
|
/// These introduced variables must be generalized, hence this variant
|
|
/// is more complex than `LetConNoVariables`.
|
|
LetConIntroducesVariables {
|
|
env: &'a Env,
|
|
rank: Rank,
|
|
let_con: &'a LetConstraint,
|
|
|
|
/// The variables used to store imported types in the Subs.
|
|
/// The `Contents` are copied from the source module, but to
|
|
/// mimic `type_to_var`, we must add these variables to `Pools`
|
|
/// at the correct rank
|
|
pool_variables: &'a [Variable],
|
|
},
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn solve(
|
|
arena: &Bump,
|
|
mut can_types: Types,
|
|
constraints: &Constraints,
|
|
mut state: State,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
problems: &mut Vec<TypeError>,
|
|
aliases: &mut Aliases,
|
|
subs: &mut Subs,
|
|
constraint: &Constraint,
|
|
abilities_store: &mut AbilitiesStore,
|
|
obligation_cache: &mut ObligationCache,
|
|
awaiting_specializations: &mut AwaitingSpecializations,
|
|
derived_env: &DerivedEnv,
|
|
) -> State {
|
|
let initial = Work::Constraint {
|
|
env: &Env::default(),
|
|
rank,
|
|
constraint,
|
|
};
|
|
|
|
let mut stack = vec![initial];
|
|
|
|
while let Some(work_item) = stack.pop() {
|
|
let (env, rank, constraint) = match work_item {
|
|
Work::Constraint {
|
|
env,
|
|
rank,
|
|
constraint,
|
|
} => {
|
|
// the default case; actually solve this constraint
|
|
(env, rank, constraint)
|
|
}
|
|
Work::CheckForInfiniteTypes(def_vars) => {
|
|
// after a LetCon, we must check if any of the variables that we introduced
|
|
// loop back to themselves after solving the ret_constraint
|
|
for (symbol, loc_var) in def_vars.iter() {
|
|
check_for_infinite_type(subs, problems, *symbol, *loc_var);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
Work::LetConNoVariables {
|
|
env,
|
|
rank,
|
|
let_con,
|
|
pool_variables,
|
|
} => {
|
|
// NOTE be extremely careful with shadowing here
|
|
let offset = let_con.defs_and_ret_constraint.index();
|
|
let ret_constraint = &constraints.constraints[offset + 1];
|
|
|
|
// Add a variable for each def to new_vars_by_env.
|
|
let local_def_vars = LocalDefVarsVec::from_def_types(
|
|
constraints,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
&mut can_types,
|
|
aliases,
|
|
subs,
|
|
let_con.def_types,
|
|
);
|
|
|
|
pools.get_mut(rank).extend(pool_variables);
|
|
|
|
let mut new_env = env.clone();
|
|
for (symbol, loc_var) in local_def_vars.iter() {
|
|
check_ability_specialization(
|
|
arena,
|
|
subs,
|
|
derived_env,
|
|
pools,
|
|
rank,
|
|
abilities_store,
|
|
obligation_cache,
|
|
awaiting_specializations,
|
|
problems,
|
|
*symbol,
|
|
*loc_var,
|
|
);
|
|
|
|
new_env.insert_symbol_var_if_vacant(*symbol, loc_var.value);
|
|
}
|
|
|
|
stack.push(Work::Constraint {
|
|
env: arena.alloc(new_env),
|
|
rank,
|
|
constraint: ret_constraint,
|
|
});
|
|
// Check for infinite types first
|
|
stack.push(Work::CheckForInfiniteTypes(local_def_vars));
|
|
|
|
continue;
|
|
}
|
|
Work::LetConIntroducesVariables {
|
|
env,
|
|
rank,
|
|
let_con,
|
|
pool_variables,
|
|
} => {
|
|
// NOTE be extremely careful with shadowing here
|
|
let offset = let_con.defs_and_ret_constraint.index();
|
|
let ret_constraint = &constraints.constraints[offset + 1];
|
|
|
|
let mark = state.mark;
|
|
let saved_env = state.env;
|
|
|
|
let young_mark = mark;
|
|
let visit_mark = young_mark.next();
|
|
let final_mark = visit_mark.next();
|
|
|
|
let intro_rank = if let_con.generalizable.0 {
|
|
rank.next()
|
|
} else {
|
|
rank
|
|
};
|
|
|
|
// Add a variable for each def to local_def_vars.
|
|
let local_def_vars = LocalDefVarsVec::from_def_types(
|
|
constraints,
|
|
intro_rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
&mut can_types,
|
|
aliases,
|
|
subs,
|
|
let_con.def_types,
|
|
);
|
|
|
|
// If the let-binding can be generalized, introduce all variables at the next rank;
|
|
// those that persist at the next rank after rank-adjustment will be generalized.
|
|
//
|
|
// Otherwise, introduce all variables at the current rank; since none of them will
|
|
// end up at the next rank, none will be generalized.
|
|
if let_con.generalizable.0 {
|
|
pools.get_mut(rank.next()).extend(pool_variables);
|
|
} else {
|
|
pools.get_mut(rank).extend(pool_variables);
|
|
}
|
|
|
|
debug_assert_eq!(
|
|
// Check that no variable ended up in a higher rank than the next rank.. that
|
|
// would mean we generalized one level more than we need to!
|
|
{
|
|
let offenders = pools
|
|
.get(rank.next())
|
|
.iter()
|
|
.filter(|var| {
|
|
subs.get_rank(**var).into_usize() > rank.next().into_usize()
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
let result = offenders.len();
|
|
|
|
if result > 0 {
|
|
eprintln!("subs = {:?}", &subs);
|
|
eprintln!("offenders = {:?}", &offenders);
|
|
eprintln!("let_con.def_types = {:?}", &let_con.def_types);
|
|
}
|
|
|
|
result
|
|
},
|
|
0
|
|
);
|
|
|
|
// If the let-binding is eligible for generalization, it was solved at the
|
|
// next rank. The variables introduced in the let-binding that are still at
|
|
// that rank (intuitively, they did not "escape" into the lower level
|
|
// before or after the let-binding) now get to be generalized.
|
|
generalize(subs, young_mark, visit_mark, rank.next(), pools);
|
|
debug_assert!(pools.get(rank.next()).is_empty(), "variables left over in let-binding scope, but they should all be in a lower scope or generalized now");
|
|
|
|
// check that things went well
|
|
dbg_do!(ROC_VERIFY_RIGID_LET_GENERALIZED, {
|
|
let rigid_vars = &constraints.variables[let_con.rigid_vars.indices()];
|
|
|
|
// NOTE the `subs.redundant` check does not come from elm.
|
|
// It's unclear whether this is a bug with our implementation
|
|
// (something is redundant that shouldn't be)
|
|
// or that it just never came up in elm.
|
|
let mut it = rigid_vars
|
|
.iter()
|
|
.filter(|&var| {
|
|
!subs.redundant(*var) && subs.get_rank(*var) != Rank::GENERALIZED
|
|
})
|
|
.peekable();
|
|
|
|
if it.peek().is_some() {
|
|
let failing: Vec<_> = it.collect();
|
|
println!("Rigids {:?}", &rigid_vars);
|
|
println!("Failing {:?}", failing);
|
|
debug_assert!(false);
|
|
}
|
|
});
|
|
|
|
let mut new_env = env.clone();
|
|
for (symbol, loc_var) in local_def_vars.iter() {
|
|
check_ability_specialization(
|
|
arena,
|
|
subs,
|
|
derived_env,
|
|
pools,
|
|
rank,
|
|
abilities_store,
|
|
obligation_cache,
|
|
awaiting_specializations,
|
|
problems,
|
|
*symbol,
|
|
*loc_var,
|
|
);
|
|
|
|
new_env.insert_symbol_var_if_vacant(*symbol, loc_var.value);
|
|
}
|
|
|
|
// Note that this vars_by_symbol is the one returned by the
|
|
// previous call to solve()
|
|
let state_for_ret_con = State {
|
|
env: saved_env,
|
|
mark: final_mark,
|
|
};
|
|
|
|
// Now solve the body, using the new vars_by_symbol which includes
|
|
// the assignments' name-to-variable mappings.
|
|
stack.push(Work::Constraint {
|
|
env: arena.alloc(new_env),
|
|
rank,
|
|
constraint: ret_constraint,
|
|
});
|
|
// Check for infinite types first
|
|
stack.push(Work::CheckForInfiniteTypes(local_def_vars));
|
|
|
|
state = state_for_ret_con;
|
|
|
|
continue;
|
|
}
|
|
};
|
|
|
|
state = match constraint {
|
|
True => state,
|
|
SaveTheEnvironment => {
|
|
let mut copy = state;
|
|
|
|
copy.env = env.clone();
|
|
|
|
copy
|
|
}
|
|
Eq(roc_can::constraint::Eq(type_index, expectation_index, category_index, region)) => {
|
|
let category = &constraints.categories[category_index.index()];
|
|
|
|
let actual = either_type_index_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
&mut can_types,
|
|
aliases,
|
|
*type_index,
|
|
);
|
|
|
|
let expectation = &constraints.expectations[expectation_index.index()];
|
|
let expected = either_type_index_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
&mut can_types,
|
|
aliases,
|
|
*expectation.get_type_ref(),
|
|
);
|
|
|
|
match unify(
|
|
&mut UEnv::new(subs),
|
|
actual,
|
|
expected,
|
|
Mode::EQ,
|
|
Polarity::OF_VALUE,
|
|
) {
|
|
Success {
|
|
vars,
|
|
must_implement_ability,
|
|
lambda_sets_to_specialize,
|
|
extra_metadata: _,
|
|
} => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
if !must_implement_ability.is_empty() {
|
|
let new_problems = obligation_cache.check_obligations(
|
|
subs,
|
|
abilities_store,
|
|
must_implement_ability,
|
|
AbilityImplError::BadExpr(*region, category.clone(), actual),
|
|
);
|
|
problems.extend(new_problems);
|
|
}
|
|
compact_lambdas_and_check_obligations(
|
|
arena,
|
|
pools,
|
|
problems,
|
|
subs,
|
|
abilities_store,
|
|
obligation_cache,
|
|
awaiting_specializations,
|
|
derived_env,
|
|
lambda_sets_to_specialize,
|
|
);
|
|
|
|
state
|
|
}
|
|
Failure(vars, actual_type, expected_type, _bad_impls) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::BadExpr(
|
|
*region,
|
|
category.clone(),
|
|
actual_type,
|
|
expectation.replace_ref(expected_type),
|
|
);
|
|
|
|
problems.push(problem);
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
Store(source_index, target, _filename, _linenr) => {
|
|
// a special version of Eq that is used to store types in the AST.
|
|
// IT DOES NOT REPORT ERRORS!
|
|
let actual = either_type_index_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
&mut vec![], // don't report any extra errors
|
|
abilities_store,
|
|
obligation_cache,
|
|
&mut can_types,
|
|
aliases,
|
|
*source_index,
|
|
);
|
|
|
|
let actual_desc = subs.get(actual);
|
|
subs.union(*target, actual, actual_desc);
|
|
state
|
|
}
|
|
Lookup(symbol, expectation_index, region) => {
|
|
match env.get_var_by_symbol(symbol) {
|
|
Some(var) => {
|
|
// Deep copy the vars associated with this symbol before unifying them.
|
|
// Otherwise, suppose we have this:
|
|
//
|
|
// identity = \a -> a
|
|
//
|
|
// x = identity 5
|
|
//
|
|
// When we call (identity 5), it's important that we not unify
|
|
// on identity's original vars. If we do, the type of `identity` will be
|
|
// mutated to be `Int -> Int` instead of `a -> `, which would be incorrect;
|
|
// the type of `identity` is more general than that!
|
|
//
|
|
// Instead, we want to unify on a *copy* of its vars. If the copy unifies
|
|
// successfully (in this case, to `Int -> Int`), we can use that to
|
|
// infer the type of this lookup (in this case, `Int`) without ever
|
|
// having mutated the original.
|
|
//
|
|
// If this Lookup is targeting a value in another module,
|
|
// then we copy from that module's Subs into our own. If the value
|
|
// is being looked up in this module, then we use our Subs as both
|
|
// the source and destination.
|
|
let actual = deep_copy_var_in(subs, rank, pools, var, arena);
|
|
let expectation = &constraints.expectations[expectation_index.index()];
|
|
|
|
let expected = either_type_index_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
&mut can_types,
|
|
aliases,
|
|
*expectation.get_type_ref(),
|
|
);
|
|
|
|
match unify(
|
|
&mut UEnv::new(subs),
|
|
actual,
|
|
expected,
|
|
Mode::EQ,
|
|
Polarity::OF_VALUE,
|
|
) {
|
|
Success {
|
|
vars,
|
|
must_implement_ability,
|
|
lambda_sets_to_specialize,
|
|
extra_metadata: _,
|
|
} => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
if !must_implement_ability.is_empty() {
|
|
let new_problems = obligation_cache.check_obligations(
|
|
subs,
|
|
abilities_store,
|
|
must_implement_ability,
|
|
AbilityImplError::BadExpr(
|
|
*region,
|
|
Category::Lookup(*symbol),
|
|
actual,
|
|
),
|
|
);
|
|
problems.extend(new_problems);
|
|
}
|
|
compact_lambdas_and_check_obligations(
|
|
arena,
|
|
pools,
|
|
problems,
|
|
subs,
|
|
abilities_store,
|
|
obligation_cache,
|
|
awaiting_specializations,
|
|
derived_env,
|
|
lambda_sets_to_specialize,
|
|
);
|
|
|
|
state
|
|
}
|
|
|
|
Failure(vars, actual_type, expected_type, _bad_impls) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::BadExpr(
|
|
*region,
|
|
Category::Lookup(*symbol),
|
|
actual_type,
|
|
expectation.replace_ref(expected_type),
|
|
);
|
|
|
|
problems.push(problem);
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
problems.push(TypeError::UnexposedLookup(*symbol));
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
And(slice) => {
|
|
let it = constraints.constraints[slice.indices()].iter().rev();
|
|
for sub_constraint in it {
|
|
stack.push(Work::Constraint {
|
|
env,
|
|
rank,
|
|
constraint: sub_constraint,
|
|
})
|
|
}
|
|
|
|
state
|
|
}
|
|
Pattern(type_index, expectation_index, category_index, region)
|
|
| PatternPresence(type_index, expectation_index, category_index, region) => {
|
|
let category = &constraints.pattern_categories[category_index.index()];
|
|
|
|
let actual = either_type_index_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
&mut can_types,
|
|
aliases,
|
|
*type_index,
|
|
);
|
|
|
|
let expectation = &constraints.pattern_expectations[expectation_index.index()];
|
|
let expected = either_type_index_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
&mut can_types,
|
|
aliases,
|
|
*expectation.get_type_ref(),
|
|
);
|
|
|
|
let mode = match constraint {
|
|
PatternPresence(..) => Mode::PRESENT,
|
|
_ => Mode::EQ,
|
|
};
|
|
|
|
match unify(
|
|
&mut UEnv::new(subs),
|
|
actual,
|
|
expected,
|
|
mode,
|
|
Polarity::OF_PATTERN,
|
|
) {
|
|
Success {
|
|
vars,
|
|
must_implement_ability,
|
|
lambda_sets_to_specialize,
|
|
extra_metadata: _,
|
|
} => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
if !must_implement_ability.is_empty() {
|
|
let new_problems = obligation_cache.check_obligations(
|
|
subs,
|
|
abilities_store,
|
|
must_implement_ability,
|
|
AbilityImplError::BadPattern(*region, category.clone(), actual),
|
|
);
|
|
problems.extend(new_problems);
|
|
}
|
|
compact_lambdas_and_check_obligations(
|
|
arena,
|
|
pools,
|
|
problems,
|
|
subs,
|
|
abilities_store,
|
|
obligation_cache,
|
|
awaiting_specializations,
|
|
derived_env,
|
|
lambda_sets_to_specialize,
|
|
);
|
|
|
|
state
|
|
}
|
|
Failure(vars, actual_type, expected_type, _bad_impls) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::BadPattern(
|
|
*region,
|
|
category.clone(),
|
|
actual_type,
|
|
expectation.replace_ref(expected_type),
|
|
);
|
|
|
|
problems.push(problem);
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
Let(index, pool_slice) => {
|
|
let let_con = &constraints.let_constraints[index.index()];
|
|
|
|
let offset = let_con.defs_and_ret_constraint.index();
|
|
let defs_constraint = &constraints.constraints[offset];
|
|
let ret_constraint = &constraints.constraints[offset + 1];
|
|
|
|
let flex_vars = &constraints.variables[let_con.flex_vars.indices()];
|
|
let rigid_vars = &constraints.variables[let_con.rigid_vars.indices()];
|
|
|
|
let pool_variables = &constraints.variables[pool_slice.indices()];
|
|
|
|
if matches!(&ret_constraint, True) && let_con.rigid_vars.is_empty() {
|
|
debug_assert!(pool_variables.is_empty());
|
|
|
|
introduce(subs, rank, pools, flex_vars);
|
|
|
|
// If the return expression is guaranteed to solve,
|
|
// solve the assignments themselves and move on.
|
|
stack.push(Work::Constraint {
|
|
env,
|
|
rank,
|
|
constraint: defs_constraint,
|
|
});
|
|
|
|
state
|
|
} else if let_con.rigid_vars.is_empty() && let_con.flex_vars.is_empty() {
|
|
// items are popped from the stack in reverse order. That means that we'll
|
|
// first solve then defs_constraint, and then (eventually) the ret_constraint.
|
|
//
|
|
// Note that the LetConSimple gets the current env and rank,
|
|
// and not the env/rank from after solving the defs_constraint
|
|
stack.push(Work::LetConNoVariables {
|
|
env,
|
|
rank,
|
|
let_con,
|
|
pool_variables,
|
|
});
|
|
stack.push(Work::Constraint {
|
|
env,
|
|
rank,
|
|
constraint: defs_constraint,
|
|
});
|
|
|
|
state
|
|
} else {
|
|
// If the let-binding is generalizable, work at the next rank (which will be
|
|
// the rank at which introduced variables will become generalized, if they end up
|
|
// staying there); otherwise, stay at the current level.
|
|
let binding_rank = if let_con.generalizable.0 {
|
|
rank.next()
|
|
} else {
|
|
rank
|
|
};
|
|
|
|
// determine the next pool
|
|
if binding_rank.into_usize() < pools.len() {
|
|
// Nothing to do, we already accounted for the next rank, no need to
|
|
// adjust the pools
|
|
} else {
|
|
// we should be off by one at this point
|
|
debug_assert_eq!(binding_rank.into_usize(), 1 + pools.len());
|
|
pools.extend_to(binding_rank.into_usize());
|
|
}
|
|
|
|
let pool: &mut Vec<Variable> = pools.get_mut(binding_rank);
|
|
|
|
// Introduce the variables of this binding, and extend the pool at our binding
|
|
// rank.
|
|
for &var in rigid_vars.iter().chain(flex_vars.iter()) {
|
|
subs.set_rank(var, binding_rank);
|
|
}
|
|
pool.reserve(rigid_vars.len() + flex_vars.len());
|
|
pool.extend(rigid_vars.iter());
|
|
pool.extend(flex_vars.iter());
|
|
|
|
// Now, run our binding constraint, generalize, then solve the rest of the
|
|
// program.
|
|
//
|
|
// Items are popped from the stack in reverse order. That means that we'll
|
|
// first solve the defs_constraint, and then (eventually) the ret_constraint.
|
|
//
|
|
// NB: LetCon gets the current scope's env and rank, not the env/rank from after solving the defs_constraint.
|
|
// That's because the defs constraints will be solved in next_rank if it is eligible for generalization.
|
|
// The LetCon will then generalize variables that are at a higher rank than the rank of the current scope.
|
|
stack.push(Work::LetConIntroducesVariables {
|
|
env,
|
|
rank,
|
|
let_con,
|
|
pool_variables,
|
|
});
|
|
stack.push(Work::Constraint {
|
|
env,
|
|
rank: binding_rank,
|
|
constraint: defs_constraint,
|
|
});
|
|
|
|
state
|
|
}
|
|
}
|
|
IsOpenType(type_index) => {
|
|
let actual = either_type_index_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
&mut can_types,
|
|
aliases,
|
|
*type_index,
|
|
);
|
|
|
|
open_tag_union(subs, actual);
|
|
|
|
state
|
|
}
|
|
IncludesTag(index) => {
|
|
let includes_tag = &constraints.includes_tags[index.index()];
|
|
|
|
let roc_can::constraint::IncludesTag {
|
|
type_index,
|
|
tag_name,
|
|
types,
|
|
pattern_category,
|
|
region,
|
|
} = includes_tag;
|
|
|
|
let pattern_category = &constraints.pattern_categories[pattern_category.index()];
|
|
|
|
let actual = either_type_index_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
&mut can_types,
|
|
aliases,
|
|
*type_index,
|
|
);
|
|
|
|
let payload_types = constraints.variables[types.indices()]
|
|
.iter()
|
|
.map(|v| Type::Variable(*v))
|
|
.collect();
|
|
|
|
let tag_ty = can_types.from_old_type(&Type::TagUnion(
|
|
vec![(tag_name.clone(), payload_types)],
|
|
TypeExtension::Closed,
|
|
));
|
|
let includes = type_to_var(
|
|
subs,
|
|
rank,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
pools,
|
|
&mut can_types,
|
|
aliases,
|
|
tag_ty,
|
|
);
|
|
|
|
match unify(
|
|
&mut UEnv::new(subs),
|
|
actual,
|
|
includes,
|
|
Mode::PRESENT,
|
|
Polarity::OF_PATTERN,
|
|
) {
|
|
Success {
|
|
vars,
|
|
must_implement_ability,
|
|
lambda_sets_to_specialize,
|
|
extra_metadata: _,
|
|
} => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
if !must_implement_ability.is_empty() {
|
|
let new_problems = obligation_cache.check_obligations(
|
|
subs,
|
|
abilities_store,
|
|
must_implement_ability,
|
|
AbilityImplError::BadPattern(
|
|
*region,
|
|
pattern_category.clone(),
|
|
actual,
|
|
),
|
|
);
|
|
problems.extend(new_problems);
|
|
}
|
|
compact_lambdas_and_check_obligations(
|
|
arena,
|
|
pools,
|
|
problems,
|
|
subs,
|
|
abilities_store,
|
|
obligation_cache,
|
|
awaiting_specializations,
|
|
derived_env,
|
|
lambda_sets_to_specialize,
|
|
);
|
|
|
|
state
|
|
}
|
|
Failure(vars, actual_type, expected_to_include_type, _bad_impls) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::BadPattern(
|
|
*region,
|
|
pattern_category.clone(),
|
|
expected_to_include_type,
|
|
PExpected::NoExpectation(actual_type),
|
|
);
|
|
problems.push(problem);
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
&Exhaustive(eq, sketched_rows, context, exhaustive_mark) => {
|
|
// A few cases:
|
|
// 1. Either condition or branch types already have a type error. In this case just
|
|
// propagate it.
|
|
// 2. Types are correct, but there are redundancies. In this case we want
|
|
// exhaustiveness checking to pull those out.
|
|
// 3. Condition and branch types are "almost equal", that is one or the other is
|
|
// only missing a few more tags. In this case we want to run
|
|
// exhaustiveness checking both ways, to see which one is missing tags.
|
|
// 4. Condition and branch types aren't "almost equal", this is just a normal type
|
|
// error.
|
|
|
|
let (real_var, real_region, branches_var, category_and_expected) = match eq {
|
|
Ok(eq) => {
|
|
let roc_can::constraint::Eq(real_var, expected, category, real_region) =
|
|
constraints.eq[eq.index()];
|
|
let expected = &constraints.expectations[expected.index()];
|
|
|
|
(
|
|
real_var,
|
|
real_region,
|
|
*expected.get_type_ref(),
|
|
Ok((category, expected)),
|
|
)
|
|
}
|
|
Err(peq) => {
|
|
let roc_can::constraint::PatternEq(
|
|
real_var,
|
|
expected,
|
|
category,
|
|
real_region,
|
|
) = constraints.pattern_eq[peq.index()];
|
|
let expected = &constraints.pattern_expectations[expected.index()];
|
|
|
|
(
|
|
real_var,
|
|
real_region,
|
|
*expected.get_type_ref(),
|
|
Err((category, expected)),
|
|
)
|
|
}
|
|
};
|
|
|
|
let real_var = either_type_index_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
&mut can_types,
|
|
aliases,
|
|
real_var,
|
|
);
|
|
|
|
let branches_var = either_type_index_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
&mut can_types,
|
|
aliases,
|
|
branches_var,
|
|
);
|
|
|
|
let cond_source_is_likely_positive_value = category_and_expected.is_ok();
|
|
let cond_polarity = if cond_source_is_likely_positive_value {
|
|
Polarity::OF_VALUE
|
|
} else {
|
|
Polarity::OF_PATTERN
|
|
};
|
|
|
|
let real_content = subs.get_content_without_compacting(real_var);
|
|
let branches_content = subs.get_content_without_compacting(branches_var);
|
|
let already_have_error = matches!(
|
|
(real_content, branches_content),
|
|
(Content::Error, _) | (_, Content::Error)
|
|
);
|
|
|
|
let snapshot = subs.snapshot();
|
|
let unify_cond_and_patterns_outcome = unify(
|
|
&mut UEnv::new(subs),
|
|
branches_var,
|
|
real_var,
|
|
Mode::EQ,
|
|
cond_polarity,
|
|
);
|
|
|
|
let should_check_exhaustiveness;
|
|
let has_unification_error =
|
|
!matches!(unify_cond_and_patterns_outcome, Success { .. });
|
|
match unify_cond_and_patterns_outcome {
|
|
Success {
|
|
vars,
|
|
must_implement_ability,
|
|
lambda_sets_to_specialize,
|
|
extra_metadata: _,
|
|
} => {
|
|
subs.commit_snapshot(snapshot);
|
|
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
problems.extend(obligation_cache.check_obligations(
|
|
subs,
|
|
abilities_store,
|
|
must_implement_ability,
|
|
AbilityImplError::DoesNotImplement,
|
|
));
|
|
compact_lambdas_and_check_obligations(
|
|
arena,
|
|
pools,
|
|
problems,
|
|
subs,
|
|
abilities_store,
|
|
obligation_cache,
|
|
awaiting_specializations,
|
|
derived_env,
|
|
lambda_sets_to_specialize,
|
|
);
|
|
|
|
// Case 1: unify error types, but don't check exhaustiveness.
|
|
// Case 2: run exhaustiveness to check for redundant branches.
|
|
should_check_exhaustiveness = !already_have_error;
|
|
}
|
|
Failure(..) => {
|
|
// Rollback and check for almost-equality.
|
|
subs.rollback_to(snapshot);
|
|
|
|
let almost_eq_snapshot = subs.snapshot();
|
|
// TODO: turn this on for bidirectional exhaustiveness checking
|
|
// open_tag_union(subs, real_var);
|
|
open_tag_union(subs, branches_var);
|
|
let almost_eq = matches!(
|
|
unify(
|
|
&mut UEnv::new(subs),
|
|
real_var,
|
|
branches_var,
|
|
Mode::EQ,
|
|
cond_polarity,
|
|
),
|
|
Success { .. }
|
|
);
|
|
|
|
subs.rollback_to(almost_eq_snapshot);
|
|
|
|
if almost_eq {
|
|
// Case 3: almost equal, check exhaustiveness.
|
|
should_check_exhaustiveness = true;
|
|
} else {
|
|
// Case 4: incompatible types, report type error.
|
|
// Re-run first failed unification to get the type diff.
|
|
match unify(
|
|
&mut UEnv::new(subs),
|
|
real_var,
|
|
branches_var,
|
|
Mode::EQ,
|
|
cond_polarity,
|
|
) {
|
|
Failure(vars, actual_type, expected_type, _bad_impls) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
// Figure out the problem - it might be pattern or value
|
|
// related.
|
|
let problem = match category_and_expected {
|
|
Ok((category, expected)) => {
|
|
let real_category =
|
|
constraints.categories[category.index()].clone();
|
|
TypeError::BadExpr(
|
|
real_region,
|
|
real_category,
|
|
actual_type,
|
|
expected.replace_ref(expected_type),
|
|
)
|
|
}
|
|
|
|
Err((category, expected)) => {
|
|
let real_category = constraints.pattern_categories
|
|
[category.index()]
|
|
.clone();
|
|
TypeError::BadPattern(
|
|
real_region,
|
|
real_category,
|
|
expected_type,
|
|
expected.replace_ref(actual_type),
|
|
)
|
|
}
|
|
};
|
|
|
|
problems.push(problem);
|
|
should_check_exhaustiveness = false;
|
|
}
|
|
_ => internal_error!("Must be failure"),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let sketched_rows = constraints.sketched_rows[sketched_rows.index()].clone();
|
|
|
|
if should_check_exhaustiveness {
|
|
use roc_can::exhaustive::{check, ExhaustiveSummary};
|
|
|
|
// If the condition type likely comes from an positive-position value (e.g. a
|
|
// literal or a return type), rather than an input position, we employ the
|
|
// heuristic that the positive-position value would only need to be open if the
|
|
// branches of the `when` constrained them as open. To avoid suggesting
|
|
// catch-all branches, now mark the condition type as closed, so that we only
|
|
// show the variants that explicitly not matched.
|
|
//
|
|
// We avoid this heuristic if the condition type likely comes from a negative
|
|
// position, e.g. a function parameter, since in that case if the condition
|
|
// type is open, we definitely want to show the catch-all branch as necessary.
|
|
//
|
|
// For example:
|
|
//
|
|
// x : [A, B, C]
|
|
//
|
|
// when x is
|
|
// A -> ..
|
|
// B -> ..
|
|
//
|
|
// This is checked as "almost equal" and hence exhaustiveness-checked with
|
|
// [A, B] compared to [A, B, C]*. However, we really want to compare against
|
|
// [A, B, C] (notice the closed union), so we optimistically close the
|
|
// condition type here.
|
|
//
|
|
// On the other hand, in a case like
|
|
//
|
|
// f : [A, B, C]* -> ..
|
|
// f = \x -> when x is
|
|
// A -> ..
|
|
// B -> ..
|
|
//
|
|
// we want to show `C` and/or `_` as necessary branches, so this heuristic is
|
|
// not applied.
|
|
//
|
|
// In the above case, notice it would not be safe to apply this heuristic if
|
|
// `C` was matched as well. Since the positive/negative value determination is
|
|
// only an estimate, we also only apply this heursitic in the "almost equal"
|
|
// case, when there was in fact a unification error.
|
|
//
|
|
// TODO: this can likely be removed after remodelling tag extension types
|
|
// (#4440).
|
|
if cond_source_is_likely_positive_value && has_unification_error {
|
|
close_pattern_matched_tag_unions(subs, real_var);
|
|
}
|
|
|
|
if let Ok(ExhaustiveSummary {
|
|
errors,
|
|
exhaustive,
|
|
redundancies,
|
|
}) = check(subs, real_var, sketched_rows, context)
|
|
{
|
|
// Store information about whether the "when" is exhaustive, and
|
|
// which (if any) of its branches are redundant. Codegen may use
|
|
// this for branch-fixing and redundant elimination.
|
|
if !exhaustive {
|
|
exhaustive_mark.set_non_exhaustive(subs);
|
|
}
|
|
for redundant_mark in redundancies {
|
|
redundant_mark.set_redundant(subs);
|
|
}
|
|
|
|
// Store the errors.
|
|
problems.extend(errors.into_iter().map(TypeError::Exhaustive));
|
|
} else {
|
|
// Otherwise there were type errors deeper in the pattern; we will have
|
|
// already reported them.
|
|
}
|
|
}
|
|
|
|
state
|
|
}
|
|
&Resolve(OpportunisticResolve {
|
|
specialization_variable,
|
|
member,
|
|
specialization_id,
|
|
}) => {
|
|
if let Ok(Resolved::Specialization(specialization)) = resolve_ability_specialization(
|
|
subs,
|
|
abilities_store,
|
|
member,
|
|
specialization_variable,
|
|
) {
|
|
abilities_store.insert_resolved(specialization_id, specialization);
|
|
}
|
|
|
|
state
|
|
}
|
|
CheckCycle(cycle, cycle_mark) => {
|
|
let Cycle {
|
|
def_names,
|
|
expr_regions,
|
|
} = &constraints.cycles[cycle.index()];
|
|
let symbols = &constraints.loc_symbols[def_names.indices()];
|
|
|
|
// If the type of a symbol is not a function, that's an error.
|
|
// Roc is strict, so only functions can be mutually recursive.
|
|
let any_is_bad = {
|
|
use Content::*;
|
|
|
|
symbols.iter().any(|(s, _)| {
|
|
let var = env.get_var_by_symbol(s).expect("Symbol not solved!");
|
|
let (_, underlying_content) = chase_alias_content(subs, var);
|
|
|
|
!matches!(underlying_content, Error | Structure(FlatType::Func(..)))
|
|
})
|
|
};
|
|
|
|
if any_is_bad {
|
|
// expr regions are stored in loc_symbols (that turned out to be convenient).
|
|
// The symbol is just a dummy, and should not be used
|
|
let expr_regions = &constraints.loc_symbols[expr_regions.indices()];
|
|
|
|
let cycle = symbols
|
|
.iter()
|
|
.zip(expr_regions.iter())
|
|
.map(|(&(symbol, symbol_region), &(_, expr_region))| CycleEntry {
|
|
symbol,
|
|
symbol_region,
|
|
expr_region,
|
|
})
|
|
.collect();
|
|
|
|
problems.push(TypeError::CircularDef(cycle));
|
|
|
|
cycle_mark.set_illegal(subs);
|
|
}
|
|
|
|
state
|
|
}
|
|
IngestedFile(type_index, file_path, bytes) => {
|
|
let actual = either_type_index_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
&mut can_types,
|
|
aliases,
|
|
*type_index,
|
|
);
|
|
|
|
let snapshot = subs.snapshot();
|
|
if let Success {
|
|
vars,
|
|
must_implement_ability,
|
|
lambda_sets_to_specialize,
|
|
extra_metadata: _,
|
|
} = unify(
|
|
&mut UEnv::new(subs),
|
|
actual,
|
|
Variable::LIST_U8,
|
|
Mode::EQ,
|
|
Polarity::OF_VALUE,
|
|
) {
|
|
// List U8 always valid.
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
debug_assert!(
|
|
must_implement_ability.is_empty() && lambda_sets_to_specialize.is_empty(),
|
|
"List U8 will never need to implement abilities or specialize lambda sets"
|
|
);
|
|
|
|
state
|
|
} else {
|
|
subs.rollback_to(snapshot);
|
|
|
|
// We explicitly match on the last unify to get the type in the case it errors.
|
|
match unify(
|
|
&mut UEnv::new(subs),
|
|
actual,
|
|
Variable::STR,
|
|
Mode::EQ,
|
|
Polarity::OF_VALUE,
|
|
) {
|
|
Success {
|
|
vars,
|
|
must_implement_ability,
|
|
lambda_sets_to_specialize,
|
|
extra_metadata: _,
|
|
} => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
debug_assert!(
|
|
must_implement_ability.is_empty() && lambda_sets_to_specialize.is_empty(),
|
|
"Str will never need to implement abilities or specialize lambda sets"
|
|
);
|
|
|
|
// Str only valid if valid utf8.
|
|
if let Err(err) = std::str::from_utf8(bytes) {
|
|
let problem =
|
|
TypeError::IngestedFileBadUtf8(file_path.clone(), err);
|
|
problems.push(problem);
|
|
}
|
|
|
|
state
|
|
}
|
|
Failure(vars, actual_type, _, _) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::IngestedFileUnsupportedType(
|
|
file_path.clone(),
|
|
actual_type,
|
|
);
|
|
problems.push(problem);
|
|
state
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
state
|
|
}
|
|
|
|
fn chase_alias_content(subs: &Subs, mut var: Variable) -> (Variable, &Content) {
|
|
loop {
|
|
match subs.get_content_without_compacting(var) {
|
|
Content::Alias(_, _, real_var, _) => {
|
|
var = *real_var;
|
|
}
|
|
content => return (var, content),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn compact_lambdas_and_check_obligations(
|
|
arena: &Bump,
|
|
pools: &mut Pools,
|
|
problems: &mut Vec<TypeError>,
|
|
subs: &mut Subs,
|
|
abilities_store: &mut AbilitiesStore,
|
|
obligation_cache: &mut ObligationCache,
|
|
awaiting_specialization: &mut AwaitingSpecializations,
|
|
derived_env: &DerivedEnv,
|
|
lambda_sets_to_specialize: UlsOfVar,
|
|
) {
|
|
let CompactionResult {
|
|
obligations,
|
|
awaiting_specialization: new_awaiting,
|
|
} = compact_lambda_sets_of_vars(
|
|
subs,
|
|
derived_env,
|
|
arena,
|
|
pools,
|
|
lambda_sets_to_specialize,
|
|
&SolvePhase { abilities_store },
|
|
);
|
|
problems.extend(obligation_cache.check_obligations(
|
|
subs,
|
|
abilities_store,
|
|
obligations,
|
|
AbilityImplError::DoesNotImplement,
|
|
));
|
|
awaiting_specialization.union(new_awaiting);
|
|
}
|
|
|
|
fn open_tag_union(subs: &mut Subs, var: Variable) {
|
|
let mut stack = vec![var];
|
|
while let Some(var) = stack.pop() {
|
|
use {Content::*, FlatType::*};
|
|
|
|
let desc = subs.get(var);
|
|
match desc.content {
|
|
Structure(TagUnion(tags, ext)) => {
|
|
if let Structure(EmptyTagUnion) = subs.get_content_without_compacting(ext.var()) {
|
|
let new_ext = TagExt::Any(subs.fresh_unnamed_flex_var());
|
|
subs.set_rank(new_ext.var(), desc.rank);
|
|
let new_union = Structure(TagUnion(tags, new_ext));
|
|
subs.set_content(var, new_union);
|
|
}
|
|
|
|
// Also open up all nested tag unions.
|
|
let all_vars = tags.variables().into_iter();
|
|
stack.extend(all_vars.flat_map(|slice| subs[slice]).map(|var| subs[var]));
|
|
}
|
|
|
|
Structure(Record(fields, _)) => {
|
|
// Open up all nested tag unions.
|
|
stack.extend(subs.get_subs_slice(fields.variables()));
|
|
}
|
|
|
|
Structure(Tuple(elems, _)) => {
|
|
// Open up all nested tag unions.
|
|
stack.extend(subs.get_subs_slice(elems.variables()));
|
|
}
|
|
|
|
Structure(Apply(Symbol::LIST_LIST, args)) => {
|
|
// Open up nested tag unions.
|
|
stack.extend(subs.get_subs_slice(args));
|
|
}
|
|
|
|
_ => {
|
|
// Everything else is not a structural type that can be opened
|
|
// (i.e. cannot be matched in a pattern-match)
|
|
}
|
|
}
|
|
|
|
// Today, an "open" constraint doesn't affect any types
|
|
// other than tag unions. Recursive tag unions are constructed
|
|
// at a later time (during occurs checks after tag unions are
|
|
// resolved), so that's not handled here either.
|
|
}
|
|
}
|
|
|
|
/// Optimistically closes the positive type of a value matched in a `when` statement, to produce
|
|
/// better exhaustiveness error messages.
|
|
///
|
|
/// This should only be applied if it's already known that a `when` expression is not exhaustive.
|
|
///
|
|
/// See [Constraint::Exhaustive].
|
|
fn close_pattern_matched_tag_unions(subs: &mut Subs, var: Variable) {
|
|
let mut stack = vec![var];
|
|
while let Some(var) = stack.pop() {
|
|
use {Content::*, FlatType::*};
|
|
|
|
let desc = subs.get(var);
|
|
match desc.content {
|
|
Structure(TagUnion(tags, mut ext)) => {
|
|
// Close the extension, chasing it as far as it goes.
|
|
loop {
|
|
match subs.get_content_without_compacting(ext.var()) {
|
|
Structure(FlatType::EmptyTagUnion) => {
|
|
break;
|
|
}
|
|
FlexVar(..) | FlexAbleVar(..) => {
|
|
subs.set_content_unchecked(
|
|
ext.var(),
|
|
Structure(FlatType::EmptyTagUnion),
|
|
);
|
|
break;
|
|
}
|
|
RigidVar(..) | RigidAbleVar(..) => {
|
|
// Don't touch rigids, they tell us more information than the heuristic
|
|
// of closing tag unions does for better exhaustiveness checking does.
|
|
break;
|
|
}
|
|
Structure(FlatType::TagUnion(_, deep_ext))
|
|
| Structure(FlatType::RecursiveTagUnion(_, _, deep_ext))
|
|
| Structure(FlatType::FunctionOrTagUnion(_, _, deep_ext)) => {
|
|
ext = *deep_ext;
|
|
}
|
|
other => internal_error!(
|
|
"not a tag union: {:?}",
|
|
roc_types::subs::SubsFmtContent(other, subs)
|
|
),
|
|
}
|
|
}
|
|
|
|
// Also open up all nested tag unions.
|
|
let all_vars = tags.variables().into_iter();
|
|
stack.extend(all_vars.flat_map(|slice| subs[slice]).map(|var| subs[var]));
|
|
}
|
|
|
|
Structure(Record(fields, _)) => {
|
|
// Close up all nested tag unions.
|
|
stack.extend(subs.get_subs_slice(fields.variables()));
|
|
}
|
|
|
|
Structure(Apply(Symbol::LIST_LIST, args)) => {
|
|
// Close up nested tag unions.
|
|
stack.extend(subs.get_subs_slice(args));
|
|
}
|
|
|
|
Alias(_, _, real_var, _) => {
|
|
stack.push(real_var);
|
|
}
|
|
|
|
_ => {
|
|
// Everything else is not a type that can be opened/matched in a pattern match.
|
|
}
|
|
}
|
|
|
|
// Recursive tag unions are constructed at a later time
|
|
// (during occurs checks after tag unions are resolved),
|
|
// so that's not handled here.
|
|
}
|
|
}
|
|
|
|
/// If a symbol claims to specialize an ability member, check that its solved type in fact
|
|
/// does specialize the ability, and record the specialization.
|
|
#[allow(clippy::too_many_arguments)]
|
|
// Aggressive but necessary - there aren't many usages.
|
|
#[inline(always)]
|
|
fn check_ability_specialization(
|
|
arena: &Bump,
|
|
subs: &mut Subs,
|
|
derived_env: &DerivedEnv,
|
|
pools: &mut Pools,
|
|
rank: Rank,
|
|
abilities_store: &mut AbilitiesStore,
|
|
obligation_cache: &mut ObligationCache,
|
|
awaiting_specializations: &mut AwaitingSpecializations,
|
|
problems: &mut Vec<TypeError>,
|
|
symbol: Symbol,
|
|
symbol_loc_var: Loc<Variable>,
|
|
) {
|
|
// If the symbol specializes an ability member, we need to make sure that the
|
|
// inferred type for the specialization actually aligns with the expected
|
|
// implementation.
|
|
if let Some((impl_key, root_data)) = abilities_store.impl_key_and_def(symbol) {
|
|
let ability_member = impl_key.ability_member;
|
|
let root_signature_var = root_data.signature_var();
|
|
let parent_ability = root_data.parent_ability;
|
|
|
|
// Check if they unify - if they don't, then the claimed specialization isn't really one,
|
|
// and that's a type error!
|
|
// This also fixes any latent type variables that need to be specialized to exactly what
|
|
// the ability signature expects.
|
|
|
|
// We need to freshly instantiate the root signature so that all unifications are reflected
|
|
// in the specialization type, but not the original signature type.
|
|
let root_signature_var =
|
|
deep_copy_var_in(subs, Rank::toplevel(), pools, root_signature_var, arena);
|
|
let snapshot = subs.snapshot();
|
|
let unified = unify_introduced_ability_specialization(
|
|
&mut UEnv::new(subs),
|
|
root_signature_var,
|
|
symbol_loc_var.value,
|
|
Mode::EQ,
|
|
);
|
|
|
|
let resolved_mark = match unified {
|
|
Success {
|
|
vars,
|
|
must_implement_ability,
|
|
lambda_sets_to_specialize,
|
|
extra_metadata: SpecializationLsetCollector(specialization_lambda_sets),
|
|
} => {
|
|
let specialization_type =
|
|
type_implementing_specialization(&must_implement_ability, parent_ability);
|
|
|
|
match specialization_type {
|
|
Some(Obligated::Opaque(opaque)) => {
|
|
// This is a specialization for an opaque - but is it the opaque the
|
|
// specialization was claimed to be for?
|
|
if opaque == impl_key.opaque {
|
|
// It was! All is good.
|
|
|
|
subs.commit_snapshot(snapshot);
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let specialization_lambda_sets = specialization_lambda_sets
|
|
.into_iter()
|
|
.map(|((symbol, region), var)| {
|
|
debug_assert_eq!(symbol, ability_member);
|
|
(region, var)
|
|
})
|
|
.collect();
|
|
|
|
compact_lambdas_and_check_obligations(
|
|
arena,
|
|
pools,
|
|
problems,
|
|
subs,
|
|
abilities_store,
|
|
obligation_cache,
|
|
awaiting_specializations,
|
|
derived_env,
|
|
lambda_sets_to_specialize,
|
|
);
|
|
|
|
let specialization =
|
|
MemberSpecializationInfo::new(symbol, specialization_lambda_sets);
|
|
|
|
Ok(specialization)
|
|
} else {
|
|
// This def is not specialized for the claimed opaque type, that's an
|
|
// error.
|
|
|
|
// Commit so that the bad signature and its error persists in subs.
|
|
subs.commit_snapshot(snapshot);
|
|
|
|
let _typ =
|
|
subs.var_to_error_type(symbol_loc_var.value, Polarity::OF_VALUE);
|
|
|
|
let problem = TypeError::WrongSpecialization {
|
|
region: symbol_loc_var.region,
|
|
ability_member: impl_key.ability_member,
|
|
expected_opaque: impl_key.opaque,
|
|
found_opaque: opaque,
|
|
};
|
|
|
|
problems.push(problem);
|
|
|
|
Err(())
|
|
}
|
|
}
|
|
Some(Obligated::Adhoc(var)) => {
|
|
// This is a specialization of a structural type - never allowed.
|
|
|
|
// Commit so that `var` persists in subs.
|
|
subs.commit_snapshot(snapshot);
|
|
|
|
let typ = subs.var_to_error_type(var, Polarity::OF_VALUE);
|
|
|
|
let problem = TypeError::StructuralSpecialization {
|
|
region: symbol_loc_var.region,
|
|
typ,
|
|
ability: parent_ability,
|
|
member: ability_member,
|
|
};
|
|
|
|
problems.push(problem);
|
|
|
|
Err(())
|
|
}
|
|
None => {
|
|
// This can happen when every ability constriant on a type variable went
|
|
// through only another type variable. That means this def is not specialized
|
|
// for one concrete type, and especially not our opaque - we won't admit this currently.
|
|
|
|
// Rollback the snapshot so we unlink the root signature with the specialization,
|
|
// so we can have two separate error types.
|
|
subs.rollback_to(snapshot);
|
|
|
|
let expected_type =
|
|
subs.var_to_error_type(root_signature_var, Polarity::OF_VALUE);
|
|
let actual_type =
|
|
subs.var_to_error_type(symbol_loc_var.value, Polarity::OF_VALUE);
|
|
|
|
let reason = Reason::GeneralizedAbilityMemberSpecialization {
|
|
member_name: ability_member,
|
|
def_region: root_data.region,
|
|
};
|
|
|
|
let problem = TypeError::BadExpr(
|
|
symbol_loc_var.region,
|
|
Category::AbilityMemberSpecialization(ability_member),
|
|
actual_type,
|
|
Expected::ForReason(reason, expected_type, symbol_loc_var.region),
|
|
);
|
|
|
|
problems.push(problem);
|
|
|
|
Err(())
|
|
}
|
|
}
|
|
}
|
|
|
|
Failure(vars, expected_type, actual_type, unimplemented_abilities) => {
|
|
subs.commit_snapshot(snapshot);
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let reason = Reason::InvalidAbilityMemberSpecialization {
|
|
member_name: ability_member,
|
|
def_region: root_data.region,
|
|
unimplemented_abilities,
|
|
};
|
|
|
|
let problem = TypeError::BadExpr(
|
|
symbol_loc_var.region,
|
|
Category::AbilityMemberSpecialization(ability_member),
|
|
actual_type,
|
|
Expected::ForReason(reason, expected_type, symbol_loc_var.region),
|
|
);
|
|
|
|
problems.push(problem);
|
|
|
|
Err(())
|
|
}
|
|
};
|
|
|
|
abilities_store
|
|
.mark_implementation(impl_key, resolved_mark)
|
|
.expect("marked as a custom implementation, but not recorded as such");
|
|
|
|
// Get the lambda sets that are ready for specialization because this ability member
|
|
// specialization was resolved, and compact them.
|
|
let new_lambda_sets_to_specialize =
|
|
awaiting_specializations.remove_for_specialized(subs, impl_key);
|
|
compact_lambdas_and_check_obligations(
|
|
arena,
|
|
pools,
|
|
problems,
|
|
subs,
|
|
abilities_store,
|
|
obligation_cache,
|
|
awaiting_specializations,
|
|
derived_env,
|
|
new_lambda_sets_to_specialize,
|
|
);
|
|
debug_assert!(
|
|
!awaiting_specializations.waiting_for(impl_key),
|
|
"still have lambda sets waiting for {:?}, but it was just resolved",
|
|
impl_key
|
|
);
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum LocalDefVarsVec<T> {
|
|
Stack(arrayvec::ArrayVec<T, 32>),
|
|
Heap(Vec<T>),
|
|
}
|
|
|
|
impl<T> LocalDefVarsVec<T> {
|
|
#[inline(always)]
|
|
fn with_length(length: usize) -> Self {
|
|
if length <= 32 {
|
|
Self::Stack(Default::default())
|
|
} else {
|
|
Self::Heap(Default::default())
|
|
}
|
|
}
|
|
|
|
fn push(&mut self, element: T) {
|
|
match self {
|
|
LocalDefVarsVec::Stack(vec) => vec.push(element),
|
|
LocalDefVarsVec::Heap(vec) => vec.push(element),
|
|
}
|
|
}
|
|
|
|
fn iter(&self) -> impl Iterator<Item = &T> {
|
|
match self {
|
|
LocalDefVarsVec::Stack(vec) => vec.iter(),
|
|
LocalDefVarsVec::Heap(vec) => vec.iter(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl LocalDefVarsVec<(Symbol, Loc<Variable>)> {
|
|
fn from_def_types(
|
|
constraints: &Constraints,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
problems: &mut Vec<TypeError>,
|
|
abilities_store: &mut AbilitiesStore,
|
|
obligation_cache: &mut ObligationCache,
|
|
types: &mut Types,
|
|
aliases: &mut Aliases,
|
|
subs: &mut Subs,
|
|
def_types_slice: roc_can::constraint::DefTypes,
|
|
) -> Self {
|
|
let type_indices_slice = &constraints.type_slices[def_types_slice.types.indices()];
|
|
let loc_symbols_slice = &constraints.loc_symbols[def_types_slice.loc_symbols.indices()];
|
|
|
|
let mut local_def_vars = Self::with_length(type_indices_slice.len());
|
|
|
|
for (&(symbol, region), typ_index) in (loc_symbols_slice.iter()).zip(type_indices_slice) {
|
|
let var = either_type_index_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
types,
|
|
aliases,
|
|
*typ_index,
|
|
);
|
|
|
|
local_def_vars.push((symbol, Loc { value: var, region }));
|
|
}
|
|
|
|
local_def_vars
|
|
}
|
|
}
|
|
|
|
use std::cell::RefCell;
|
|
use std::ops::ControlFlow;
|
|
std::thread_local! {
|
|
/// Scratchpad arena so we don't need to allocate a new one all the time
|
|
static SCRATCHPAD: RefCell<Option<bumpalo::Bump>> = RefCell::new(Some(bumpalo::Bump::with_capacity(4 * 1024)));
|
|
}
|
|
|
|
fn take_scratchpad() -> bumpalo::Bump {
|
|
SCRATCHPAD.with(|f| f.take().unwrap())
|
|
}
|
|
|
|
fn put_scratchpad(scratchpad: bumpalo::Bump) {
|
|
SCRATCHPAD.with(|f| {
|
|
f.replace(Some(scratchpad));
|
|
});
|
|
}
|
|
|
|
fn either_type_index_to_var(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
problems: &mut Vec<TypeError>,
|
|
abilities_store: &mut AbilitiesStore,
|
|
obligation_cache: &mut ObligationCache,
|
|
types: &mut Types,
|
|
aliases: &mut Aliases,
|
|
either_type_index: TypeOrVar,
|
|
) -> Variable {
|
|
match either_type_index.split() {
|
|
Ok(type_index) => {
|
|
// Converts the celled type to a variable, emplacing the new variable for re-use.
|
|
let var = type_to_var(
|
|
subs,
|
|
rank,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
pools,
|
|
types,
|
|
aliases,
|
|
type_index,
|
|
);
|
|
|
|
debug_assert!(
|
|
matches!(types[type_index], TypeTag::Variable(v) if v == var)
|
|
|| matches!(
|
|
types[type_index],
|
|
TypeTag::EmptyRecord | TypeTag::EmptyTagUnion
|
|
)
|
|
);
|
|
var
|
|
}
|
|
Err(var_index) => {
|
|
// we cheat, and store the variable directly in the index
|
|
unsafe { Variable::from_index(var_index.index() as _) }
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) fn type_to_var(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
problems: &mut Vec<TypeError>,
|
|
abilities_store: &mut AbilitiesStore,
|
|
obligation_cache: &mut ObligationCache,
|
|
pools: &mut Pools,
|
|
types: &mut Types,
|
|
aliases: &mut Aliases,
|
|
typ: Index<TypeTag>,
|
|
) -> Variable {
|
|
if let TypeTag::Variable(var) = types[typ] {
|
|
var
|
|
} else {
|
|
let mut arena = take_scratchpad();
|
|
|
|
let var = type_to_variable(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
&arena,
|
|
aliases,
|
|
types,
|
|
typ,
|
|
false,
|
|
);
|
|
|
|
arena.reset();
|
|
put_scratchpad(arena);
|
|
|
|
var
|
|
}
|
|
}
|
|
|
|
enum RegisterVariable {
|
|
/// Based on the Type, we already know what variable this will be
|
|
Direct(Variable),
|
|
/// This Type needs more complicated Content. We reserve a Variable
|
|
/// for it, but put a placeholder Content in subs
|
|
Deferred,
|
|
}
|
|
|
|
impl RegisterVariable {
|
|
fn from_type(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
types: &mut Types,
|
|
typ: Index<TypeTag>,
|
|
) -> Self {
|
|
use RegisterVariable::*;
|
|
|
|
match types[typ] {
|
|
TypeTag::Variable(var) => Direct(var),
|
|
TypeTag::EmptyRecord => Direct(Variable::EMPTY_RECORD),
|
|
TypeTag::EmptyTagUnion => Direct(Variable::EMPTY_TAG_UNION),
|
|
TypeTag::DelayedAlias { shared }
|
|
| TypeTag::StructuralAlias { shared, .. }
|
|
| TypeTag::OpaqueAlias { shared, .. }
|
|
| TypeTag::HostExposedAlias { shared, .. } => {
|
|
let AliasShared { symbol, .. } = types[shared];
|
|
if let Some(reserved) = Variable::get_reserved(symbol) {
|
|
let direct_var = if rank.is_generalized() {
|
|
// reserved variables are stored with rank NONE
|
|
reserved
|
|
} else {
|
|
// for any other rank, we need to copy; it takes care of adjusting the rank
|
|
deep_copy_var_in(subs, rank, pools, reserved, arena)
|
|
};
|
|
// Safety: the `destination` will become the source-of-truth for the type index, since it
|
|
// was not already transformed before (if it was, we'd be in the Variable branch!)
|
|
let _old_typ = unsafe { types.emplace_variable(typ, direct_var) };
|
|
return Direct(direct_var);
|
|
}
|
|
|
|
Deferred
|
|
}
|
|
_ => Deferred,
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn with_stack(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
types: &mut Types,
|
|
typ_index: Index<TypeTag>,
|
|
stack: &mut bumpalo::collections::Vec<'_, TypeToVar>,
|
|
) -> Variable {
|
|
match Self::from_type(subs, rank, pools, arena, types, typ_index) {
|
|
Self::Direct(var) => var,
|
|
Self::Deferred => {
|
|
let var = subs.fresh_unnamed_flex_var();
|
|
// Safety: the `destination` will become the source-of-truth for the type index, since it
|
|
// was not already transformed before (if it was, it wouldn't be deferred!)
|
|
let typ = unsafe { types.emplace_variable(typ_index, var) };
|
|
stack.push(TypeToVar::Defer {
|
|
typ,
|
|
typ_index,
|
|
destination: var,
|
|
ambient_function: AmbientFunctionPolicy::NoFunction,
|
|
});
|
|
var
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Instantiation of ambient functions in unspecialized lambda sets is somewhat tricky due to other
|
|
/// optimizations we have in place. This struct tells us how they should be instantiated.
|
|
#[derive(Debug)]
|
|
enum AmbientFunctionPolicy {
|
|
/// We're not in a function. This variant may never hold for unspecialized lambda sets.
|
|
NoFunction,
|
|
/// We're in a known function.
|
|
Function(Variable),
|
|
}
|
|
|
|
impl AmbientFunctionPolicy {
|
|
fn link_to_alias_lambda_set_var(&self, subs: &mut Subs, var: Variable) {
|
|
let ambient_function = match self {
|
|
AmbientFunctionPolicy::Function(var) => *var,
|
|
_ => {
|
|
// Might be linked at a deeper point in time, ignore for now
|
|
return;
|
|
}
|
|
};
|
|
let content = subs.get_content_without_compacting(var);
|
|
let new_content = match content {
|
|
Content::LambdaSet(LambdaSet {
|
|
solved,
|
|
recursion_var,
|
|
unspecialized,
|
|
ambient_function: _,
|
|
}) => Content::LambdaSet(LambdaSet {
|
|
solved: *solved,
|
|
recursion_var: *recursion_var,
|
|
unspecialized: *unspecialized,
|
|
ambient_function,
|
|
}),
|
|
Content::FlexVar(_) => {
|
|
// Something like
|
|
// Encoder fmt <a> : List U8, fmt -a-> List U8 | fmt has EncoderFormatting
|
|
// THEORY: Replace these with empty lambda sets. They will unify the same as a flex
|
|
// var does, but allows us to record the ambient function properly.
|
|
Content::LambdaSet(LambdaSet {
|
|
solved: UnionLabels::default(),
|
|
recursion_var: OptVariable::NONE,
|
|
unspecialized: SubsSlice::default(),
|
|
ambient_function,
|
|
})
|
|
}
|
|
content => internal_error!("{:?}({:?}) not a lambda set", content, var),
|
|
};
|
|
subs.set_content_unchecked(var, new_content);
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum TypeToVar {
|
|
Defer {
|
|
typ: TypeTag,
|
|
typ_index: Index<TypeTag>,
|
|
destination: Variable,
|
|
ambient_function: AmbientFunctionPolicy,
|
|
},
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn type_to_variable(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
problems: &mut Vec<TypeError>,
|
|
abilities_store: &AbilitiesStore,
|
|
obligation_cache: &mut ObligationCache,
|
|
arena: &bumpalo::Bump,
|
|
aliases: &mut Aliases,
|
|
types: &mut Types,
|
|
typ: Index<TypeTag>,
|
|
// Helpers for instantiating ambient functions of lambda set variables from type aliases.
|
|
is_alias_lambda_set_arg: bool,
|
|
) -> Variable {
|
|
use bumpalo::collections::Vec;
|
|
|
|
let mut stack = Vec::with_capacity_in(8, arena);
|
|
let mut bind_to_abilities = Vec::new_in(arena);
|
|
|
|
macro_rules! helper {
|
|
($typ:expr, $ambient_function_policy:expr) => {{
|
|
match RegisterVariable::from_type(subs, rank, pools, arena, types, $typ) {
|
|
RegisterVariable::Direct(var) => {
|
|
// If the variable is just a type variable but we know we're in a lambda set
|
|
// context, try to link to the ambient function.
|
|
$ambient_function_policy.link_to_alias_lambda_set_var(subs, var);
|
|
|
|
var
|
|
}
|
|
RegisterVariable::Deferred => {
|
|
let var = subs.fresh_unnamed_flex_var();
|
|
|
|
// Safety: the `destination` will become the source-of-truth for the type index, since it
|
|
// was not already transformed before (if it was, it wouldn't be deferred!)
|
|
let typ = unsafe { types.emplace_variable($typ, var) };
|
|
|
|
stack.push(TypeToVar::Defer {
|
|
typ,
|
|
typ_index: $typ,
|
|
destination: var,
|
|
ambient_function: $ambient_function_policy,
|
|
});
|
|
|
|
var
|
|
}
|
|
}
|
|
}};
|
|
($typ:expr) => {{
|
|
helper!($typ, AmbientFunctionPolicy::NoFunction)
|
|
}};
|
|
}
|
|
|
|
let result = helper!(typ);
|
|
|
|
while let Some(TypeToVar::Defer {
|
|
typ_index,
|
|
typ,
|
|
destination,
|
|
ambient_function,
|
|
}) = stack.pop()
|
|
{
|
|
use TypeTag::*;
|
|
match typ {
|
|
Variable(_) | EmptyRecord | EmptyTagUnion => {
|
|
unreachable!("This variant should never be deferred!",)
|
|
}
|
|
RangedNumber(range) => {
|
|
let content = Content::RangedNumber(range);
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
Apply {
|
|
symbol,
|
|
type_argument_regions: _,
|
|
region: _,
|
|
} => {
|
|
let arguments = types.get_type_arguments(typ_index);
|
|
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
|
|
for (target_index, var_index) in
|
|
(new_arguments.indices()).zip(arguments.into_iter())
|
|
{
|
|
let var = helper!(var_index);
|
|
subs.variables[target_index] = var;
|
|
}
|
|
|
|
let flat_type = FlatType::Apply(symbol, new_arguments);
|
|
let content = Content::Structure(flat_type);
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
|
|
ClosureTag {
|
|
name,
|
|
ambient_function,
|
|
} => {
|
|
let captures = types.get_type_arguments(typ_index);
|
|
let union_lambdas = create_union_lambda(
|
|
subs, rank, pools, arena, types, name, captures, &mut stack,
|
|
);
|
|
|
|
let content = Content::LambdaSet(subs::LambdaSet {
|
|
solved: union_lambdas,
|
|
// We may figure out the lambda set is recursive during solving, but it never
|
|
// is to begin with.
|
|
recursion_var: OptVariable::NONE,
|
|
unspecialized: SubsSlice::default(),
|
|
ambient_function,
|
|
});
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
UnspecializedLambdaSet { unspecialized } => {
|
|
let unspecialized_slice = SubsSlice::extend_new(
|
|
&mut subs.unspecialized_lambda_sets,
|
|
std::iter::once(unspecialized),
|
|
);
|
|
|
|
// `ClosureTag` ambient functions are resolved during constraint generation.
|
|
// But `UnspecializedLambdaSet`s can only ever live in a type signature, and don't
|
|
// correspond to a expression, so they are never constrained.
|
|
// Instead, we resolve their ambient functions during type translation, observing
|
|
// the invariant that a lambda set can only ever appear under a function type.
|
|
let ambient_function = match ambient_function {
|
|
AmbientFunctionPolicy::NoFunction => {
|
|
debug_assert!(is_alias_lambda_set_arg);
|
|
// To be filled in during delayed type alias instantiation
|
|
roc_types::subs::Variable::NULL
|
|
}
|
|
AmbientFunctionPolicy::Function(var) => var,
|
|
};
|
|
|
|
let content = Content::LambdaSet(subs::LambdaSet {
|
|
unspecialized: unspecialized_slice,
|
|
solved: UnionLabels::default(),
|
|
recursion_var: OptVariable::NONE,
|
|
ambient_function,
|
|
});
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
// This case is important for the rank of boolean variables
|
|
Function(closure_type, ret_type) => {
|
|
let arguments = types.get_type_arguments(typ_index);
|
|
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
|
|
for (target_index, var_index) in
|
|
(new_arguments.indices()).zip(arguments.into_iter())
|
|
{
|
|
let var = helper!(var_index);
|
|
subs.variables[target_index] = var;
|
|
}
|
|
|
|
let ret_var = helper!(ret_type);
|
|
let closure_var =
|
|
helper!(closure_type, AmbientFunctionPolicy::Function(destination));
|
|
let content =
|
|
Content::Structure(FlatType::Func(new_arguments, closure_var, ret_var));
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
Record(fields) => {
|
|
let ext_slice = types.get_type_arguments(typ_index);
|
|
|
|
// An empty fields is inefficient (but would be correct)
|
|
// If hit, try to turn the value into an EmptyRecord in canonicalization
|
|
debug_assert!(!fields.is_empty() || !ext_slice.is_empty());
|
|
|
|
let mut field_vars = Vec::with_capacity_in(fields.len(), arena);
|
|
|
|
let (fields_names, field_kinds, field_tys) = types.record_fields_slices(fields);
|
|
|
|
for ((field, field_kind), field_type) in (fields_names.into_iter())
|
|
.zip(field_kinds.into_iter())
|
|
.zip(field_tys.into_iter())
|
|
{
|
|
let field_var = {
|
|
let t = helper!(field_type);
|
|
types[field_kind].replace(t)
|
|
};
|
|
|
|
field_vars.push((types[field].clone(), field_var));
|
|
}
|
|
|
|
debug_assert!(ext_slice.len() <= 1);
|
|
let temp_ext_var = match ext_slice.into_iter().next() {
|
|
None => roc_types::subs::Variable::EMPTY_RECORD,
|
|
Some(ext) => helper!(ext),
|
|
};
|
|
|
|
let (it, new_ext_var) =
|
|
gather_fields_unsorted_iter(subs, RecordFields::empty(), temp_ext_var)
|
|
.expect("Something ended up weird in this record type");
|
|
|
|
let it = it
|
|
.into_iter()
|
|
.map(|(field, field_type)| (field.clone(), field_type));
|
|
|
|
field_vars.extend(it);
|
|
insertion_sort_by(&mut field_vars, RecordFields::compare);
|
|
|
|
let record_fields = RecordFields::insert_into_subs(subs, field_vars);
|
|
|
|
let content = Content::Structure(FlatType::Record(record_fields, new_ext_var));
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
|
|
Tuple(elems) => {
|
|
let ext_slice = types.get_type_arguments(typ_index);
|
|
|
|
// Elems should never be empty; we don't support empty tuples
|
|
debug_assert!(!elems.is_empty() || !ext_slice.is_empty());
|
|
|
|
let mut elem_vars = Vec::with_capacity_in(elems.len(), arena);
|
|
|
|
let (indices, elem_tys) = types.tuple_elems_slices(elems);
|
|
|
|
for (index, elem_type) in indices.into_iter().zip(elem_tys.into_iter()) {
|
|
let elem_var = helper!(elem_type);
|
|
elem_vars.push((types[index], elem_var));
|
|
}
|
|
|
|
debug_assert!(ext_slice.len() <= 1);
|
|
let temp_ext_var = match ext_slice.into_iter().next() {
|
|
None => roc_types::subs::Variable::EMPTY_TUPLE,
|
|
Some(ext) => helper!(ext),
|
|
};
|
|
|
|
let (it, new_ext_var) =
|
|
gather_tuple_elems_unsorted_iter(subs, TupleElems::empty(), temp_ext_var)
|
|
.expect("Something ended up weird in this tuple type");
|
|
|
|
elem_vars.extend(it);
|
|
let tuple_elems = TupleElems::insert_into_subs(subs, elem_vars);
|
|
|
|
let content = Content::Structure(FlatType::Tuple(tuple_elems, new_ext_var));
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
|
|
TagUnion(tags, ext_openness) => {
|
|
let ext_slice = types.get_type_arguments(typ_index);
|
|
|
|
// An empty tags is inefficient (but would be correct)
|
|
// If hit, try to turn the value into an EmptyTagUnion in canonicalization
|
|
debug_assert!(!tags.is_empty() || !ext_slice.is_empty());
|
|
|
|
let (union_tags, ext) = type_to_union_tags(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
arena,
|
|
types,
|
|
tags,
|
|
ext_slice,
|
|
ext_openness,
|
|
&mut stack,
|
|
);
|
|
let content = Content::Structure(FlatType::TagUnion(union_tags, ext));
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
FunctionOrTagUnion(symbol, ext_openness) => {
|
|
let ext_slice = types.get_type_arguments(typ_index);
|
|
let tag_name = types.get_tag_name(&typ_index).clone();
|
|
|
|
debug_assert!(ext_slice.len() <= 1);
|
|
let temp_ext = match ext_slice.into_iter().next() {
|
|
Some(ext) => {
|
|
let var = helper!(ext);
|
|
TagExt::from_can(var, ext_openness)
|
|
}
|
|
None => TagExt::Any(roc_types::subs::Variable::EMPTY_TAG_UNION),
|
|
};
|
|
|
|
let (it, ext) = roc_types::types::gather_tags_unsorted_iter(
|
|
subs,
|
|
UnionTags::default(),
|
|
temp_ext,
|
|
)
|
|
.expect("extension var could not be seen as a tag union");
|
|
|
|
for _ in it {
|
|
unreachable!("we assert that the ext var is empty; otherwise we'd already know it was a tag union!");
|
|
}
|
|
|
|
let tag_names = SubsSlice::extend_new(&mut subs.tag_names, [tag_name]);
|
|
let symbols = SubsSlice::extend_new(&mut subs.symbol_names, [symbol]);
|
|
|
|
let content =
|
|
Content::Structure(FlatType::FunctionOrTagUnion(tag_names, symbols, ext));
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
RecursiveTagUnion(rec_var, tags, ext_openness) => {
|
|
let ext_slice = types.get_type_arguments(typ_index);
|
|
|
|
// An empty tags is inefficient (but would be correct)
|
|
// If hit, try to turn the value into an EmptyTagUnion in canonicalization
|
|
debug_assert!(!tags.is_empty() || !ext_slice.is_empty());
|
|
|
|
let (union_tags, ext) = type_to_union_tags(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
arena,
|
|
types,
|
|
tags,
|
|
ext_slice,
|
|
ext_openness,
|
|
&mut stack,
|
|
);
|
|
let content =
|
|
Content::Structure(FlatType::RecursiveTagUnion(rec_var, union_tags, ext));
|
|
|
|
let tag_union_var = destination;
|
|
register_with_known_var(subs, tag_union_var, rank, pools, content);
|
|
|
|
register_with_known_var(
|
|
subs,
|
|
rec_var,
|
|
rank,
|
|
pools,
|
|
Content::RecursionVar {
|
|
opt_name: None,
|
|
structure: tag_union_var,
|
|
},
|
|
);
|
|
|
|
tag_union_var
|
|
}
|
|
|
|
DelayedAlias { shared } => {
|
|
let AliasShared {
|
|
symbol,
|
|
type_argument_abilities,
|
|
type_argument_regions,
|
|
lambda_set_variables,
|
|
infer_ext_in_output_variables,
|
|
} = types[shared];
|
|
|
|
let type_arguments = types.get_type_arguments(typ_index);
|
|
|
|
let alias_variables = {
|
|
let all_vars_length = type_arguments.len()
|
|
+ lambda_set_variables.len()
|
|
+ infer_ext_in_output_variables.len();
|
|
let new_variables = VariableSubsSlice::reserve_into_subs(subs, all_vars_length);
|
|
|
|
let type_arguments_offset = 0;
|
|
let lambda_set_vars_offset = type_arguments_offset + type_arguments.len();
|
|
let infer_ext_vars_offset = lambda_set_vars_offset + lambda_set_variables.len();
|
|
|
|
for (((target_index, arg_type), arg_region), abilities) in
|
|
(new_variables.indices().skip(type_arguments_offset))
|
|
.zip(type_arguments.into_iter())
|
|
.zip(type_argument_regions.into_iter())
|
|
.zip(type_argument_abilities.into_iter())
|
|
{
|
|
let copy_var = helper!(arg_type);
|
|
subs.variables[target_index] = copy_var;
|
|
if !types[abilities].is_empty() {
|
|
let arg_region = types[arg_region];
|
|
bind_to_abilities.push((Loc::at(arg_region, copy_var), abilities));
|
|
}
|
|
}
|
|
|
|
let it = (new_variables.indices().skip(lambda_set_vars_offset))
|
|
.zip(lambda_set_variables.into_iter());
|
|
for (target_index, ls) in it {
|
|
// We MUST do this now, otherwise when linking the ambient function during
|
|
// instantiation of the real var, there will be nothing to link against.
|
|
let copy_var = type_to_variable(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
arena,
|
|
aliases,
|
|
types,
|
|
ls,
|
|
true,
|
|
);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
let it = (new_variables.indices().skip(infer_ext_vars_offset))
|
|
.zip(infer_ext_in_output_variables.into_iter());
|
|
for (target_index, ext_typ) in it {
|
|
let copy_var = helper!(ext_typ);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
AliasVariables {
|
|
variables_start: new_variables.start,
|
|
type_variables_len: type_arguments.len() as _,
|
|
lambda_set_variables_len: lambda_set_variables.len() as _,
|
|
all_variables_len: all_vars_length as _,
|
|
}
|
|
};
|
|
|
|
let (alias_variable, kind) = aliases.instantiate_real_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
arena,
|
|
types,
|
|
symbol,
|
|
alias_variables,
|
|
);
|
|
|
|
let content = Content::Alias(symbol, alias_variables, alias_variable, kind);
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
|
|
StructuralAlias { shared, actual } | OpaqueAlias { shared, actual } => {
|
|
let kind = match typ {
|
|
StructuralAlias { .. } => AliasKind::Structural,
|
|
OpaqueAlias { .. } => AliasKind::Opaque,
|
|
_ => internal_error!(),
|
|
};
|
|
|
|
let AliasShared {
|
|
symbol,
|
|
type_argument_abilities,
|
|
type_argument_regions,
|
|
lambda_set_variables,
|
|
infer_ext_in_output_variables,
|
|
} = types[shared];
|
|
|
|
debug_assert!(roc_types::subs::Variable::get_reserved(symbol).is_none());
|
|
|
|
let type_arguments = types.get_type_arguments(typ_index);
|
|
|
|
let alias_variables = {
|
|
let all_vars_length = type_arguments.len()
|
|
+ lambda_set_variables.len()
|
|
+ infer_ext_in_output_variables.len();
|
|
|
|
let type_arguments_offset = 0;
|
|
let lambda_set_vars_offset = type_arguments_offset + type_arguments.len();
|
|
let infer_ext_vars_offset = lambda_set_vars_offset + lambda_set_variables.len();
|
|
|
|
let new_variables = VariableSubsSlice::reserve_into_subs(subs, all_vars_length);
|
|
|
|
for (((target_index, typ), region), abilities) in
|
|
(new_variables.indices().skip(type_arguments_offset))
|
|
.zip(type_arguments.into_iter())
|
|
.zip(type_argument_regions.into_iter())
|
|
.zip(type_argument_abilities.into_iter())
|
|
{
|
|
let copy_var = helper!(typ);
|
|
subs.variables[target_index] = copy_var;
|
|
if !types[abilities].is_empty() {
|
|
let region = types[region];
|
|
bind_to_abilities.push((Loc::at(region, copy_var), abilities));
|
|
}
|
|
}
|
|
|
|
let it = (new_variables.indices().skip(lambda_set_vars_offset))
|
|
.zip(lambda_set_variables.into_iter());
|
|
for (target_index, ls) in it {
|
|
let copy_var = helper!(ls);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
let it = (new_variables.indices().skip(infer_ext_vars_offset))
|
|
.zip(infer_ext_in_output_variables.into_iter());
|
|
for (target_index, ext_typ) in it {
|
|
let copy_var = helper!(ext_typ);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
AliasVariables {
|
|
variables_start: new_variables.start,
|
|
type_variables_len: type_arguments.len() as _,
|
|
lambda_set_variables_len: lambda_set_variables.len() as _,
|
|
all_variables_len: all_vars_length as _,
|
|
}
|
|
};
|
|
|
|
let alias_variable = if let Symbol::RESULT_RESULT = symbol {
|
|
roc_result_to_var(subs, rank, pools, arena, types, actual, &mut stack)
|
|
} else {
|
|
helper!(actual)
|
|
};
|
|
let content = Content::Alias(symbol, alias_variables, alias_variable, kind);
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
HostExposedAlias {
|
|
shared,
|
|
actual_type: alias_type,
|
|
actual_variable: actual_var,
|
|
} => {
|
|
let AliasShared {
|
|
symbol,
|
|
type_argument_abilities: _,
|
|
type_argument_regions: _,
|
|
lambda_set_variables,
|
|
infer_ext_in_output_variables: _, // TODO
|
|
} = types[shared];
|
|
|
|
let type_arguments = types.get_type_arguments(typ_index);
|
|
|
|
let alias_variables = {
|
|
let length = type_arguments.len() + lambda_set_variables.len();
|
|
let new_variables = VariableSubsSlice::reserve_into_subs(subs, length);
|
|
|
|
for (target_index, arg_type) in
|
|
(new_variables.indices()).zip(type_arguments.into_iter())
|
|
{
|
|
let copy_var = helper!(arg_type);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
let it = (new_variables.indices().skip(type_arguments.len()))
|
|
.zip(lambda_set_variables.into_iter());
|
|
for (target_index, ls) in it {
|
|
// We MUST do this now, otherwise when linking the ambient function during
|
|
// instantiation of the real var, there will be nothing to link against.
|
|
let copy_var = type_to_variable(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
arena,
|
|
aliases,
|
|
types,
|
|
ls,
|
|
true,
|
|
);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
AliasVariables {
|
|
variables_start: new_variables.start,
|
|
type_variables_len: type_arguments.len() as _,
|
|
lambda_set_variables_len: lambda_set_variables.len() as _,
|
|
all_variables_len: length as _,
|
|
}
|
|
};
|
|
|
|
// cannot use helper! here because this variable may be involved in unification below
|
|
let alias_variable = type_to_variable(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
abilities_store,
|
|
obligation_cache,
|
|
arena,
|
|
aliases,
|
|
types,
|
|
alias_type,
|
|
false,
|
|
);
|
|
// TODO(opaques): I think host-exposed aliases should always be structural
|
|
// (when does it make sense to give a host an opaque type?)
|
|
let content = Content::Alias(
|
|
symbol,
|
|
alias_variables,
|
|
alias_variable,
|
|
AliasKind::Structural,
|
|
);
|
|
let result = register_with_known_var(subs, destination, rank, pools, content);
|
|
|
|
// We only want to unify the actual_var with the alias once
|
|
// if it's already redirected (and therefore, redundant)
|
|
// don't do it again
|
|
if !subs.redundant(actual_var) {
|
|
let descriptor = subs.get(result);
|
|
subs.union(result, actual_var, descriptor);
|
|
}
|
|
|
|
result
|
|
}
|
|
Error => {
|
|
let content = Content::Error;
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
};
|
|
}
|
|
|
|
for (Loc { value: var, region }, abilities) in bind_to_abilities {
|
|
let abilities = &types[abilities];
|
|
match *subs.get_content_unchecked(var) {
|
|
Content::RigidVar(a) => {
|
|
// TODO(multi-abilities): check run cache
|
|
let abilities_slice =
|
|
SubsSlice::extend_new(&mut subs.symbol_names, abilities.sorted_iter().copied());
|
|
subs.set_content(var, Content::RigidAbleVar(a, abilities_slice));
|
|
}
|
|
Content::RigidAbleVar(_, abs)
|
|
if (subs.get_subs_slice(abs).iter()).eq(abilities.sorted_iter()) =>
|
|
{
|
|
// pass, already bound
|
|
}
|
|
_ => {
|
|
let abilities_slice =
|
|
SubsSlice::extend_new(&mut subs.symbol_names, abilities.sorted_iter().copied());
|
|
|
|
let flex_ability = register(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
Content::FlexAbleVar(None, abilities_slice),
|
|
);
|
|
|
|
let category = Category::OpaqueArg;
|
|
match unify(
|
|
&mut UEnv::new(subs),
|
|
var,
|
|
flex_ability,
|
|
Mode::EQ,
|
|
Polarity::OF_VALUE,
|
|
) {
|
|
Success {
|
|
vars: _,
|
|
must_implement_ability,
|
|
lambda_sets_to_specialize,
|
|
extra_metadata: _,
|
|
} => {
|
|
// No introduction needed
|
|
|
|
if !must_implement_ability.is_empty() {
|
|
let new_problems = obligation_cache.check_obligations(
|
|
subs,
|
|
abilities_store,
|
|
must_implement_ability,
|
|
AbilityImplError::BadExpr(region, category, flex_ability),
|
|
);
|
|
problems.extend(new_problems);
|
|
}
|
|
debug_assert!(lambda_sets_to_specialize
|
|
.drain()
|
|
.all(|(_, vals)| vals.is_empty()));
|
|
}
|
|
Failure(_vars, actual_type, expected_type, _bad_impls) => {
|
|
// No introduction needed
|
|
|
|
let problem = TypeError::BadExpr(
|
|
region,
|
|
category,
|
|
actual_type,
|
|
Expected::NoExpectation(expected_type),
|
|
);
|
|
|
|
problems.push(problem);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
result
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn roc_result_to_var(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
types: &mut Types,
|
|
result_type: Index<TypeTag>,
|
|
stack: &mut bumpalo::collections::Vec<'_, TypeToVar>,
|
|
) -> Variable {
|
|
match types[result_type] {
|
|
TypeTag::TagUnion(tags, _ext_openness) => {
|
|
let ext_slice = types.get_type_arguments(result_type);
|
|
|
|
debug_assert!(ext_slice.is_empty());
|
|
debug_assert!(tags.len() == 2);
|
|
|
|
let (tags_slice, payload_slices_slice) = types.union_tag_slices(tags);
|
|
|
|
if let ([err, ok], [err_args, ok_args]) =
|
|
(&types[tags_slice], &types[payload_slices_slice])
|
|
{
|
|
debug_assert_eq!(err, &subs.tag_names[0]);
|
|
debug_assert_eq!(ok, &subs.tag_names[1]);
|
|
|
|
debug_assert_eq!(err_args.len(), 1);
|
|
debug_assert_eq!(ok_args.len(), 1);
|
|
|
|
if let (Some(err_type), Some(ok_type)) =
|
|
(err_args.into_iter().next(), ok_args.into_iter().next())
|
|
{
|
|
let err_var = RegisterVariable::with_stack(
|
|
subs, rank, pools, arena, types, err_type, stack,
|
|
);
|
|
let ok_var = RegisterVariable::with_stack(
|
|
subs, rank, pools, arena, types, ok_type, stack,
|
|
);
|
|
|
|
let start = subs.variables.len() as u32;
|
|
let err_slice = SubsSlice::new(start, 1);
|
|
let ok_slice = SubsSlice::new(start + 1, 1);
|
|
|
|
subs.variables.push(err_var);
|
|
subs.variables.push(ok_var);
|
|
|
|
let variables = SubsSlice::new(subs.variable_slices.len() as _, 2);
|
|
subs.variable_slices.push(err_slice);
|
|
subs.variable_slices.push(ok_slice);
|
|
|
|
let union_tags = UnionTags::from_slices(Subs::RESULT_TAG_NAMES, variables);
|
|
let ext = TagExt::Any(Variable::EMPTY_TAG_UNION);
|
|
|
|
let content = Content::Structure(FlatType::TagUnion(union_tags, ext));
|
|
|
|
return register(subs, rank, pools, content);
|
|
}
|
|
}
|
|
|
|
unreachable!("invalid arguments to Result.Result; canonicalization should catch this!")
|
|
}
|
|
_ => unreachable!("not a valid type inside a Result.Result alias"),
|
|
}
|
|
}
|
|
|
|
fn insertion_sort_by<T, F>(arr: &mut [T], mut compare: F)
|
|
where
|
|
F: FnMut(&T, &T) -> std::cmp::Ordering,
|
|
{
|
|
for i in 1..arr.len() {
|
|
let val = &arr[i];
|
|
let mut j = i;
|
|
let pos = arr[..i]
|
|
.binary_search_by(|x| compare(x, val))
|
|
.unwrap_or_else(|pos| pos);
|
|
// Swap all elements until specific position.
|
|
while j > pos {
|
|
arr.swap(j - 1, j);
|
|
j -= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn sorted_no_duplicate_tags(tag_slices: &[TagName]) -> bool {
|
|
match tag_slices.split_first() {
|
|
None => true,
|
|
Some((first, rest)) => {
|
|
let mut current = first;
|
|
|
|
for next in rest {
|
|
if current >= next {
|
|
return false;
|
|
} else {
|
|
current = next;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
}
|
|
}
|
|
|
|
fn sort_and_deduplicate<T>(tag_vars: &mut bumpalo::collections::Vec<(TagName, T)>) {
|
|
insertion_sort_by(tag_vars, |(a, _), (b, _)| a.cmp(b));
|
|
|
|
// deduplicate, keeping the right-most occurrence of a tag name
|
|
let mut i = 0;
|
|
|
|
while i < tag_vars.len() {
|
|
match (tag_vars.get(i), tag_vars.get(i + 1)) {
|
|
(Some((t1, _)), Some((t2, _))) => {
|
|
if t1 == t2 {
|
|
tag_vars.remove(i);
|
|
} else {
|
|
i += 1;
|
|
}
|
|
}
|
|
_ => break,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Find whether the current run of tag names is in the subs.tag_names array already. If so,
|
|
/// we take a SubsSlice to the existing tag names, so we don't have to add/clone those tag names
|
|
/// and keep subs memory consumption low
|
|
fn find_tag_name_run(slice: &[TagName], subs: &mut Subs) -> Option<SubsSlice<TagName>> {
|
|
use std::cmp::Ordering;
|
|
|
|
let tag_name = slice.get(0)?;
|
|
|
|
let mut result = None;
|
|
|
|
// the `SubsSlice<TagName>` that inserting `slice` into subs would give
|
|
let bigger_slice = SubsSlice::new(subs.tag_names.len() as _, slice.len() as _);
|
|
|
|
match subs.tag_name_cache.get_mut(tag_name) {
|
|
Some(occupied) => {
|
|
let subs_slice = *occupied;
|
|
|
|
let prefix_slice = SubsSlice::new(subs_slice.start, slice.len() as _);
|
|
|
|
if slice.len() == 1 {
|
|
return Some(prefix_slice);
|
|
}
|
|
|
|
match slice.len().cmp(&subs_slice.len()) {
|
|
Ordering::Less => {
|
|
// we might have a prefix
|
|
let tag_names = &subs.tag_names[subs_slice.start as usize..];
|
|
|
|
for (from_subs, from_slice) in tag_names.iter().zip(slice.iter()) {
|
|
if from_subs != from_slice {
|
|
return None;
|
|
}
|
|
}
|
|
|
|
result = Some(prefix_slice);
|
|
}
|
|
Ordering::Equal => {
|
|
let tag_names = &subs.tag_names[subs_slice.indices()];
|
|
|
|
for (from_subs, from_slice) in tag_names.iter().zip(slice.iter()) {
|
|
if from_subs != from_slice {
|
|
return None;
|
|
}
|
|
}
|
|
|
|
result = Some(subs_slice);
|
|
}
|
|
Ordering::Greater => {
|
|
// switch to the bigger slice that is not inserted yet, but will be soon
|
|
*occupied = bigger_slice;
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
subs.tag_name_cache.push(tag_name, bigger_slice);
|
|
}
|
|
}
|
|
|
|
result
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn register_tag_arguments(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
types: &mut Types,
|
|
stack: &mut bumpalo::collections::Vec<'_, TypeToVar>,
|
|
arguments: Slice<TypeTag>,
|
|
) -> VariableSubsSlice {
|
|
if arguments.is_empty() {
|
|
VariableSubsSlice::default()
|
|
} else {
|
|
let new_variables = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
|
|
let it = new_variables.indices().zip(arguments.into_iter());
|
|
|
|
for (target_index, argument) in it {
|
|
let var =
|
|
RegisterVariable::with_stack(subs, rank, pools, arena, types, argument, stack);
|
|
subs.variables[target_index] = var;
|
|
}
|
|
|
|
new_variables
|
|
}
|
|
}
|
|
|
|
/// Assumes that the tags are sorted and there are no duplicates!
|
|
fn insert_tags_fast_path(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
types: &mut Types,
|
|
union_tags: UnionTags,
|
|
stack: &mut bumpalo::collections::Vec<'_, TypeToVar>,
|
|
) -> UnionTags {
|
|
let (tags, payload_slices) = types.union_tag_slices(union_tags);
|
|
|
|
debug_assert_eq!(tags.len(), payload_slices.len());
|
|
|
|
if let [arguments_slice] = &types[payload_slices] {
|
|
let arguments_slice = *arguments_slice;
|
|
|
|
let variable_slice =
|
|
register_tag_arguments(subs, rank, pools, arena, types, stack, arguments_slice);
|
|
|
|
let new_variable_slices =
|
|
SubsSlice::extend_new(&mut subs.variable_slices, [variable_slice]);
|
|
|
|
macro_rules! subs_tag_name {
|
|
($tag_name_slice:expr) => {
|
|
return UnionTags::from_slices($tag_name_slice, new_variable_slices)
|
|
};
|
|
}
|
|
|
|
match types[tags][0].0.as_str() {
|
|
"Ok" => subs_tag_name!(Subs::TAG_NAME_OK.as_slice()),
|
|
"Err" => subs_tag_name!(Subs::TAG_NAME_ERR.as_slice()),
|
|
"InvalidNumStr" => subs_tag_name!(Subs::TAG_NAME_INVALID_NUM_STR.as_slice()),
|
|
"BadUtf8" => subs_tag_name!(Subs::TAG_NAME_BAD_UTF_8.as_slice()),
|
|
"OutOfBounds" => subs_tag_name!(Subs::TAG_NAME_OUT_OF_BOUNDS.as_slice()),
|
|
_other => {}
|
|
}
|
|
}
|
|
|
|
let new_variable_slices = SubsSlice::reserve_variable_slices(subs, tags.len());
|
|
match find_tag_name_run(&types[tags], subs) {
|
|
Some(new_tag_names) => {
|
|
let it = (new_variable_slices.indices()).zip(payload_slices.into_iter());
|
|
|
|
for (variable_slice_index, arguments_index) in it {
|
|
let arguments = types[arguments_index];
|
|
subs.variable_slices[variable_slice_index] =
|
|
register_tag_arguments(subs, rank, pools, arena, types, stack, arguments);
|
|
}
|
|
|
|
UnionTags::from_slices(new_tag_names, new_variable_slices)
|
|
}
|
|
None => {
|
|
let new_tag_names = SubsSlice::reserve_tag_names(subs, tags.len());
|
|
|
|
let it = (new_variable_slices.indices())
|
|
.zip(new_tag_names.indices())
|
|
.zip(tags.into_iter())
|
|
.zip(payload_slices.into_iter());
|
|
|
|
for (((variable_slice_index, tag_name_index), tag_name), arguments_index) in it {
|
|
let arguments = types[arguments_index];
|
|
subs.variable_slices[variable_slice_index] =
|
|
register_tag_arguments(subs, rank, pools, arena, types, stack, arguments);
|
|
|
|
subs.tag_names[tag_name_index] = types[tag_name].clone();
|
|
}
|
|
|
|
UnionTags::from_slices(new_tag_names, new_variable_slices)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn insert_tags_slow_path(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
types: &mut Types,
|
|
union_tags: UnionTags,
|
|
mut tag_vars: bumpalo::collections::Vec<(TagName, VariableSubsSlice)>,
|
|
stack: &mut bumpalo::collections::Vec<'_, TypeToVar>,
|
|
) -> UnionTags {
|
|
let (tags, payload_slices) = types.union_tag_slices(union_tags);
|
|
|
|
for (tag_index, tag_argument_types_index) in (tags.into_iter()).zip(payload_slices.into_iter())
|
|
{
|
|
let tag_argument_types = &types[tag_argument_types_index];
|
|
|
|
let new_slice = VariableSubsSlice::reserve_into_subs(subs, tag_argument_types.len());
|
|
|
|
for (i, arg) in (new_slice.indices()).zip(tag_argument_types.into_iter()) {
|
|
let var = RegisterVariable::with_stack(subs, rank, pools, arena, types, arg, stack);
|
|
subs.variables[i] = var;
|
|
}
|
|
|
|
tag_vars.push((types[tag_index].clone(), new_slice));
|
|
}
|
|
|
|
sort_and_deduplicate(&mut tag_vars);
|
|
|
|
UnionTags::insert_slices_into_subs(subs, tag_vars)
|
|
}
|
|
|
|
fn type_to_union_tags(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
types: &mut Types,
|
|
union_tags: UnionTags,
|
|
opt_ext_slice: Slice<TypeTag>,
|
|
ext_openness: ExtImplicitOpenness,
|
|
stack: &mut bumpalo::collections::Vec<'_, TypeToVar>,
|
|
) -> (UnionTags, TagExt) {
|
|
use bumpalo::collections::Vec;
|
|
|
|
let (tags, _) = types.union_tag_slices(union_tags);
|
|
|
|
let sorted = tags.len() == 1 || sorted_no_duplicate_tags(&types[tags]);
|
|
|
|
debug_assert!(opt_ext_slice.len() <= 1);
|
|
|
|
match opt_ext_slice.into_iter().next() {
|
|
None => {
|
|
let ext = Variable::EMPTY_TAG_UNION;
|
|
|
|
let union_tags = if sorted {
|
|
insert_tags_fast_path(subs, rank, pools, arena, types, union_tags, stack)
|
|
} else {
|
|
let tag_vars = Vec::with_capacity_in(tags.len(), arena);
|
|
insert_tags_slow_path(subs, rank, pools, arena, types, union_tags, tag_vars, stack)
|
|
};
|
|
|
|
(union_tags, TagExt::Any(ext))
|
|
}
|
|
Some(ext) => {
|
|
let mut tag_vars = Vec::with_capacity_in(tags.len(), arena);
|
|
|
|
let temp_ext = {
|
|
let temp_ext_var =
|
|
RegisterVariable::with_stack(subs, rank, pools, arena, types, ext, stack);
|
|
TagExt::from_can(temp_ext_var, ext_openness)
|
|
};
|
|
let (it, ext) =
|
|
roc_types::types::gather_tags_unsorted_iter(subs, UnionTags::default(), temp_ext)
|
|
.expect("extension var could not be seen as tag union");
|
|
|
|
tag_vars.extend(it.map(|(n, v)| (n.clone(), v)));
|
|
|
|
let union_tags = if tag_vars.is_empty() && sorted {
|
|
insert_tags_fast_path(subs, rank, pools, arena, types, union_tags, stack)
|
|
} else {
|
|
insert_tags_slow_path(subs, rank, pools, arena, types, union_tags, tag_vars, stack)
|
|
};
|
|
|
|
(union_tags, ext)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn create_union_lambda(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
types: &mut Types,
|
|
closure: Symbol,
|
|
capture_types: Slice<TypeTag>,
|
|
stack: &mut bumpalo::collections::Vec<'_, TypeToVar>,
|
|
) -> UnionLambdas {
|
|
let variable_slice =
|
|
register_tag_arguments(subs, rank, pools, arena, types, stack, capture_types);
|
|
let new_variable_slices = SubsSlice::extend_new(&mut subs.variable_slices, [variable_slice]);
|
|
|
|
let lambda_name_slice = SubsSlice::extend_new(&mut subs.symbol_names, [closure]);
|
|
|
|
UnionLambdas::from_slices(lambda_name_slice, new_variable_slices)
|
|
}
|
|
|
|
fn check_for_infinite_type(
|
|
subs: &mut Subs,
|
|
problems: &mut Vec<TypeError>,
|
|
symbol: Symbol,
|
|
loc_var: Loc<Variable>,
|
|
) {
|
|
let var = loc_var.value;
|
|
|
|
'next_occurs_check: while let Err((_, chain)) = subs.occurs(var) {
|
|
// walk the chain till we find a tag union or lambda set, starting from the variable that
|
|
// occurred recursively, which is always at the end of the chain.
|
|
for &var in chain.iter().rev() {
|
|
match *subs.get_content_without_compacting(var) {
|
|
Content::Structure(FlatType::TagUnion(tags, ext_var)) => {
|
|
subs.mark_tag_union_recursive(var, tags, ext_var);
|
|
continue 'next_occurs_check;
|
|
}
|
|
Content::LambdaSet(subs::LambdaSet {
|
|
solved,
|
|
recursion_var: OptVariable::NONE,
|
|
unspecialized,
|
|
ambient_function: ambient_function_var,
|
|
}) => {
|
|
subs.mark_lambda_set_recursive(
|
|
var,
|
|
solved,
|
|
unspecialized,
|
|
ambient_function_var,
|
|
);
|
|
continue 'next_occurs_check;
|
|
}
|
|
_ => { /* fall through */ }
|
|
}
|
|
}
|
|
|
|
circular_error(subs, problems, symbol, &loc_var);
|
|
}
|
|
}
|
|
|
|
fn circular_error(
|
|
subs: &mut Subs,
|
|
problems: &mut Vec<TypeError>,
|
|
symbol: Symbol,
|
|
loc_var: &Loc<Variable>,
|
|
) {
|
|
let var = loc_var.value;
|
|
let error_type = subs.var_to_error_type(var, Polarity::OF_VALUE);
|
|
let problem = TypeError::CircularType(loc_var.region, symbol, error_type);
|
|
|
|
subs.set_content(var, Content::Error);
|
|
|
|
problems.push(problem);
|
|
}
|
|
|
|
/// Generalizes variables at the `young_rank`, which did not escape a let-binding
|
|
/// into a lower scope.
|
|
///
|
|
/// Ensures that variables introduced at the `young_rank`, but that should be
|
|
/// stuck at a lower level, are marked at that level and not generalized at the
|
|
/// present `young_rank`. See [adjust_rank].
|
|
fn generalize(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
visit_mark: Mark,
|
|
young_rank: Rank,
|
|
pools: &mut Pools,
|
|
) {
|
|
let young_vars = std::mem::take(pools.get_mut(young_rank));
|
|
let rank_table = pool_to_rank_table(subs, young_mark, young_rank, young_vars);
|
|
|
|
// Get the ranks right for each entry.
|
|
// Start at low ranks so we only have to pass over the information once.
|
|
for (index, table) in rank_table.iter().enumerate() {
|
|
for &var in table.iter() {
|
|
adjust_rank(subs, young_mark, visit_mark, Rank::from(index), var);
|
|
}
|
|
}
|
|
|
|
let (mut last_pool, all_but_last_pool) = rank_table.split_last();
|
|
|
|
// For variables that have rank lowerer than young_rank, register them in
|
|
// the appropriate old pool if they are not redundant.
|
|
for vars in all_but_last_pool {
|
|
for var in vars {
|
|
let rank = subs.get_rank(var);
|
|
|
|
pools.get_mut(rank).push(var);
|
|
}
|
|
}
|
|
|
|
// For variables with rank young_rank, if rank < young_rank: register in old pool,
|
|
// otherwise generalize
|
|
for var in last_pool.drain(..) {
|
|
let desc_rank = subs.get_rank(var);
|
|
|
|
if desc_rank < young_rank {
|
|
pools.get_mut(desc_rank).push(var);
|
|
} else {
|
|
subs.set_rank(var, Rank::GENERALIZED);
|
|
}
|
|
}
|
|
|
|
// re-use the last_vector (which likely has a good capacity for future runs)
|
|
debug_assert!(last_pool.is_empty());
|
|
*pools.get_mut(young_rank) = last_pool;
|
|
}
|
|
|
|
/// Sort the variables into buckets by rank.
|
|
#[inline]
|
|
fn pool_to_rank_table(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
young_rank: Rank,
|
|
mut young_vars: Vec<Variable>,
|
|
) -> Pools {
|
|
let mut pools = Pools::new(young_rank.into_usize() + 1);
|
|
|
|
// the vast majority of young variables have young_rank
|
|
let mut i = 0;
|
|
while i < young_vars.len() {
|
|
let var = subs.get_root_key(young_vars[i]);
|
|
|
|
subs.set_mark_unchecked(var, young_mark);
|
|
let rank = subs.get_rank_unchecked(var);
|
|
|
|
if rank != young_rank {
|
|
debug_assert!(rank.into_usize() < young_rank.into_usize() + 1);
|
|
|
|
pools.get_mut(rank).push(var);
|
|
|
|
// swap an element in; don't increment i
|
|
young_vars.swap_remove(i);
|
|
} else {
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
std::mem::swap(pools.get_mut(young_rank), &mut young_vars);
|
|
|
|
pools
|
|
}
|
|
|
|
/// Adjust variable ranks such that ranks never increase as you move deeper.
|
|
/// This way the outermost rank is representative of the entire structure.
|
|
///
|
|
/// This procedure also catches type variables at a given rank that contain types at a higher rank.
|
|
/// In such cases, the contained types must be lowered to the rank of the outer type. This is
|
|
/// critical for soundness of the type inference; for example consider
|
|
///
|
|
/// ```ignore(illustrative)
|
|
/// \f -> # rank=1
|
|
/// g = \x -> f x # rank=2
|
|
/// g
|
|
/// ```
|
|
///
|
|
/// say that during the solving of the outer body at rank 1 we conditionally give `f` the type
|
|
/// `a -> b (rank=1)`. Without rank-adjustment, the type of `g` would be solved as `c -> d (rank=2)` for
|
|
/// some `c ~ a`, `d ~ b`, and hence would be generalized to the function `c -> d`, even though `c`
|
|
/// and `d` are individually at rank 1 after unfication with `a` and `b` respectively.
|
|
/// This is incorrect; the whole of `c -> d` must lie at rank 1, and only be generalized at the
|
|
/// level that `f` is introduced.
|
|
fn adjust_rank(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
visit_mark: Mark,
|
|
group_rank: Rank,
|
|
var: Variable,
|
|
) -> Rank {
|
|
let var = subs.get_root_key(var);
|
|
|
|
let desc_rank = subs.get_rank_unchecked(var);
|
|
let desc_mark = subs.get_mark_unchecked(var);
|
|
|
|
if desc_mark == young_mark {
|
|
let content = *subs.get_content_unchecked(var);
|
|
|
|
// Mark the variable as visited before adjusting content, as it may be cyclic.
|
|
subs.set_mark_unchecked(var, visit_mark);
|
|
|
|
// Adjust the nested types' ranks, making sure that no nested unbound type variable is at a
|
|
// higher rank than the group rank this `var` is at
|
|
let max_rank = adjust_rank_content(subs, young_mark, visit_mark, group_rank, &content);
|
|
|
|
subs.set_rank_unchecked(var, max_rank);
|
|
subs.set_mark_unchecked(var, visit_mark);
|
|
|
|
max_rank
|
|
} else if desc_mark == visit_mark {
|
|
// we have already visited this variable
|
|
// (probably two variables had the same root)
|
|
desc_rank
|
|
} else {
|
|
let min_rank = group_rank.min(desc_rank);
|
|
|
|
// TODO from elm-compiler: how can min_rank ever be group_rank?
|
|
subs.set_rank_unchecked(var, min_rank);
|
|
subs.set_mark_unchecked(var, visit_mark);
|
|
|
|
min_rank
|
|
}
|
|
}
|
|
|
|
fn adjust_rank_content(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
visit_mark: Mark,
|
|
group_rank: Rank,
|
|
content: &Content,
|
|
) -> Rank {
|
|
use roc_types::subs::Content::*;
|
|
use roc_types::subs::FlatType::*;
|
|
|
|
match content {
|
|
FlexVar(_) | RigidVar(_) | FlexAbleVar(_, _) | RigidAbleVar(_, _) | Error => group_rank,
|
|
|
|
RecursionVar { .. } => group_rank,
|
|
|
|
Structure(flat_type) => {
|
|
match flat_type {
|
|
Apply(_, args) => {
|
|
let mut rank = Rank::toplevel();
|
|
|
|
for var_index in args.into_iter() {
|
|
let var = subs[var_index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
Func(arg_vars, closure_var, ret_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ret_var);
|
|
|
|
// TODO investigate further.
|
|
//
|
|
// My theory is that because the closure_var contains variables already
|
|
// contained in the signature only, it does not need to be part of the rank
|
|
// calculuation
|
|
if true {
|
|
rank = rank.max(adjust_rank(
|
|
subs,
|
|
young_mark,
|
|
visit_mark,
|
|
group_rank,
|
|
*closure_var,
|
|
));
|
|
}
|
|
|
|
for index in arg_vars.into_iter() {
|
|
let var = subs[index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
EmptyRecord | EmptyTuple => {
|
|
// from elm-compiler: THEORY: an empty record never needs to get generalized
|
|
//
|
|
// But for us, that theory does not hold, because there might be type variables hidden
|
|
// inside a lambda set but not on the left or right of an arrow, and records should not
|
|
// force de-generalization in such cases.
|
|
//
|
|
// See https://github.com/roc-lang/roc/issues/3641 for a longer discussion and
|
|
// example.
|
|
group_rank
|
|
}
|
|
|
|
// THEORY: an empty tag never needs to get generalized
|
|
EmptyTagUnion => Rank::toplevel(),
|
|
|
|
Record(fields, ext_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
|
|
|
|
for (_, var_index, field_index) in fields.iter_all() {
|
|
let var = subs[var_index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
|
|
// When generalizing annotations with rigid optional/required fields,
|
|
// we want to promote them to non-rigid, so that usages at
|
|
// specialized sites don't have to exactly include the optional/required field.
|
|
match subs[field_index] {
|
|
RecordField::RigidOptional(()) => {
|
|
subs[field_index] = RecordField::Optional(());
|
|
}
|
|
RecordField::RigidRequired(()) => {
|
|
subs[field_index] = RecordField::Required(());
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
Tuple(elems, ext_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
|
|
|
|
for (_, var_index) in elems.iter_all() {
|
|
let var = subs[var_index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
TagUnion(tags, ext_var) => {
|
|
let mut rank =
|
|
adjust_rank(subs, young_mark, visit_mark, group_rank, ext_var.var());
|
|
// For performance reasons, we only keep one representation of empty tag unions
|
|
// in subs. That representation exists at rank 0, which we don't always want to
|
|
// reflect the whole tag union as, because doing so may over-generalize free
|
|
// type variables.
|
|
// Normally this is not a problem because of the loop below that maximizes the
|
|
// rank from nested types in the union. But suppose we have the simple tag
|
|
// union
|
|
// [Z]{}
|
|
// there are no nested types in the tags, and the empty tag union is at rank 0,
|
|
// so we promote the tag union to rank 0. Now if we introduce the presence
|
|
// constraint
|
|
// [Z]{} += [S a]
|
|
// we'll wind up with [Z, S a]{}, but it will be at rank 0, and "a" will get
|
|
// over-generalized. Really, the empty tag union should be introduced at
|
|
// whatever current group rank we're at, and so that's how we encode it here.
|
|
if ext_var.var() == Variable::EMPTY_TAG_UNION && rank.is_generalized() {
|
|
rank = group_rank;
|
|
}
|
|
|
|
for (_, index) in tags.iter_all() {
|
|
let slice = subs[index];
|
|
for var_index in slice {
|
|
let var = subs[var_index];
|
|
rank = rank
|
|
.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
FunctionOrTagUnion(_, _, ext_var) => {
|
|
adjust_rank(subs, young_mark, visit_mark, group_rank, ext_var.var())
|
|
}
|
|
|
|
RecursiveTagUnion(rec_var, tags, ext_var) => {
|
|
let mut rank =
|
|
adjust_rank(subs, young_mark, visit_mark, group_rank, ext_var.var());
|
|
|
|
for (_, index) in tags.iter_all() {
|
|
let slice = subs[index];
|
|
for var_index in slice {
|
|
let var = subs[var_index];
|
|
rank = rank
|
|
.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
}
|
|
|
|
// The recursion var may have a higher rank than the tag union itself, if it is
|
|
// erroneous and escapes into a region where it is let-generalized before it is
|
|
// constrained back down to the rank it originated from.
|
|
//
|
|
// For example, see the `recursion_var_specialization_error` reporting test -
|
|
// there, we have
|
|
//
|
|
// Job a : [Job (List (Job a)) a]
|
|
//
|
|
// job : Job Str
|
|
//
|
|
// when job is
|
|
// Job lst _ -> lst == ""
|
|
//
|
|
// In this case, `lst` is generalized and has a higher rank for the type
|
|
// `(List (Job a)) as a` - notice that only the recursion var `a` is active
|
|
// here, not the entire recursive tag union. In the body of this branch, `lst`
|
|
// becomes a type error, but the nested recursion var `a` is left untouched,
|
|
// because it is nested under the of `lst`, not the surface type that becomes
|
|
// an error.
|
|
//
|
|
// Had this not become a type error, `lst` would then be constrained against
|
|
// `job`, and its rank would get pulled back down. So, this can only happen in
|
|
// the presence of type errors.
|
|
//
|
|
// In all other cases, the recursion var has the same rank as the tag union itself
|
|
// all types it uses are also in the tags already, so it cannot influence the
|
|
// rank.
|
|
if cfg!(debug_assertions)
|
|
&& !matches!(
|
|
subs.get_content_without_compacting(*rec_var),
|
|
Content::Error | Content::FlexVar(..)
|
|
)
|
|
{
|
|
let rec_var_rank =
|
|
adjust_rank(subs, young_mark, visit_mark, group_rank, *rec_var);
|
|
|
|
debug_assert!(
|
|
rank >= rec_var_rank,
|
|
"rank was {:?} but recursion var <{:?}>{:?} has higher rank {:?}",
|
|
rank,
|
|
rec_var,
|
|
subs.get_content_without_compacting(*rec_var),
|
|
rec_var_rank
|
|
);
|
|
}
|
|
|
|
rank
|
|
}
|
|
}
|
|
}
|
|
|
|
Alias(_, args, real_var, _) => {
|
|
let mut rank = Rank::toplevel();
|
|
|
|
// Avoid visiting lambda set variables stored in the type variables of the alias
|
|
// independently.
|
|
//
|
|
// Why? Lambda set variables on the alias are not truly type arguments to the alias,
|
|
// and instead are links to the lambda sets that appear in functions under the real
|
|
// type of the alias. If their ranks are adjusted independently, we end up looking at
|
|
// function types "inside-out" - when the whole point of rank-adjustment is to look
|
|
// from the outside-in to determine at what rank a type lies!
|
|
//
|
|
// So, just wait to adjust their ranks until we visit the function types that contain
|
|
// them. If they should be generalized (or pulled to a lower rank) that will happen
|
|
// then; otherwise, we risk generalizing a lambda set too early, when its enclosing
|
|
// function type should not be.
|
|
let adjustable_variables =
|
|
(args.type_variables().into_iter()).chain(args.infer_ext_in_output_variables());
|
|
|
|
for var_index in adjustable_variables {
|
|
let var = subs[var_index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
// from elm-compiler: THEORY: anything in the real_var would be Rank::toplevel()
|
|
// this theory is not true in Roc! aliases of function types capture the closure var
|
|
rank = rank.max(adjust_rank(
|
|
subs, young_mark, visit_mark, group_rank, *real_var,
|
|
));
|
|
|
|
rank
|
|
}
|
|
|
|
LambdaSet(subs::LambdaSet {
|
|
solved,
|
|
recursion_var,
|
|
unspecialized,
|
|
ambient_function: ambient_function_var,
|
|
}) => {
|
|
let mut rank = group_rank;
|
|
|
|
for (_, index) in solved.iter_all() {
|
|
let slice = subs[index];
|
|
for var_index in slice {
|
|
let var = subs[var_index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
}
|
|
|
|
for uls_index in *unspecialized {
|
|
let Uls(var, _, _) = subs[uls_index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
if let (true, Some(rec_var)) = (cfg!(debug_assertions), recursion_var.into_variable()) {
|
|
// THEORY: unlike the situation for recursion vars under recursive tag unions,
|
|
// recursive vars inside lambda sets can't escape into higher let-generalized regions
|
|
// because lambda sets aren't user-facing.
|
|
//
|
|
// So the recursion var should be fully accounted by everything else in the lambda set
|
|
// (since it appears in the lambda set), and if the rank is higher, it's either a
|
|
// bug or our theory is wrong and indeed they can escape into higher regions.
|
|
let rec_var_rank = adjust_rank(subs, young_mark, visit_mark, group_rank, rec_var);
|
|
|
|
debug_assert!(
|
|
rank >= rec_var_rank,
|
|
"rank was {:?} but recursion var <{:?}>{:?} has higher rank {:?}",
|
|
rank,
|
|
rec_var,
|
|
subs.get_content_without_compacting(rec_var),
|
|
rec_var_rank
|
|
);
|
|
}
|
|
|
|
// NEVER TOUCH the ambient function var, it would already have been passed through.
|
|
{
|
|
let _ = ambient_function_var;
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
RangedNumber(_) => group_rank,
|
|
}
|
|
}
|
|
|
|
/// Introduce some variables to Pools at the given rank.
|
|
/// Also, set each of their ranks in Subs to be the given rank.
|
|
pub(crate) fn introduce(subs: &mut Subs, rank: Rank, pools: &mut Pools, vars: &[Variable]) {
|
|
let pool: &mut Vec<Variable> = pools.get_mut(rank);
|
|
|
|
for &var in vars.iter() {
|
|
subs.set_rank(var, rank);
|
|
}
|
|
|
|
pool.extend(vars);
|
|
}
|
|
|
|
pub(crate) fn deep_copy_var_in(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
var: Variable,
|
|
arena: &Bump,
|
|
) -> Variable {
|
|
let mut visited = bumpalo::collections::Vec::with_capacity_in(256, arena);
|
|
|
|
let pool = pools.get_mut(rank);
|
|
|
|
let var = subs.get_root_key(var);
|
|
match deep_copy_var_decision(subs, rank, var) {
|
|
ControlFlow::Break(copy) => copy,
|
|
ControlFlow::Continue(copy) => {
|
|
deep_copy_var_help(subs, rank, pool, &mut visited, var, copy);
|
|
|
|
// we have tracked all visited variables, and can now traverse them
|
|
// in one go (without looking at the UnificationTable) and clear the copy field
|
|
for var in visited {
|
|
subs.set_copy_unchecked(var, OptVariable::NONE);
|
|
}
|
|
|
|
copy
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn has_trivial_copy(subs: &Subs, root_var: Variable) -> Option<Variable> {
|
|
let existing_copy = subs.get_copy_unchecked(root_var);
|
|
|
|
if let Some(copy) = existing_copy.into_variable() {
|
|
Some(copy)
|
|
} else if subs.get_rank_unchecked(root_var) != Rank::GENERALIZED {
|
|
Some(root_var)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn deep_copy_var_decision(
|
|
subs: &mut Subs,
|
|
max_rank: Rank,
|
|
var: Variable,
|
|
) -> ControlFlow<Variable, Variable> {
|
|
let var = subs.get_root_key(var);
|
|
if let Some(copy) = has_trivial_copy(subs, var) {
|
|
ControlFlow::Break(copy)
|
|
} else {
|
|
let copy_descriptor = Descriptor {
|
|
content: Content::Structure(FlatType::EmptyTagUnion),
|
|
rank: max_rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
};
|
|
|
|
let copy = subs.fresh(copy_descriptor);
|
|
|
|
// Link the original variable to the new variable. This lets us
|
|
// avoid making multiple copies of the variable we are instantiating.
|
|
//
|
|
// Need to do this before recursively copying to avoid looping.
|
|
subs.set_mark_unchecked(var, Mark::NONE);
|
|
subs.set_copy_unchecked(var, copy.into());
|
|
|
|
ControlFlow::Continue(copy)
|
|
}
|
|
}
|
|
|
|
fn deep_copy_var_help(
|
|
subs: &mut Subs,
|
|
max_rank: Rank,
|
|
pool: &mut Vec<Variable>,
|
|
visited: &mut bumpalo::collections::Vec<'_, Variable>,
|
|
initial_source: Variable,
|
|
initial_copy: Variable,
|
|
) -> Variable {
|
|
use roc_types::subs::Content::*;
|
|
use roc_types::subs::FlatType::*;
|
|
|
|
struct DeepCopyVarWork {
|
|
source: Variable,
|
|
copy: Variable,
|
|
}
|
|
|
|
let initial = DeepCopyVarWork {
|
|
source: initial_source,
|
|
copy: initial_copy,
|
|
};
|
|
let mut stack = vec![initial];
|
|
|
|
macro_rules! work {
|
|
($variable:expr) => {{
|
|
let var = subs.get_root_key($variable);
|
|
match deep_copy_var_decision(subs, max_rank, var) {
|
|
ControlFlow::Break(copy) => copy,
|
|
ControlFlow::Continue(copy) => {
|
|
stack.push(DeepCopyVarWork { source: var, copy });
|
|
|
|
copy
|
|
}
|
|
}
|
|
}};
|
|
}
|
|
|
|
macro_rules! copy_sequence {
|
|
($length:expr, $variables:expr) => {{
|
|
let new_variables = SubsSlice::reserve_into_subs(subs, $length as _);
|
|
for (target_index, var_index) in (new_variables.indices()).zip($variables) {
|
|
let var = subs[var_index];
|
|
let copy_var = work!(var);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
new_variables
|
|
}};
|
|
}
|
|
|
|
macro_rules! copy_union {
|
|
($tags:expr) => {{
|
|
let new_variable_slices = SubsSlice::reserve_variable_slices(subs, $tags.len());
|
|
|
|
let it = (new_variable_slices.indices()).zip($tags.variables());
|
|
for (target_index, index) in it {
|
|
let slice = subs[index];
|
|
|
|
let new_variables = copy_sequence!(slice.len(), slice);
|
|
subs.variable_slices[target_index] = new_variables;
|
|
}
|
|
|
|
UnionLabels::from_slices($tags.labels(), new_variable_slices)
|
|
}};
|
|
}
|
|
|
|
// When generalizing annotations with `Openness` extensions
|
|
// we want to promote them to `Any`, so that usages at
|
|
// specialized sites can grow unboundedly and are not bound to
|
|
// openness-polymorphism.
|
|
macro_rules! copy_tag_ext {
|
|
($ext:expr) => {
|
|
TagExt::Any(work!($ext.var()))
|
|
};
|
|
}
|
|
|
|
while let Some(DeepCopyVarWork { source: var, copy }) = stack.pop() {
|
|
visited.push(var);
|
|
pool.push(copy);
|
|
|
|
let content = *subs.get_content_unchecked(var);
|
|
|
|
// Now we recursively copy the content of the variable.
|
|
// We have already marked the variable as copied, so we
|
|
// will not repeat this work or crawl this variable again.
|
|
match content {
|
|
Structure(flat_type) => {
|
|
let new_flat_type = match flat_type {
|
|
Apply(symbol, arguments) => {
|
|
let new_arguments = copy_sequence!(arguments.len(), arguments);
|
|
|
|
Apply(symbol, new_arguments)
|
|
}
|
|
|
|
Func(arguments, closure_var, ret_var) => {
|
|
let new_ret_var = work!(ret_var);
|
|
let new_closure_var = work!(closure_var);
|
|
|
|
let new_arguments = copy_sequence!(arguments.len(), arguments);
|
|
|
|
Func(new_arguments, new_closure_var, new_ret_var)
|
|
}
|
|
|
|
same @ EmptyRecord | same @ EmptyTuple | same @ EmptyTagUnion => same,
|
|
|
|
Record(fields, ext_var) => {
|
|
let record_fields = {
|
|
let new_variables =
|
|
copy_sequence!(fields.len(), fields.iter_variables());
|
|
|
|
// When copying a let-generalized record to a specialized region, rigid
|
|
// optionals just become optionals.
|
|
let field_types = subs.get_subs_slice(fields.record_fields());
|
|
let has_rigid_optional_field = field_types
|
|
.iter()
|
|
.any(|f| matches!(f, RecordField::RigidOptional(..)));
|
|
|
|
let new_field_types_start = if has_rigid_optional_field {
|
|
let field_types = field_types.to_vec();
|
|
let slice = SubsSlice::extend_new(
|
|
&mut subs.record_fields,
|
|
field_types.into_iter().map(|f| match f {
|
|
RecordField::RigidOptional(())
|
|
| RecordField::RigidRequired(()) => internal_error!("Rigid optional/required should be generalized to non-rigid by this point"),
|
|
|
|
RecordField::Demanded(_)
|
|
| RecordField::Required(_)
|
|
| RecordField::Optional(_) => f,
|
|
}),
|
|
);
|
|
slice.start
|
|
} else {
|
|
fields.field_types_start
|
|
};
|
|
|
|
RecordFields {
|
|
length: fields.length,
|
|
field_names_start: fields.field_names_start,
|
|
variables_start: new_variables.start,
|
|
field_types_start: new_field_types_start,
|
|
}
|
|
};
|
|
|
|
Record(record_fields, work!(ext_var))
|
|
}
|
|
|
|
Tuple(elems, ext_var) => {
|
|
let tuple_elems = {
|
|
let new_variables = copy_sequence!(elems.len(), elems.iter_variables());
|
|
|
|
TupleElems {
|
|
length: elems.length,
|
|
variables_start: new_variables.start,
|
|
elem_index_start: elems.elem_index_start,
|
|
}
|
|
};
|
|
|
|
Tuple(tuple_elems, work!(ext_var))
|
|
}
|
|
|
|
TagUnion(tags, ext_var) => {
|
|
let union_tags = copy_union!(tags);
|
|
|
|
TagUnion(union_tags, copy_tag_ext!(ext_var))
|
|
}
|
|
|
|
FunctionOrTagUnion(tag_name, symbol, ext_var) => {
|
|
FunctionOrTagUnion(tag_name, symbol, copy_tag_ext!(ext_var))
|
|
}
|
|
|
|
RecursiveTagUnion(rec_var, tags, ext_var) => {
|
|
let union_tags = copy_union!(tags);
|
|
|
|
RecursiveTagUnion(work!(rec_var), union_tags, copy_tag_ext!(ext_var))
|
|
}
|
|
};
|
|
|
|
subs.set_content_unchecked(copy, Structure(new_flat_type));
|
|
}
|
|
|
|
FlexVar(_) | FlexAbleVar(_, _) | Error => {
|
|
subs.set_content_unchecked(copy, content);
|
|
}
|
|
|
|
RecursionVar {
|
|
opt_name,
|
|
structure,
|
|
} => {
|
|
let content = RecursionVar {
|
|
opt_name,
|
|
structure: work!(structure),
|
|
};
|
|
|
|
subs.set_content_unchecked(copy, content);
|
|
}
|
|
|
|
RigidVar(name) => {
|
|
subs.set_content_unchecked(copy, FlexVar(Some(name)));
|
|
}
|
|
|
|
RigidAbleVar(name, ability) => {
|
|
subs.set_content_unchecked(copy, FlexAbleVar(Some(name), ability));
|
|
}
|
|
|
|
Alias(symbol, arguments, real_type_var, kind) => {
|
|
let new_variables =
|
|
copy_sequence!(arguments.all_variables_len, arguments.all_variables());
|
|
|
|
let new_arguments = AliasVariables {
|
|
variables_start: new_variables.start,
|
|
..arguments
|
|
};
|
|
|
|
let new_real_type_var = work!(real_type_var);
|
|
let new_content = Alias(symbol, new_arguments, new_real_type_var, kind);
|
|
|
|
subs.set_content_unchecked(copy, new_content);
|
|
}
|
|
|
|
LambdaSet(subs::LambdaSet {
|
|
solved,
|
|
recursion_var,
|
|
unspecialized,
|
|
ambient_function: ambient_function_var,
|
|
}) => {
|
|
let lambda_set_var = copy;
|
|
|
|
let new_solved = copy_union!(solved);
|
|
let new_rec_var = recursion_var.map(|v| work!(v));
|
|
let new_unspecialized = SubsSlice::reserve_uls_slice(subs, unspecialized.len());
|
|
|
|
for (new_uls_index, uls_index) in
|
|
(new_unspecialized.into_iter()).zip(unspecialized.into_iter())
|
|
{
|
|
let Uls(var, sym, region) = subs[uls_index];
|
|
let new_var = work!(var);
|
|
|
|
deep_copy_uls_precondition(subs, var, new_var);
|
|
|
|
subs[new_uls_index] = Uls(new_var, sym, region);
|
|
|
|
subs.uls_of_var.add(new_var, lambda_set_var);
|
|
}
|
|
|
|
let new_ambient_function_var = work!(ambient_function_var);
|
|
debug_assert_ne!(
|
|
ambient_function_var, new_ambient_function_var,
|
|
"lambda set cloned but its ambient function wasn't?"
|
|
);
|
|
|
|
subs.set_content_unchecked(
|
|
lambda_set_var,
|
|
LambdaSet(subs::LambdaSet {
|
|
solved: new_solved,
|
|
recursion_var: new_rec_var,
|
|
unspecialized: new_unspecialized,
|
|
ambient_function: new_ambient_function_var,
|
|
}),
|
|
);
|
|
}
|
|
|
|
RangedNumber(range) => {
|
|
let new_content = RangedNumber(range);
|
|
|
|
subs.set_content_unchecked(copy, new_content);
|
|
}
|
|
}
|
|
}
|
|
|
|
initial_copy
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn deep_copy_uls_precondition(subs: &Subs, original_var: Variable, new_var: Variable) {
|
|
if cfg!(debug_assertions) {
|
|
let content = subs.get_content_without_compacting(original_var);
|
|
|
|
debug_assert!(
|
|
matches!(
|
|
content,
|
|
Content::FlexAbleVar(..) | Content::RigidAbleVar(..)
|
|
),
|
|
"var in unspecialized lamba set is not bound to an ability, it is {:?}",
|
|
roc_types::subs::SubsFmtContent(content, subs)
|
|
);
|
|
debug_assert!(
|
|
original_var != new_var,
|
|
"unspecialized lamba set var was not instantiated"
|
|
);
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn register(subs: &mut Subs, rank: Rank, pools: &mut Pools, content: Content) -> Variable {
|
|
let descriptor = Descriptor {
|
|
content,
|
|
rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
};
|
|
|
|
let var = subs.fresh(descriptor);
|
|
|
|
pools.get_mut(rank).push(var);
|
|
|
|
var
|
|
}
|
|
|
|
fn register_with_known_var(
|
|
subs: &mut Subs,
|
|
var: Variable,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
content: Content,
|
|
) -> Variable {
|
|
let descriptor = Descriptor {
|
|
content,
|
|
rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
};
|
|
|
|
subs.set(var, descriptor);
|
|
|
|
pools.get_mut(rank).push(var);
|
|
|
|
var
|
|
}
|