roc/crates/compiler/solve/src/solve.rs
2023-04-21 12:05:51 +02:00

4497 lines
169 KiB
Rust

#![allow(clippy::too_many_arguments)]
use crate::ability::{
resolve_ability_specialization, type_implementing_specialization, AbilityImplError,
CheckedDerives, ObligationCache, PendingDerivesTable, Resolved,
};
use crate::module::Solved;
use crate::specialize::{
compact_lambda_sets_of_vars, AwaitingSpecializations, CompactionResult, DerivedEnv, SolvePhase,
};
use bumpalo::Bump;
use roc_can::abilities::{AbilitiesStore, MemberSpecializationInfo};
use roc_can::constraint::Constraint::{self, *};
use roc_can::constraint::{Constraints, Cycle, LetConstraint, OpportunisticResolve, TypeOrVar};
use roc_can::expected::{Expected, PExpected};
use roc_can::expr::PendingDerives;
use roc_can::module::ExposedByModule;
use roc_collections::all::MutMap;
use roc_collections::soa::{Index, Slice};
use roc_debug_flags::dbg_do;
#[cfg(debug_assertions)]
use roc_debug_flags::ROC_VERIFY_RIGID_LET_GENERALIZED;
use roc_derive::SharedDerivedModule;
use roc_error_macros::internal_error;
use roc_module::ident::TagName;
use roc_module::symbol::{ModuleId, Symbol};
use roc_problem::can::CycleEntry;
use roc_region::all::Loc;
use roc_solve_problem::TypeError;
use roc_types::subs::{
self, AliasVariables, Content, Descriptor, FlatType, GetSubsSlice, LambdaSet, Mark,
OptVariable, Rank, RecordFields, Subs, SubsSlice, TagExt, TupleElems, UlsOfVar, UnionLabels,
UnionLambdas, UnionTags, Variable, VariableSubsSlice,
};
use roc_types::types::{
gather_fields_unsorted_iter, gather_tuple_elems_unsorted_iter, AliasKind, AliasShared,
Category, ExtImplicitOpenness, OptAbleVar, Polarity, Reason, RecordField, Type, TypeExtension,
TypeTag, Types, Uls,
};
use roc_unify::unify::{
unify, unify_introduced_ability_specialization, Env as UEnv, Mode, Obligated,
SpecializationLsetCollector, Unified::*,
};
// Type checking system adapted from Elm by Evan Czaplicki, BSD-3-Clause Licensed
// https://github.com/elm/compiler
// Thank you, Evan!
// A lot of energy was put into making type inference fast. That means it's pretty intimidating.
//
// Fundamentally, type inference assigns very general types based on syntax, and then tries to
// make all the pieces fit together. For instance when writing
//
// > f x
//
// We know that `f` is a function, and thus must have some type `a -> b`.
// `x` is just a variable, that gets the type `c`
//
// Next comes constraint generation. For `f x` to be well-typed,
// it must be the case that `c = a`, So a constraint `Eq(c, a)` is generated.
// But `Eq` is a bit special: `c` does not need to equal `a` exactly, but they need to be equivalent.
// This allows for instance the use of aliases. `c` could be an alias, and so looks different from
// `a`, but they still represent the same type.
//
// Then we get to solving, which happens in this file.
//
// When we hit an `Eq` constraint, then we check whether the two involved types are in fact
// equivalent using unification, and when they are, we can substitute one for the other.
//
// When all constraints are processed, and no unification errors have occurred, then the program
// is type-correct. Otherwise the errors are reported.
//
// Now, coming back to efficiency, this type checker uses *ranks* to optimize
// The rank tracks the number of let-bindings a variable is "under". Top-level definitions
// have rank 1. A let in a top-level definition gets rank 2, and so on.
//
// This has to do with generalization of type variables. This is described here
//
// http://okmij.org/ftp/ML/generalization.html#levels
//
// The problem is that when doing inference naively, this program would fail to typecheck
//
// f =
// id = \x -> x
//
// { a: id 1, b: id "foo" }
//
// Because `id` is applied to an integer, the type `Int -> Int` is inferred, which then gives a
// type error for `id "foo"`.
//
// Thus instead the inferred type for `id` is generalized (see the `generalize` function) to `a -> a`.
// Ranks are used to limit the number of type variables considered for generalization. Only those inside
// of the let (so those used in inferring the type of `\x -> x`) are considered.
use roc_types::types::Alias;
#[derive(Debug, Clone, Copy)]
struct DelayedAliasVariables {
start: u32,
type_variables_len: u8,
lambda_set_variables_len: u8,
recursion_variables_len: u8,
infer_ext_in_output_variables_len: u8,
}
impl DelayedAliasVariables {
fn recursion_variables(self, variables: &mut [OptAbleVar]) -> &mut [OptAbleVar] {
let start = self.start as usize
+ (self.type_variables_len + self.lambda_set_variables_len) as usize;
let length = self.recursion_variables_len as usize;
&mut variables[start..][..length]
}
fn lambda_set_variables(self, variables: &mut [OptAbleVar]) -> &mut [OptAbleVar] {
let start = self.start as usize + self.type_variables_len as usize;
let length = self.lambda_set_variables_len as usize;
&mut variables[start..][..length]
}
fn type_variables(self, variables: &mut [OptAbleVar]) -> &mut [OptAbleVar] {
let start = self.start as usize;
let length = self.type_variables_len as usize;
&mut variables[start..][..length]
}
fn infer_ext_in_output_variables(self, variables: &mut [OptAbleVar]) -> &mut [OptAbleVar] {
let start = self.start as usize
+ (self.type_variables_len
+ self.lambda_set_variables_len
+ self.recursion_variables_len) as usize;
let length = self.infer_ext_in_output_variables_len as usize;
&mut variables[start..][..length]
}
}
#[derive(Debug, Default)]
pub struct Aliases {
aliases: Vec<(Symbol, Index<TypeTag>, DelayedAliasVariables, AliasKind)>,
variables: Vec<OptAbleVar>,
}
impl Aliases {
pub fn with_capacity(cap: usize) -> Self {
Self {
aliases: Vec::with_capacity(cap),
variables: Vec::with_capacity(cap * 2),
}
}
pub fn insert(&mut self, types: &mut Types, symbol: Symbol, alias: Alias) {
let alias_variables =
{
let start = self.variables.len() as _;
self.variables.extend(
alias
.type_variables
.iter()
.map(|x| OptAbleVar::from(&x.value)),
);
self.variables.extend(alias.lambda_set_variables.iter().map(
|x| match x.as_inner() {
Type::Variable(v) => OptAbleVar::unbound(*v),
_ => unreachable!("lambda set type is not a variable"),
},
));
let recursion_variables_len = alias.recursion_variables.len() as _;
self.variables.extend(
alias
.recursion_variables
.iter()
.copied()
.map(OptAbleVar::unbound),
);
self.variables.extend(
alias
.infer_ext_in_output_variables
.iter()
.map(|v| OptAbleVar::unbound(*v)),
);
DelayedAliasVariables {
start,
type_variables_len: alias.type_variables.len() as _,
lambda_set_variables_len: alias.lambda_set_variables.len() as _,
recursion_variables_len,
infer_ext_in_output_variables_len: alias.infer_ext_in_output_variables.len()
as _,
}
};
// TODO: can we construct Aliases from TypeTag directly?
let alias_typ = types.from_old_type(&alias.typ);
self.aliases
.push((symbol, alias_typ, alias_variables, alias.kind));
}
fn instantiate_result_result(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
alias_variables: AliasVariables,
) -> Variable {
let tag_names_slice = Subs::RESULT_TAG_NAMES;
let err_slice = SubsSlice::new(alias_variables.variables_start + 1, 1);
let ok_slice = SubsSlice::new(alias_variables.variables_start, 1);
let variable_slices =
SubsSlice::extend_new(&mut subs.variable_slices, [err_slice, ok_slice]);
let union_tags = UnionTags::from_slices(tag_names_slice, variable_slices);
let ext_var = TagExt::Any(Variable::EMPTY_TAG_UNION);
let flat_type = FlatType::TagUnion(union_tags, ext_var);
let content = Content::Structure(flat_type);
register(subs, rank, pools, content)
}
/// Build an alias of the form `Num range := range`
fn build_num_opaque(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
symbol: Symbol,
range_var: Variable,
) -> Variable {
let content = Content::Alias(
symbol,
AliasVariables::insert_into_subs(subs, [range_var], [], []),
range_var,
AliasKind::Opaque,
);
register(subs, rank, pools, content)
}
fn instantiate_builtin_aliases_real_var(
&mut self,
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
symbol: Symbol,
alias_variables: AliasVariables,
) -> Option<(Variable, AliasKind)> {
match symbol {
Symbol::RESULT_RESULT => {
let var = Self::instantiate_result_result(subs, rank, pools, alias_variables);
Some((var, AliasKind::Structural))
}
Symbol::NUM_NUM | Symbol::NUM_INTEGER | Symbol::NUM_FLOATINGPOINT => {
// Num range := range | Integer range := range | FloatingPoint range := range
let range_var = subs.variables[alias_variables.variables_start as usize];
Some((range_var, AliasKind::Opaque))
}
Symbol::NUM_INT => {
// Int range : Num (Integer range)
//
// build `Integer range := range`
let integer_content_var = Self::build_num_opaque(
subs,
rank,
pools,
Symbol::NUM_INTEGER,
subs.variables[alias_variables.variables_start as usize],
);
// build `Num (Integer range) := Integer range`
let num_content_var =
Self::build_num_opaque(subs, rank, pools, Symbol::NUM_NUM, integer_content_var);
Some((num_content_var, AliasKind::Structural))
}
Symbol::NUM_FRAC => {
// Frac range : Num (FloatingPoint range)
//
// build `FloatingPoint range := range`
let fpoint_content_var = Self::build_num_opaque(
subs,
rank,
pools,
Symbol::NUM_FLOATINGPOINT,
subs.variables[alias_variables.variables_start as usize],
);
// build `Num (FloatingPoint range) := FloatingPoint range`
let num_content_var =
Self::build_num_opaque(subs, rank, pools, Symbol::NUM_NUM, fpoint_content_var);
Some((num_content_var, AliasKind::Structural))
}
Symbol::NUM_SIGNED8 => Some((Variable::SIGNED8, AliasKind::Opaque)),
Symbol::NUM_SIGNED16 => Some((Variable::SIGNED16, AliasKind::Opaque)),
Symbol::NUM_SIGNED32 => Some((Variable::SIGNED32, AliasKind::Opaque)),
Symbol::NUM_SIGNED64 => Some((Variable::SIGNED64, AliasKind::Opaque)),
Symbol::NUM_SIGNED128 => Some((Variable::SIGNED128, AliasKind::Opaque)),
Symbol::NUM_UNSIGNED8 => Some((Variable::UNSIGNED8, AliasKind::Opaque)),
Symbol::NUM_UNSIGNED16 => Some((Variable::UNSIGNED16, AliasKind::Opaque)),
Symbol::NUM_UNSIGNED32 => Some((Variable::UNSIGNED32, AliasKind::Opaque)),
Symbol::NUM_UNSIGNED64 => Some((Variable::UNSIGNED64, AliasKind::Opaque)),
Symbol::NUM_UNSIGNED128 => Some((Variable::UNSIGNED128, AliasKind::Opaque)),
Symbol::NUM_BINARY32 => Some((Variable::BINARY32, AliasKind::Opaque)),
Symbol::NUM_BINARY64 => Some((Variable::BINARY64, AliasKind::Opaque)),
_ => None,
}
}
fn instantiate_real_var(
&mut self,
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
problems: &mut Vec<TypeError>,
abilities_store: &AbilitiesStore,
obligation_cache: &mut ObligationCache,
arena: &bumpalo::Bump,
types: &mut Types,
symbol: Symbol,
alias_variables: AliasVariables,
) -> (Variable, AliasKind) {
// hardcoded instantiations for builtin aliases
if let Some((var, kind)) = Self::instantiate_builtin_aliases_real_var(
self,
subs,
rank,
pools,
symbol,
alias_variables,
) {
return (var, kind);
}
let (typ, delayed_variables, kind) =
match self.aliases.iter().find(|(s, _, _, _)| *s == symbol) {
None => internal_error!(
"Alias {:?} not registered in delayed aliases! {:?}",
symbol,
&self.aliases
),
Some(&(_, typ, delayed_variables, kind)) => (typ, delayed_variables, kind),
};
let mut substitutions: MutMap<_, _> = Default::default();
let old_type_variables = delayed_variables.type_variables(&mut self.variables);
let new_type_variables = &subs.variables[alias_variables.type_variables().indices()];
for (old, new) in old_type_variables.iter_mut().zip(new_type_variables) {
// if constraint gen duplicated a type these variables could be the same
// (happens very often in practice)
if old.var != *new {
substitutions.insert(old.var, *new);
}
}
for OptAbleVar {
var: rec_var,
opt_abilities,
} in delayed_variables
.recursion_variables(&mut self.variables)
.iter_mut()
{
debug_assert!(opt_abilities.is_none());
let new_var = subs.fresh_unnamed_flex_var();
substitutions.insert(*rec_var, new_var);
}
let old_lambda_set_variables = delayed_variables.lambda_set_variables(&mut self.variables);
let new_lambda_set_variables =
&subs.variables[alias_variables.lambda_set_variables().indices()];
for (old, new) in old_lambda_set_variables
.iter_mut()
.zip(new_lambda_set_variables)
{
debug_assert!(old.opt_abilities.is_none());
if old.var != *new {
substitutions.insert(old.var, *new);
}
}
let old_infer_ext_vars =
delayed_variables.infer_ext_in_output_variables(&mut self.variables);
let new_infer_ext_vars =
&subs.variables[alias_variables.infer_ext_in_output_variables().indices()];
for (old, new) in old_infer_ext_vars.iter_mut().zip(new_infer_ext_vars) {
debug_assert!(old.opt_abilities.is_none());
if old.var != *new {
substitutions.insert(old.var, *new);
}
}
let typ = if !substitutions.is_empty() {
types.clone_with_variable_substitutions(typ, &substitutions)
} else {
typ
};
let alias_variable = type_to_variable(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
arena,
self,
types,
typ,
false,
);
(alias_variable, kind)
}
}
#[derive(Clone, Debug, Default)]
pub struct Env {
symbols: Vec<Symbol>,
variables: Vec<Variable>,
}
impl Env {
pub fn vars_by_symbol(&self) -> impl Iterator<Item = (Symbol, Variable)> + '_ {
let it1 = self.symbols.iter().copied();
let it2 = self.variables.iter().copied();
it1.zip(it2)
}
#[inline(always)]
fn get_var_by_symbol(&self, symbol: &Symbol) -> Option<Variable> {
self.symbols
.iter()
.position(|s| s == symbol)
.map(|index| self.variables[index])
}
#[inline(always)]
fn insert_symbol_var_if_vacant(&mut self, symbol: Symbol, var: Variable) {
match self.symbols.iter().position(|s| *s == symbol) {
None => {
// symbol is not in vars_by_symbol yet; insert it
self.symbols.push(symbol);
self.variables.push(var);
}
Some(_) => {
// do nothing
}
}
}
}
const DEFAULT_POOLS: usize = 8;
#[derive(Clone, Debug)]
pub struct Pools(Vec<Vec<Variable>>);
impl Default for Pools {
fn default() -> Self {
Pools::new(DEFAULT_POOLS)
}
}
impl Pools {
pub fn new(num_pools: usize) -> Self {
Pools(vec![Vec::new(); num_pools])
}
pub fn len(&self) -> usize {
self.0.len()
}
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
pub fn get_mut(&mut self, rank: Rank) -> &mut Vec<Variable> {
match self.0.get_mut(rank.into_usize()) {
Some(reference) => reference,
None => panic!("Compiler bug: could not find pool at rank {}", rank),
}
}
pub fn get(&self, rank: Rank) -> &Vec<Variable> {
match self.0.get(rank.into_usize()) {
Some(reference) => reference,
None => panic!("Compiler bug: could not find pool at rank {}", rank),
}
}
pub fn iter(&self) -> std::slice::Iter<'_, Vec<Variable>> {
self.0.iter()
}
pub fn split_last(mut self) -> (Vec<Variable>, Vec<Vec<Variable>>) {
let last = self
.0
.pop()
.unwrap_or_else(|| panic!("Attempted to split_last() on non-empty Pools"));
(last, self.0)
}
pub fn extend_to(&mut self, n: usize) {
for _ in self.len()..n {
self.0.push(Vec::new());
}
}
}
#[derive(Clone)]
struct State {
env: Env,
mark: Mark,
}
#[allow(clippy::too_many_arguments)] // TODO: put params in a context/env var
pub fn run(
home: ModuleId,
types: Types,
constraints: &Constraints,
problems: &mut Vec<TypeError>,
mut subs: Subs,
aliases: &mut Aliases,
constraint: &Constraint,
pending_derives: PendingDerives,
abilities_store: &mut AbilitiesStore,
exposed_by_module: &ExposedByModule,
derived_module: SharedDerivedModule,
) -> (Solved<Subs>, Env) {
let env = run_in_place(
home,
types,
constraints,
problems,
&mut subs,
aliases,
constraint,
pending_derives,
abilities_store,
exposed_by_module,
derived_module,
);
(Solved(subs), env)
}
/// Modify an existing subs in-place instead
#[allow(clippy::too_many_arguments)] // TODO: put params in a context/env var
fn run_in_place(
_home: ModuleId, // TODO: remove me?
mut types: Types,
constraints: &Constraints,
problems: &mut Vec<TypeError>,
subs: &mut Subs,
aliases: &mut Aliases,
constraint: &Constraint,
pending_derives: PendingDerives,
abilities_store: &mut AbilitiesStore,
exposed_by_module: &ExposedByModule,
derived_module: SharedDerivedModule,
) -> Env {
let mut pools = Pools::default();
let state = State {
env: Env::default(),
mark: Mark::NONE.next(),
};
let rank = Rank::toplevel();
let arena = Bump::new();
let mut obligation_cache = ObligationCache::default();
let mut awaiting_specializations = AwaitingSpecializations::default();
let pending_derives = PendingDerivesTable::new(
subs,
&mut types,
aliases,
pending_derives,
problems,
abilities_store,
&mut obligation_cache,
);
let CheckedDerives {
legal_derives: _,
problems: derives_problems,
} = obligation_cache.check_derives(subs, abilities_store, pending_derives);
problems.extend(derives_problems);
let derived_env = DerivedEnv {
derived_module: &derived_module,
exposed_types: exposed_by_module,
};
let state = solve(
&arena,
types,
constraints,
state,
rank,
&mut pools,
problems,
aliases,
subs,
constraint,
abilities_store,
&mut obligation_cache,
&mut awaiting_specializations,
&derived_env,
);
state.env
}
#[derive(Debug)]
enum Work<'a> {
Constraint {
env: &'a Env,
rank: Rank,
constraint: &'a Constraint,
},
CheckForInfiniteTypes(LocalDefVarsVec<(Symbol, Loc<Variable>)>),
/// The ret_con part of a let constraint that does NOT introduces rigid and/or flex variables
LetConNoVariables {
env: &'a Env,
rank: Rank,
let_con: &'a LetConstraint,
/// The variables used to store imported types in the Subs.
/// The `Contents` are copied from the source module, but to
/// mimic `type_to_var`, we must add these variables to `Pools`
/// at the correct rank
pool_variables: &'a [Variable],
},
/// The ret_con part of a let constraint that introduces rigid and/or flex variables
///
/// These introduced variables must be generalized, hence this variant
/// is more complex than `LetConNoVariables`.
LetConIntroducesVariables {
env: &'a Env,
rank: Rank,
let_con: &'a LetConstraint,
/// The variables used to store imported types in the Subs.
/// The `Contents` are copied from the source module, but to
/// mimic `type_to_var`, we must add these variables to `Pools`
/// at the correct rank
pool_variables: &'a [Variable],
},
}
#[allow(clippy::too_many_arguments)]
fn solve(
arena: &Bump,
mut can_types: Types,
constraints: &Constraints,
mut state: State,
rank: Rank,
pools: &mut Pools,
problems: &mut Vec<TypeError>,
aliases: &mut Aliases,
subs: &mut Subs,
constraint: &Constraint,
abilities_store: &mut AbilitiesStore,
obligation_cache: &mut ObligationCache,
awaiting_specializations: &mut AwaitingSpecializations,
derived_env: &DerivedEnv,
) -> State {
let initial = Work::Constraint {
env: &Env::default(),
rank,
constraint,
};
let mut stack = vec![initial];
while let Some(work_item) = stack.pop() {
let (env, rank, constraint) = match work_item {
Work::Constraint {
env,
rank,
constraint,
} => {
// the default case; actually solve this constraint
(env, rank, constraint)
}
Work::CheckForInfiniteTypes(def_vars) => {
// after a LetCon, we must check if any of the variables that we introduced
// loop back to themselves after solving the ret_constraint
for (symbol, loc_var) in def_vars.iter() {
check_for_infinite_type(subs, problems, *symbol, *loc_var);
}
continue;
}
Work::LetConNoVariables {
env,
rank,
let_con,
pool_variables,
} => {
// NOTE be extremely careful with shadowing here
let offset = let_con.defs_and_ret_constraint.index();
let ret_constraint = &constraints.constraints[offset + 1];
// Add a variable for each def to new_vars_by_env.
let local_def_vars = LocalDefVarsVec::from_def_types(
constraints,
rank,
pools,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
subs,
let_con.def_types,
);
pools.get_mut(rank).extend(pool_variables);
let mut new_env = env.clone();
for (symbol, loc_var) in local_def_vars.iter() {
check_ability_specialization(
arena,
subs,
derived_env,
pools,
rank,
abilities_store,
obligation_cache,
awaiting_specializations,
problems,
*symbol,
*loc_var,
);
new_env.insert_symbol_var_if_vacant(*symbol, loc_var.value);
}
stack.push(Work::Constraint {
env: arena.alloc(new_env),
rank,
constraint: ret_constraint,
});
// Check for infinite types first
stack.push(Work::CheckForInfiniteTypes(local_def_vars));
continue;
}
Work::LetConIntroducesVariables {
env,
rank,
let_con,
pool_variables,
} => {
// NOTE be extremely careful with shadowing here
let offset = let_con.defs_and_ret_constraint.index();
let ret_constraint = &constraints.constraints[offset + 1];
let mark = state.mark;
let saved_env = state.env;
let young_mark = mark;
let visit_mark = young_mark.next();
let final_mark = visit_mark.next();
let intro_rank = if let_con.generalizable.0 {
rank.next()
} else {
rank
};
// Add a variable for each def to local_def_vars.
let local_def_vars = LocalDefVarsVec::from_def_types(
constraints,
intro_rank,
pools,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
subs,
let_con.def_types,
);
// If the let-binding can be generalized, introduce all variables at the next rank;
// those that persist at the next rank after rank-adjustment will be generalized.
//
// Otherwise, introduce all variables at the current rank; since none of them will
// end up at the next rank, none will be generalized.
if let_con.generalizable.0 {
pools.get_mut(rank.next()).extend(pool_variables);
} else {
pools.get_mut(rank).extend(pool_variables);
}
debug_assert_eq!(
// Check that no variable ended up in a higher rank than the next rank.. that
// would mean we generalized one level more than we need to!
{
let offenders = pools
.get(rank.next())
.iter()
.filter(|var| {
subs.get_rank(**var).into_usize() > rank.next().into_usize()
})
.collect::<Vec<_>>();
let result = offenders.len();
if result > 0 {
eprintln!("subs = {:?}", &subs);
eprintln!("offenders = {:?}", &offenders);
eprintln!("let_con.def_types = {:?}", &let_con.def_types);
}
result
},
0
);
// If the let-binding is eligible for generalization, it was solved at the
// next rank. The variables introduced in the let-binding that are still at
// that rank (intuitively, they did not "escape" into the lower level
// before or after the let-binding) now get to be generalized.
generalize(subs, young_mark, visit_mark, rank.next(), pools);
debug_assert!(pools.get(rank.next()).is_empty(), "variables left over in let-binding scope, but they should all be in a lower scope or generalized now");
// check that things went well
dbg_do!(ROC_VERIFY_RIGID_LET_GENERALIZED, {
let rigid_vars = &constraints.variables[let_con.rigid_vars.indices()];
// NOTE the `subs.redundant` check does not come from elm.
// It's unclear whether this is a bug with our implementation
// (something is redundant that shouldn't be)
// or that it just never came up in elm.
let mut it = rigid_vars
.iter()
.filter(|&var| {
!subs.redundant(*var) && subs.get_rank(*var) != Rank::GENERALIZED
})
.peekable();
if it.peek().is_some() {
let failing: Vec<_> = it.collect();
println!("Rigids {:?}", &rigid_vars);
println!("Failing {:?}", failing);
debug_assert!(false);
}
});
let mut new_env = env.clone();
for (symbol, loc_var) in local_def_vars.iter() {
check_ability_specialization(
arena,
subs,
derived_env,
pools,
rank,
abilities_store,
obligation_cache,
awaiting_specializations,
problems,
*symbol,
*loc_var,
);
new_env.insert_symbol_var_if_vacant(*symbol, loc_var.value);
}
// Note that this vars_by_symbol is the one returned by the
// previous call to solve()
let state_for_ret_con = State {
env: saved_env,
mark: final_mark,
};
// Now solve the body, using the new vars_by_symbol which includes
// the assignments' name-to-variable mappings.
stack.push(Work::Constraint {
env: arena.alloc(new_env),
rank,
constraint: ret_constraint,
});
// Check for infinite types first
stack.push(Work::CheckForInfiniteTypes(local_def_vars));
state = state_for_ret_con;
continue;
}
};
state = match constraint {
True => state,
SaveTheEnvironment => {
let mut copy = state;
copy.env = env.clone();
copy
}
Eq(roc_can::constraint::Eq(type_index, expectation_index, category_index, region)) => {
let category = &constraints.categories[category_index.index()];
let actual = either_type_index_to_var(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*type_index,
);
let expectation = &constraints.expectations[expectation_index.index()];
let expected = either_type_index_to_var(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*expectation.get_type_ref(),
);
match unify(
&mut UEnv::new(subs),
actual,
expected,
Mode::EQ,
Polarity::OF_VALUE,
) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
introduce(subs, rank, pools, &vars);
if !must_implement_ability.is_empty() {
let new_problems = obligation_cache.check_obligations(
subs,
abilities_store,
must_implement_ability,
AbilityImplError::BadExpr(*region, category.clone(), actual),
);
problems.extend(new_problems);
}
compact_lambdas_and_check_obligations(
arena,
pools,
problems,
subs,
abilities_store,
obligation_cache,
awaiting_specializations,
derived_env,
lambda_sets_to_specialize,
);
state
}
Failure(vars, actual_type, expected_type, _bad_impls) => {
introduce(subs, rank, pools, &vars);
let problem = TypeError::BadExpr(
*region,
category.clone(),
actual_type,
expectation.replace_ref(expected_type),
);
problems.push(problem);
state
}
}
}
Store(source_index, target, _filename, _linenr) => {
// a special version of Eq that is used to store types in the AST.
// IT DOES NOT REPORT ERRORS!
let actual = either_type_index_to_var(
subs,
rank,
pools,
&mut vec![], // don't report any extra errors
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*source_index,
);
let actual_desc = subs.get(actual);
subs.union(*target, actual, actual_desc);
state
}
Lookup(symbol, expectation_index, region) => {
match env.get_var_by_symbol(symbol) {
Some(var) => {
// Deep copy the vars associated with this symbol before unifying them.
// Otherwise, suppose we have this:
//
// identity = \a -> a
//
// x = identity 5
//
// When we call (identity 5), it's important that we not unify
// on identity's original vars. If we do, the type of `identity` will be
// mutated to be `Int -> Int` instead of `a -> `, which would be incorrect;
// the type of `identity` is more general than that!
//
// Instead, we want to unify on a *copy* of its vars. If the copy unifies
// successfully (in this case, to `Int -> Int`), we can use that to
// infer the type of this lookup (in this case, `Int`) without ever
// having mutated the original.
//
// If this Lookup is targeting a value in another module,
// then we copy from that module's Subs into our own. If the value
// is being looked up in this module, then we use our Subs as both
// the source and destination.
let actual = deep_copy_var_in(subs, rank, pools, var, arena);
let expectation = &constraints.expectations[expectation_index.index()];
let expected = either_type_index_to_var(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*expectation.get_type_ref(),
);
match unify(
&mut UEnv::new(subs),
actual,
expected,
Mode::EQ,
Polarity::OF_VALUE,
) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
introduce(subs, rank, pools, &vars);
if !must_implement_ability.is_empty() {
let new_problems = obligation_cache.check_obligations(
subs,
abilities_store,
must_implement_ability,
AbilityImplError::BadExpr(
*region,
Category::Lookup(*symbol),
actual,
),
);
problems.extend(new_problems);
}
compact_lambdas_and_check_obligations(
arena,
pools,
problems,
subs,
abilities_store,
obligation_cache,
awaiting_specializations,
derived_env,
lambda_sets_to_specialize,
);
state
}
Failure(vars, actual_type, expected_type, _bad_impls) => {
introduce(subs, rank, pools, &vars);
let problem = TypeError::BadExpr(
*region,
Category::Lookup(*symbol),
actual_type,
expectation.replace_ref(expected_type),
);
problems.push(problem);
state
}
}
}
None => {
problems.push(TypeError::UnexposedLookup(*symbol));
state
}
}
}
And(slice) => {
let it = constraints.constraints[slice.indices()].iter().rev();
for sub_constraint in it {
stack.push(Work::Constraint {
env,
rank,
constraint: sub_constraint,
})
}
state
}
Pattern(type_index, expectation_index, category_index, region)
| PatternPresence(type_index, expectation_index, category_index, region) => {
let category = &constraints.pattern_categories[category_index.index()];
let actual = either_type_index_to_var(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*type_index,
);
let expectation = &constraints.pattern_expectations[expectation_index.index()];
let expected = either_type_index_to_var(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*expectation.get_type_ref(),
);
let mode = match constraint {
PatternPresence(..) => Mode::PRESENT,
_ => Mode::EQ,
};
match unify(
&mut UEnv::new(subs),
actual,
expected,
mode,
Polarity::OF_PATTERN,
) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
introduce(subs, rank, pools, &vars);
if !must_implement_ability.is_empty() {
let new_problems = obligation_cache.check_obligations(
subs,
abilities_store,
must_implement_ability,
AbilityImplError::BadPattern(*region, category.clone(), actual),
);
problems.extend(new_problems);
}
compact_lambdas_and_check_obligations(
arena,
pools,
problems,
subs,
abilities_store,
obligation_cache,
awaiting_specializations,
derived_env,
lambda_sets_to_specialize,
);
state
}
Failure(vars, actual_type, expected_type, _bad_impls) => {
introduce(subs, rank, pools, &vars);
let problem = TypeError::BadPattern(
*region,
category.clone(),
actual_type,
expectation.replace_ref(expected_type),
);
problems.push(problem);
state
}
}
}
Let(index, pool_slice) => {
let let_con = &constraints.let_constraints[index.index()];
let offset = let_con.defs_and_ret_constraint.index();
let defs_constraint = &constraints.constraints[offset];
let ret_constraint = &constraints.constraints[offset + 1];
let flex_vars = &constraints.variables[let_con.flex_vars.indices()];
let rigid_vars = &constraints.variables[let_con.rigid_vars.indices()];
let pool_variables = &constraints.variables[pool_slice.indices()];
if matches!(&ret_constraint, True) && let_con.rigid_vars.is_empty() {
debug_assert!(pool_variables.is_empty());
introduce(subs, rank, pools, flex_vars);
// If the return expression is guaranteed to solve,
// solve the assignments themselves and move on.
stack.push(Work::Constraint {
env,
rank,
constraint: defs_constraint,
});
state
} else if let_con.rigid_vars.is_empty() && let_con.flex_vars.is_empty() {
// items are popped from the stack in reverse order. That means that we'll
// first solve then defs_constraint, and then (eventually) the ret_constraint.
//
// Note that the LetConSimple gets the current env and rank,
// and not the env/rank from after solving the defs_constraint
stack.push(Work::LetConNoVariables {
env,
rank,
let_con,
pool_variables,
});
stack.push(Work::Constraint {
env,
rank,
constraint: defs_constraint,
});
state
} else {
// If the let-binding is generalizable, work at the next rank (which will be
// the rank at which introduced variables will become generalized, if they end up
// staying there); otherwise, stay at the current level.
let binding_rank = if let_con.generalizable.0 {
rank.next()
} else {
rank
};
// determine the next pool
if binding_rank.into_usize() < pools.len() {
// Nothing to do, we already accounted for the next rank, no need to
// adjust the pools
} else {
// we should be off by one at this point
debug_assert_eq!(binding_rank.into_usize(), 1 + pools.len());
pools.extend_to(binding_rank.into_usize());
}
let pool: &mut Vec<Variable> = pools.get_mut(binding_rank);
// Introduce the variables of this binding, and extend the pool at our binding
// rank.
for &var in rigid_vars.iter().chain(flex_vars.iter()) {
subs.set_rank(var, binding_rank);
}
pool.reserve(rigid_vars.len() + flex_vars.len());
pool.extend(rigid_vars.iter());
pool.extend(flex_vars.iter());
// Now, run our binding constraint, generalize, then solve the rest of the
// program.
//
// Items are popped from the stack in reverse order. That means that we'll
// first solve the defs_constraint, and then (eventually) the ret_constraint.
//
// NB: LetCon gets the current scope's env and rank, not the env/rank from after solving the defs_constraint.
// That's because the defs constraints will be solved in next_rank if it is eligible for generalization.
// The LetCon will then generalize variables that are at a higher rank than the rank of the current scope.
stack.push(Work::LetConIntroducesVariables {
env,
rank,
let_con,
pool_variables,
});
stack.push(Work::Constraint {
env,
rank: binding_rank,
constraint: defs_constraint,
});
state
}
}
IsOpenType(type_index) => {
let actual = either_type_index_to_var(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*type_index,
);
open_tag_union(subs, actual);
state
}
IncludesTag(index) => {
let includes_tag = &constraints.includes_tags[index.index()];
let roc_can::constraint::IncludesTag {
type_index,
tag_name,
types,
pattern_category,
region,
} = includes_tag;
let pattern_category = &constraints.pattern_categories[pattern_category.index()];
let actual = either_type_index_to_var(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*type_index,
);
let payload_types = constraints.variables[types.indices()]
.iter()
.map(|v| Type::Variable(*v))
.collect();
let tag_ty = can_types.from_old_type(&Type::TagUnion(
vec![(tag_name.clone(), payload_types)],
TypeExtension::Closed,
));
let includes = type_to_var(
subs,
rank,
problems,
abilities_store,
obligation_cache,
pools,
&mut can_types,
aliases,
tag_ty,
);
match unify(
&mut UEnv::new(subs),
actual,
includes,
Mode::PRESENT,
Polarity::OF_PATTERN,
) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
introduce(subs, rank, pools, &vars);
if !must_implement_ability.is_empty() {
let new_problems = obligation_cache.check_obligations(
subs,
abilities_store,
must_implement_ability,
AbilityImplError::BadPattern(
*region,
pattern_category.clone(),
actual,
),
);
problems.extend(new_problems);
}
compact_lambdas_and_check_obligations(
arena,
pools,
problems,
subs,
abilities_store,
obligation_cache,
awaiting_specializations,
derived_env,
lambda_sets_to_specialize,
);
state
}
Failure(vars, actual_type, expected_to_include_type, _bad_impls) => {
introduce(subs, rank, pools, &vars);
let problem = TypeError::BadPattern(
*region,
pattern_category.clone(),
expected_to_include_type,
PExpected::NoExpectation(actual_type),
);
problems.push(problem);
state
}
}
}
&Exhaustive(eq, sketched_rows, context, exhaustive_mark) => {
// A few cases:
// 1. Either condition or branch types already have a type error. In this case just
// propagate it.
// 2. Types are correct, but there are redundancies. In this case we want
// exhaustiveness checking to pull those out.
// 3. Condition and branch types are "almost equal", that is one or the other is
// only missing a few more tags. In this case we want to run
// exhaustiveness checking both ways, to see which one is missing tags.
// 4. Condition and branch types aren't "almost equal", this is just a normal type
// error.
let (real_var, real_region, branches_var, category_and_expected) = match eq {
Ok(eq) => {
let roc_can::constraint::Eq(real_var, expected, category, real_region) =
constraints.eq[eq.index()];
let expected = &constraints.expectations[expected.index()];
(
real_var,
real_region,
*expected.get_type_ref(),
Ok((category, expected)),
)
}
Err(peq) => {
let roc_can::constraint::PatternEq(
real_var,
expected,
category,
real_region,
) = constraints.pattern_eq[peq.index()];
let expected = &constraints.pattern_expectations[expected.index()];
(
real_var,
real_region,
*expected.get_type_ref(),
Err((category, expected)),
)
}
};
let real_var = either_type_index_to_var(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
real_var,
);
let branches_var = either_type_index_to_var(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
branches_var,
);
let cond_source_is_likely_positive_value = category_and_expected.is_ok();
let cond_polarity = if cond_source_is_likely_positive_value {
Polarity::OF_VALUE
} else {
Polarity::OF_PATTERN
};
let real_content = subs.get_content_without_compacting(real_var);
let branches_content = subs.get_content_without_compacting(branches_var);
let already_have_error = matches!(
(real_content, branches_content),
(Content::Error, _) | (_, Content::Error)
);
let snapshot = subs.snapshot();
let unify_cond_and_patterns_outcome = unify(
&mut UEnv::new(subs),
branches_var,
real_var,
Mode::EQ,
cond_polarity,
);
let should_check_exhaustiveness;
let has_unification_error =
!matches!(unify_cond_and_patterns_outcome, Success { .. });
match unify_cond_and_patterns_outcome {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
subs.commit_snapshot(snapshot);
introduce(subs, rank, pools, &vars);
problems.extend(obligation_cache.check_obligations(
subs,
abilities_store,
must_implement_ability,
AbilityImplError::DoesNotImplement,
));
compact_lambdas_and_check_obligations(
arena,
pools,
problems,
subs,
abilities_store,
obligation_cache,
awaiting_specializations,
derived_env,
lambda_sets_to_specialize,
);
// Case 1: unify error types, but don't check exhaustiveness.
// Case 2: run exhaustiveness to check for redundant branches.
should_check_exhaustiveness = !already_have_error;
}
Failure(..) => {
// Rollback and check for almost-equality.
subs.rollback_to(snapshot);
let almost_eq_snapshot = subs.snapshot();
// TODO: turn this on for bidirectional exhaustiveness checking
// open_tag_union(subs, real_var);
open_tag_union(subs, branches_var);
let almost_eq = matches!(
unify(
&mut UEnv::new(subs),
real_var,
branches_var,
Mode::EQ,
cond_polarity,
),
Success { .. }
);
subs.rollback_to(almost_eq_snapshot);
if almost_eq {
// Case 3: almost equal, check exhaustiveness.
should_check_exhaustiveness = true;
} else {
// Case 4: incompatible types, report type error.
// Re-run first failed unification to get the type diff.
match unify(
&mut UEnv::new(subs),
real_var,
branches_var,
Mode::EQ,
cond_polarity,
) {
Failure(vars, actual_type, expected_type, _bad_impls) => {
introduce(subs, rank, pools, &vars);
// Figure out the problem - it might be pattern or value
// related.
let problem = match category_and_expected {
Ok((category, expected)) => {
let real_category =
constraints.categories[category.index()].clone();
TypeError::BadExpr(
real_region,
real_category,
actual_type,
expected.replace_ref(expected_type),
)
}
Err((category, expected)) => {
let real_category = constraints.pattern_categories
[category.index()]
.clone();
TypeError::BadPattern(
real_region,
real_category,
expected_type,
expected.replace_ref(actual_type),
)
}
};
problems.push(problem);
should_check_exhaustiveness = false;
}
_ => internal_error!("Must be failure"),
}
}
}
}
let sketched_rows = constraints.sketched_rows[sketched_rows.index()].clone();
if should_check_exhaustiveness {
use roc_can::exhaustive::{check, ExhaustiveSummary};
// If the condition type likely comes from an positive-position value (e.g. a
// literal or a return type), rather than an input position, we employ the
// heuristic that the positive-position value would only need to be open if the
// branches of the `when` constrained them as open. To avoid suggesting
// catch-all branches, now mark the condition type as closed, so that we only
// show the variants that explicitly not matched.
//
// We avoid this heuristic if the condition type likely comes from a negative
// position, e.g. a function parameter, since in that case if the condition
// type is open, we definitely want to show the catch-all branch as necessary.
//
// For example:
//
// x : [A, B, C]
//
// when x is
// A -> ..
// B -> ..
//
// This is checked as "almost equal" and hence exhaustiveness-checked with
// [A, B] compared to [A, B, C]*. However, we really want to compare against
// [A, B, C] (notice the closed union), so we optimistically close the
// condition type here.
//
// On the other hand, in a case like
//
// f : [A, B, C]* -> ..
// f = \x -> when x is
// A -> ..
// B -> ..
//
// we want to show `C` and/or `_` as necessary branches, so this heuristic is
// not applied.
//
// In the above case, notice it would not be safe to apply this heuristic if
// `C` was matched as well. Since the positive/negative value determination is
// only an estimate, we also only apply this heursitic in the "almost equal"
// case, when there was in fact a unification error.
//
// TODO: this can likely be removed after remodelling tag extension types
// (#4440).
if cond_source_is_likely_positive_value && has_unification_error {
close_pattern_matched_tag_unions(subs, real_var);
}
if let Ok(ExhaustiveSummary {
errors,
exhaustive,
redundancies,
}) = check(subs, real_var, sketched_rows, context)
{
// Store information about whether the "when" is exhaustive, and
// which (if any) of its branches are redundant. Codegen may use
// this for branch-fixing and redundant elimination.
if !exhaustive {
exhaustive_mark.set_non_exhaustive(subs);
}
for redundant_mark in redundancies {
redundant_mark.set_redundant(subs);
}
// Store the errors.
problems.extend(errors.into_iter().map(TypeError::Exhaustive));
} else {
// Otherwise there were type errors deeper in the pattern; we will have
// already reported them.
}
}
state
}
&Resolve(OpportunisticResolve {
specialization_variable,
member,
specialization_id,
}) => {
if let Ok(Resolved::Specialization(specialization)) = resolve_ability_specialization(
subs,
abilities_store,
member,
specialization_variable,
) {
abilities_store.insert_resolved(specialization_id, specialization);
}
state
}
CheckCycle(cycle, cycle_mark) => {
let Cycle {
def_names,
expr_regions,
} = &constraints.cycles[cycle.index()];
let symbols = &constraints.loc_symbols[def_names.indices()];
// If the type of a symbol is not a function, that's an error.
// Roc is strict, so only functions can be mutually recursive.
let any_is_bad = {
use Content::*;
symbols.iter().any(|(s, _)| {
let var = env.get_var_by_symbol(s).expect("Symbol not solved!");
let (_, underlying_content) = chase_alias_content(subs, var);
!matches!(underlying_content, Error | Structure(FlatType::Func(..)))
})
};
if any_is_bad {
// expr regions are stored in loc_symbols (that turned out to be convenient).
// The symbol is just a dummy, and should not be used
let expr_regions = &constraints.loc_symbols[expr_regions.indices()];
let cycle = symbols
.iter()
.zip(expr_regions.iter())
.map(|(&(symbol, symbol_region), &(_, expr_region))| CycleEntry {
symbol,
symbol_region,
expr_region,
})
.collect();
problems.push(TypeError::CircularDef(cycle));
cycle_mark.set_illegal(subs);
}
state
}
IngestedFile(type_index, file_path, bytes) => {
let actual = either_type_index_to_var(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*type_index,
);
let snapshot = subs.snapshot();
if let Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} = unify(
&mut UEnv::new(subs),
actual,
Variable::LIST_U8,
Mode::EQ,
Polarity::OF_VALUE,
) {
// List U8 always valid.
introduce(subs, rank, pools, &vars);
debug_assert!(
must_implement_ability.is_empty() && lambda_sets_to_specialize.is_empty(),
"List U8 will never need to implement abilities or specialize lambda sets"
);
state
} else {
subs.rollback_to(snapshot);
// We explicitly match on the last unify to get the type in the case it errors.
match unify(
&mut UEnv::new(subs),
actual,
Variable::STR,
Mode::EQ,
Polarity::OF_VALUE,
) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
introduce(subs, rank, pools, &vars);
debug_assert!(
must_implement_ability.is_empty() && lambda_sets_to_specialize.is_empty(),
"Str will never need to implement abilities or specialize lambda sets"
);
// Str only valid if valid utf8.
if let Err(err) = std::str::from_utf8(bytes) {
let problem =
TypeError::IngestedFileBadUtf8(file_path.clone(), err);
problems.push(problem);
}
state
}
Failure(vars, actual_type, _, _) => {
introduce(subs, rank, pools, &vars);
let problem = TypeError::IngestedFileUnsupportedType(
file_path.clone(),
actual_type,
);
problems.push(problem);
state
}
}
}
}
};
}
state
}
fn chase_alias_content(subs: &Subs, mut var: Variable) -> (Variable, &Content) {
loop {
match subs.get_content_without_compacting(var) {
Content::Alias(_, _, real_var, _) => {
var = *real_var;
}
content => return (var, content),
}
}
}
#[allow(clippy::too_many_arguments)]
fn compact_lambdas_and_check_obligations(
arena: &Bump,
pools: &mut Pools,
problems: &mut Vec<TypeError>,
subs: &mut Subs,
abilities_store: &mut AbilitiesStore,
obligation_cache: &mut ObligationCache,
awaiting_specialization: &mut AwaitingSpecializations,
derived_env: &DerivedEnv,
lambda_sets_to_specialize: UlsOfVar,
) {
let CompactionResult {
obligations,
awaiting_specialization: new_awaiting,
} = compact_lambda_sets_of_vars(
subs,
derived_env,
arena,
pools,
lambda_sets_to_specialize,
&SolvePhase { abilities_store },
);
problems.extend(obligation_cache.check_obligations(
subs,
abilities_store,
obligations,
AbilityImplError::DoesNotImplement,
));
awaiting_specialization.union(new_awaiting);
}
fn open_tag_union(subs: &mut Subs, var: Variable) {
let mut stack = vec![var];
while let Some(var) = stack.pop() {
use {Content::*, FlatType::*};
let desc = subs.get(var);
match desc.content {
Structure(TagUnion(tags, ext)) => {
if let Structure(EmptyTagUnion) = subs.get_content_without_compacting(ext.var()) {
let new_ext = TagExt::Any(subs.fresh_unnamed_flex_var());
subs.set_rank(new_ext.var(), desc.rank);
let new_union = Structure(TagUnion(tags, new_ext));
subs.set_content(var, new_union);
}
// Also open up all nested tag unions.
let all_vars = tags.variables().into_iter();
stack.extend(all_vars.flat_map(|slice| subs[slice]).map(|var| subs[var]));
}
Structure(Record(fields, _)) => {
// Open up all nested tag unions.
stack.extend(subs.get_subs_slice(fields.variables()));
}
Structure(Tuple(elems, _)) => {
// Open up all nested tag unions.
stack.extend(subs.get_subs_slice(elems.variables()));
}
Structure(Apply(Symbol::LIST_LIST, args)) => {
// Open up nested tag unions.
stack.extend(subs.get_subs_slice(args));
}
_ => {
// Everything else is not a structural type that can be opened
// (i.e. cannot be matched in a pattern-match)
}
}
// Today, an "open" constraint doesn't affect any types
// other than tag unions. Recursive tag unions are constructed
// at a later time (during occurs checks after tag unions are
// resolved), so that's not handled here either.
}
}
/// Optimistically closes the positive type of a value matched in a `when` statement, to produce
/// better exhaustiveness error messages.
///
/// This should only be applied if it's already known that a `when` expression is not exhaustive.
///
/// See [Constraint::Exhaustive].
fn close_pattern_matched_tag_unions(subs: &mut Subs, var: Variable) {
let mut stack = vec![var];
while let Some(var) = stack.pop() {
use {Content::*, FlatType::*};
let desc = subs.get(var);
match desc.content {
Structure(TagUnion(tags, mut ext)) => {
// Close the extension, chasing it as far as it goes.
loop {
match subs.get_content_without_compacting(ext.var()) {
Structure(FlatType::EmptyTagUnion) => {
break;
}
FlexVar(..) | FlexAbleVar(..) => {
subs.set_content_unchecked(
ext.var(),
Structure(FlatType::EmptyTagUnion),
);
break;
}
RigidVar(..) | RigidAbleVar(..) => {
// Don't touch rigids, they tell us more information than the heuristic
// of closing tag unions does for better exhaustiveness checking does.
break;
}
Structure(FlatType::TagUnion(_, deep_ext))
| Structure(FlatType::RecursiveTagUnion(_, _, deep_ext))
| Structure(FlatType::FunctionOrTagUnion(_, _, deep_ext)) => {
ext = *deep_ext;
}
other => internal_error!(
"not a tag union: {:?}",
roc_types::subs::SubsFmtContent(other, subs)
),
}
}
// Also open up all nested tag unions.
let all_vars = tags.variables().into_iter();
stack.extend(all_vars.flat_map(|slice| subs[slice]).map(|var| subs[var]));
}
Structure(Record(fields, _)) => {
// Close up all nested tag unions.
stack.extend(subs.get_subs_slice(fields.variables()));
}
Structure(Apply(Symbol::LIST_LIST, args)) => {
// Close up nested tag unions.
stack.extend(subs.get_subs_slice(args));
}
Alias(_, _, real_var, _) => {
stack.push(real_var);
}
_ => {
// Everything else is not a type that can be opened/matched in a pattern match.
}
}
// Recursive tag unions are constructed at a later time
// (during occurs checks after tag unions are resolved),
// so that's not handled here.
}
}
/// If a symbol claims to specialize an ability member, check that its solved type in fact
/// does specialize the ability, and record the specialization.
#[allow(clippy::too_many_arguments)]
// Aggressive but necessary - there aren't many usages.
#[inline(always)]
fn check_ability_specialization(
arena: &Bump,
subs: &mut Subs,
derived_env: &DerivedEnv,
pools: &mut Pools,
rank: Rank,
abilities_store: &mut AbilitiesStore,
obligation_cache: &mut ObligationCache,
awaiting_specializations: &mut AwaitingSpecializations,
problems: &mut Vec<TypeError>,
symbol: Symbol,
symbol_loc_var: Loc<Variable>,
) {
// If the symbol specializes an ability member, we need to make sure that the
// inferred type for the specialization actually aligns with the expected
// implementation.
if let Some((impl_key, root_data)) = abilities_store.impl_key_and_def(symbol) {
let ability_member = impl_key.ability_member;
let root_signature_var = root_data.signature_var();
let parent_ability = root_data.parent_ability;
// Check if they unify - if they don't, then the claimed specialization isn't really one,
// and that's a type error!
// This also fixes any latent type variables that need to be specialized to exactly what
// the ability signature expects.
// We need to freshly instantiate the root signature so that all unifications are reflected
// in the specialization type, but not the original signature type.
let root_signature_var =
deep_copy_var_in(subs, Rank::toplevel(), pools, root_signature_var, arena);
let snapshot = subs.snapshot();
let unified = unify_introduced_ability_specialization(
&mut UEnv::new(subs),
root_signature_var,
symbol_loc_var.value,
Mode::EQ,
);
let resolved_mark = match unified {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: SpecializationLsetCollector(specialization_lambda_sets),
} => {
let specialization_type =
type_implementing_specialization(&must_implement_ability, parent_ability);
match specialization_type {
Some(Obligated::Opaque(opaque)) => {
// This is a specialization for an opaque - but is it the opaque the
// specialization was claimed to be for?
if opaque == impl_key.opaque {
// It was! All is good.
subs.commit_snapshot(snapshot);
introduce(subs, rank, pools, &vars);
let specialization_lambda_sets = specialization_lambda_sets
.into_iter()
.map(|((symbol, region), var)| {
debug_assert_eq!(symbol, ability_member);
(region, var)
})
.collect();
compact_lambdas_and_check_obligations(
arena,
pools,
problems,
subs,
abilities_store,
obligation_cache,
awaiting_specializations,
derived_env,
lambda_sets_to_specialize,
);
let specialization =
MemberSpecializationInfo::new(symbol, specialization_lambda_sets);
Ok(specialization)
} else {
// This def is not specialized for the claimed opaque type, that's an
// error.
// Commit so that the bad signature and its error persists in subs.
subs.commit_snapshot(snapshot);
let _typ =
subs.var_to_error_type(symbol_loc_var.value, Polarity::OF_VALUE);
let problem = TypeError::WrongSpecialization {
region: symbol_loc_var.region,
ability_member: impl_key.ability_member,
expected_opaque: impl_key.opaque,
found_opaque: opaque,
};
problems.push(problem);
Err(())
}
}
Some(Obligated::Adhoc(var)) => {
// This is a specialization of a structural type - never allowed.
// Commit so that `var` persists in subs.
subs.commit_snapshot(snapshot);
let typ = subs.var_to_error_type(var, Polarity::OF_VALUE);
let problem = TypeError::StructuralSpecialization {
region: symbol_loc_var.region,
typ,
ability: parent_ability,
member: ability_member,
};
problems.push(problem);
Err(())
}
None => {
// This can happen when every ability constriant on a type variable went
// through only another type variable. That means this def is not specialized
// for one concrete type, and especially not our opaque - we won't admit this currently.
// Rollback the snapshot so we unlink the root signature with the specialization,
// so we can have two separate error types.
subs.rollback_to(snapshot);
let expected_type =
subs.var_to_error_type(root_signature_var, Polarity::OF_VALUE);
let actual_type =
subs.var_to_error_type(symbol_loc_var.value, Polarity::OF_VALUE);
let reason = Reason::GeneralizedAbilityMemberSpecialization {
member_name: ability_member,
def_region: root_data.region,
};
let problem = TypeError::BadExpr(
symbol_loc_var.region,
Category::AbilityMemberSpecialization(ability_member),
actual_type,
Expected::ForReason(reason, expected_type, symbol_loc_var.region),
);
problems.push(problem);
Err(())
}
}
}
Failure(vars, expected_type, actual_type, unimplemented_abilities) => {
subs.commit_snapshot(snapshot);
introduce(subs, rank, pools, &vars);
let reason = Reason::InvalidAbilityMemberSpecialization {
member_name: ability_member,
def_region: root_data.region,
unimplemented_abilities,
};
let problem = TypeError::BadExpr(
symbol_loc_var.region,
Category::AbilityMemberSpecialization(ability_member),
actual_type,
Expected::ForReason(reason, expected_type, symbol_loc_var.region),
);
problems.push(problem);
Err(())
}
};
abilities_store
.mark_implementation(impl_key, resolved_mark)
.expect("marked as a custom implementation, but not recorded as such");
// Get the lambda sets that are ready for specialization because this ability member
// specialization was resolved, and compact them.
let new_lambda_sets_to_specialize =
awaiting_specializations.remove_for_specialized(subs, impl_key);
compact_lambdas_and_check_obligations(
arena,
pools,
problems,
subs,
abilities_store,
obligation_cache,
awaiting_specializations,
derived_env,
new_lambda_sets_to_specialize,
);
debug_assert!(
!awaiting_specializations.waiting_for(impl_key),
"still have lambda sets waiting for {:?}, but it was just resolved",
impl_key
);
}
}
#[derive(Debug)]
enum LocalDefVarsVec<T> {
Stack(arrayvec::ArrayVec<T, 32>),
Heap(Vec<T>),
}
impl<T> LocalDefVarsVec<T> {
#[inline(always)]
fn with_length(length: usize) -> Self {
if length <= 32 {
Self::Stack(Default::default())
} else {
Self::Heap(Default::default())
}
}
fn push(&mut self, element: T) {
match self {
LocalDefVarsVec::Stack(vec) => vec.push(element),
LocalDefVarsVec::Heap(vec) => vec.push(element),
}
}
fn iter(&self) -> impl Iterator<Item = &T> {
match self {
LocalDefVarsVec::Stack(vec) => vec.iter(),
LocalDefVarsVec::Heap(vec) => vec.iter(),
}
}
}
impl LocalDefVarsVec<(Symbol, Loc<Variable>)> {
fn from_def_types(
constraints: &Constraints,
rank: Rank,
pools: &mut Pools,
problems: &mut Vec<TypeError>,
abilities_store: &mut AbilitiesStore,
obligation_cache: &mut ObligationCache,
types: &mut Types,
aliases: &mut Aliases,
subs: &mut Subs,
def_types_slice: roc_can::constraint::DefTypes,
) -> Self {
let type_indices_slice = &constraints.type_slices[def_types_slice.types.indices()];
let loc_symbols_slice = &constraints.loc_symbols[def_types_slice.loc_symbols.indices()];
let mut local_def_vars = Self::with_length(type_indices_slice.len());
for (&(symbol, region), typ_index) in (loc_symbols_slice.iter()).zip(type_indices_slice) {
let var = either_type_index_to_var(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
types,
aliases,
*typ_index,
);
local_def_vars.push((symbol, Loc { value: var, region }));
}
local_def_vars
}
}
use std::cell::RefCell;
use std::ops::ControlFlow;
std::thread_local! {
/// Scratchpad arena so we don't need to allocate a new one all the time
static SCRATCHPAD: RefCell<Option<bumpalo::Bump>> = RefCell::new(Some(bumpalo::Bump::with_capacity(4 * 1024)));
}
fn take_scratchpad() -> bumpalo::Bump {
SCRATCHPAD.with(|f| f.take().unwrap())
}
fn put_scratchpad(scratchpad: bumpalo::Bump) {
SCRATCHPAD.with(|f| {
f.replace(Some(scratchpad));
});
}
fn either_type_index_to_var(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
problems: &mut Vec<TypeError>,
abilities_store: &mut AbilitiesStore,
obligation_cache: &mut ObligationCache,
types: &mut Types,
aliases: &mut Aliases,
either_type_index: TypeOrVar,
) -> Variable {
match either_type_index.split() {
Ok(type_index) => {
// Converts the celled type to a variable, emplacing the new variable for re-use.
let var = type_to_var(
subs,
rank,
problems,
abilities_store,
obligation_cache,
pools,
types,
aliases,
type_index,
);
debug_assert!(
matches!(types[type_index], TypeTag::Variable(v) if v == var)
|| matches!(
types[type_index],
TypeTag::EmptyRecord | TypeTag::EmptyTagUnion
)
);
var
}
Err(var_index) => {
// we cheat, and store the variable directly in the index
unsafe { Variable::from_index(var_index.index() as _) }
}
}
}
pub(crate) fn type_to_var(
subs: &mut Subs,
rank: Rank,
problems: &mut Vec<TypeError>,
abilities_store: &mut AbilitiesStore,
obligation_cache: &mut ObligationCache,
pools: &mut Pools,
types: &mut Types,
aliases: &mut Aliases,
typ: Index<TypeTag>,
) -> Variable {
if let TypeTag::Variable(var) = types[typ] {
var
} else {
let mut arena = take_scratchpad();
let var = type_to_variable(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
&arena,
aliases,
types,
typ,
false,
);
arena.reset();
put_scratchpad(arena);
var
}
}
enum RegisterVariable {
/// Based on the Type, we already know what variable this will be
Direct(Variable),
/// This Type needs more complicated Content. We reserve a Variable
/// for it, but put a placeholder Content in subs
Deferred,
}
impl RegisterVariable {
fn from_type(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
types: &mut Types,
typ: Index<TypeTag>,
) -> Self {
use RegisterVariable::*;
match types[typ] {
TypeTag::Variable(var) => Direct(var),
TypeTag::EmptyRecord => Direct(Variable::EMPTY_RECORD),
TypeTag::EmptyTagUnion => Direct(Variable::EMPTY_TAG_UNION),
TypeTag::DelayedAlias { shared }
| TypeTag::StructuralAlias { shared, .. }
| TypeTag::OpaqueAlias { shared, .. }
| TypeTag::HostExposedAlias { shared, .. } => {
let AliasShared { symbol, .. } = types[shared];
if let Some(reserved) = Variable::get_reserved(symbol) {
let direct_var = if rank.is_generalized() {
// reserved variables are stored with rank NONE
reserved
} else {
// for any other rank, we need to copy; it takes care of adjusting the rank
deep_copy_var_in(subs, rank, pools, reserved, arena)
};
// Safety: the `destination` will become the source-of-truth for the type index, since it
// was not already transformed before (if it was, we'd be in the Variable branch!)
let _old_typ = unsafe { types.emplace_variable(typ, direct_var) };
return Direct(direct_var);
}
Deferred
}
_ => Deferred,
}
}
#[inline(always)]
fn with_stack(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
types: &mut Types,
typ_index: Index<TypeTag>,
stack: &mut bumpalo::collections::Vec<'_, TypeToVar>,
) -> Variable {
match Self::from_type(subs, rank, pools, arena, types, typ_index) {
Self::Direct(var) => var,
Self::Deferred => {
let var = subs.fresh_unnamed_flex_var();
// Safety: the `destination` will become the source-of-truth for the type index, since it
// was not already transformed before (if it was, it wouldn't be deferred!)
let typ = unsafe { types.emplace_variable(typ_index, var) };
stack.push(TypeToVar::Defer {
typ,
typ_index,
destination: var,
ambient_function: AmbientFunctionPolicy::NoFunction,
});
var
}
}
}
}
/// Instantiation of ambient functions in unspecialized lambda sets is somewhat tricky due to other
/// optimizations we have in place. This struct tells us how they should be instantiated.
#[derive(Debug)]
enum AmbientFunctionPolicy {
/// We're not in a function. This variant may never hold for unspecialized lambda sets.
NoFunction,
/// We're in a known function.
Function(Variable),
}
impl AmbientFunctionPolicy {
fn link_to_alias_lambda_set_var(&self, subs: &mut Subs, var: Variable) {
let ambient_function = match self {
AmbientFunctionPolicy::Function(var) => *var,
_ => {
// Might be linked at a deeper point in time, ignore for now
return;
}
};
let content = subs.get_content_without_compacting(var);
let new_content = match content {
Content::LambdaSet(LambdaSet {
solved,
recursion_var,
unspecialized,
ambient_function: _,
}) => Content::LambdaSet(LambdaSet {
solved: *solved,
recursion_var: *recursion_var,
unspecialized: *unspecialized,
ambient_function,
}),
Content::FlexVar(_) => {
// Something like
// Encoder fmt <a> : List U8, fmt -a-> List U8 | fmt has EncoderFormatting
// THEORY: Replace these with empty lambda sets. They will unify the same as a flex
// var does, but allows us to record the ambient function properly.
Content::LambdaSet(LambdaSet {
solved: UnionLabels::default(),
recursion_var: OptVariable::NONE,
unspecialized: SubsSlice::default(),
ambient_function,
})
}
content => internal_error!("{:?}({:?}) not a lambda set", content, var),
};
subs.set_content_unchecked(var, new_content);
}
}
#[derive(Debug)]
enum TypeToVar {
Defer {
typ: TypeTag,
typ_index: Index<TypeTag>,
destination: Variable,
ambient_function: AmbientFunctionPolicy,
},
}
#[allow(clippy::too_many_arguments)]
fn type_to_variable(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
problems: &mut Vec<TypeError>,
abilities_store: &AbilitiesStore,
obligation_cache: &mut ObligationCache,
arena: &bumpalo::Bump,
aliases: &mut Aliases,
types: &mut Types,
typ: Index<TypeTag>,
// Helpers for instantiating ambient functions of lambda set variables from type aliases.
is_alias_lambda_set_arg: bool,
) -> Variable {
use bumpalo::collections::Vec;
let mut stack = Vec::with_capacity_in(8, arena);
let mut bind_to_abilities = Vec::new_in(arena);
macro_rules! helper {
($typ:expr, $ambient_function_policy:expr) => {{
match RegisterVariable::from_type(subs, rank, pools, arena, types, $typ) {
RegisterVariable::Direct(var) => {
// If the variable is just a type variable but we know we're in a lambda set
// context, try to link to the ambient function.
$ambient_function_policy.link_to_alias_lambda_set_var(subs, var);
var
}
RegisterVariable::Deferred => {
let var = subs.fresh_unnamed_flex_var();
// Safety: the `destination` will become the source-of-truth for the type index, since it
// was not already transformed before (if it was, it wouldn't be deferred!)
let typ = unsafe { types.emplace_variable($typ, var) };
stack.push(TypeToVar::Defer {
typ,
typ_index: $typ,
destination: var,
ambient_function: $ambient_function_policy,
});
var
}
}
}};
($typ:expr) => {{
helper!($typ, AmbientFunctionPolicy::NoFunction)
}};
}
let result = helper!(typ);
while let Some(TypeToVar::Defer {
typ_index,
typ,
destination,
ambient_function,
}) = stack.pop()
{
use TypeTag::*;
match typ {
Variable(_) | EmptyRecord | EmptyTagUnion => {
unreachable!("This variant should never be deferred!",)
}
RangedNumber(range) => {
let content = Content::RangedNumber(range);
register_with_known_var(subs, destination, rank, pools, content)
}
Apply {
symbol,
type_argument_regions: _,
region: _,
} => {
let arguments = types.get_type_arguments(typ_index);
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
for (target_index, var_index) in
(new_arguments.indices()).zip(arguments.into_iter())
{
let var = helper!(var_index);
subs.variables[target_index] = var;
}
let flat_type = FlatType::Apply(symbol, new_arguments);
let content = Content::Structure(flat_type);
register_with_known_var(subs, destination, rank, pools, content)
}
ClosureTag {
name,
ambient_function,
} => {
let captures = types.get_type_arguments(typ_index);
let union_lambdas = create_union_lambda(
subs, rank, pools, arena, types, name, captures, &mut stack,
);
let content = Content::LambdaSet(subs::LambdaSet {
solved: union_lambdas,
// We may figure out the lambda set is recursive during solving, but it never
// is to begin with.
recursion_var: OptVariable::NONE,
unspecialized: SubsSlice::default(),
ambient_function,
});
register_with_known_var(subs, destination, rank, pools, content)
}
UnspecializedLambdaSet { unspecialized } => {
let unspecialized_slice = SubsSlice::extend_new(
&mut subs.unspecialized_lambda_sets,
std::iter::once(unspecialized),
);
// `ClosureTag` ambient functions are resolved during constraint generation.
// But `UnspecializedLambdaSet`s can only ever live in a type signature, and don't
// correspond to a expression, so they are never constrained.
// Instead, we resolve their ambient functions during type translation, observing
// the invariant that a lambda set can only ever appear under a function type.
let ambient_function = match ambient_function {
AmbientFunctionPolicy::NoFunction => {
debug_assert!(is_alias_lambda_set_arg);
// To be filled in during delayed type alias instantiation
roc_types::subs::Variable::NULL
}
AmbientFunctionPolicy::Function(var) => var,
};
let content = Content::LambdaSet(subs::LambdaSet {
unspecialized: unspecialized_slice,
solved: UnionLabels::default(),
recursion_var: OptVariable::NONE,
ambient_function,
});
register_with_known_var(subs, destination, rank, pools, content)
}
// This case is important for the rank of boolean variables
Function(closure_type, ret_type) => {
let arguments = types.get_type_arguments(typ_index);
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
for (target_index, var_index) in
(new_arguments.indices()).zip(arguments.into_iter())
{
let var = helper!(var_index);
subs.variables[target_index] = var;
}
let ret_var = helper!(ret_type);
let closure_var =
helper!(closure_type, AmbientFunctionPolicy::Function(destination));
let content =
Content::Structure(FlatType::Func(new_arguments, closure_var, ret_var));
register_with_known_var(subs, destination, rank, pools, content)
}
Record(fields) => {
let ext_slice = types.get_type_arguments(typ_index);
// An empty fields is inefficient (but would be correct)
// If hit, try to turn the value into an EmptyRecord in canonicalization
debug_assert!(!fields.is_empty() || !ext_slice.is_empty());
let mut field_vars = Vec::with_capacity_in(fields.len(), arena);
let (fields_names, field_kinds, field_tys) = types.record_fields_slices(fields);
for ((field, field_kind), field_type) in (fields_names.into_iter())
.zip(field_kinds.into_iter())
.zip(field_tys.into_iter())
{
let field_var = {
let t = helper!(field_type);
types[field_kind].replace(t)
};
field_vars.push((types[field].clone(), field_var));
}
debug_assert!(ext_slice.len() <= 1);
let temp_ext_var = match ext_slice.into_iter().next() {
None => roc_types::subs::Variable::EMPTY_RECORD,
Some(ext) => helper!(ext),
};
let (it, new_ext_var) =
gather_fields_unsorted_iter(subs, RecordFields::empty(), temp_ext_var)
.expect("Something ended up weird in this record type");
let it = it
.into_iter()
.map(|(field, field_type)| (field.clone(), field_type));
field_vars.extend(it);
insertion_sort_by(&mut field_vars, RecordFields::compare);
let record_fields = RecordFields::insert_into_subs(subs, field_vars);
let content = Content::Structure(FlatType::Record(record_fields, new_ext_var));
register_with_known_var(subs, destination, rank, pools, content)
}
Tuple(elems) => {
let ext_slice = types.get_type_arguments(typ_index);
// Elems should never be empty; we don't support empty tuples
debug_assert!(!elems.is_empty() || !ext_slice.is_empty());
let mut elem_vars = Vec::with_capacity_in(elems.len(), arena);
let (indices, elem_tys) = types.tuple_elems_slices(elems);
for (index, elem_type) in indices.into_iter().zip(elem_tys.into_iter()) {
let elem_var = helper!(elem_type);
elem_vars.push((types[index], elem_var));
}
debug_assert!(ext_slice.len() <= 1);
let temp_ext_var = match ext_slice.into_iter().next() {
None => roc_types::subs::Variable::EMPTY_TUPLE,
Some(ext) => helper!(ext),
};
let (it, new_ext_var) =
gather_tuple_elems_unsorted_iter(subs, TupleElems::empty(), temp_ext_var)
.expect("Something ended up weird in this tuple type");
elem_vars.extend(it);
let tuple_elems = TupleElems::insert_into_subs(subs, elem_vars);
let content = Content::Structure(FlatType::Tuple(tuple_elems, new_ext_var));
register_with_known_var(subs, destination, rank, pools, content)
}
TagUnion(tags, ext_openness) => {
let ext_slice = types.get_type_arguments(typ_index);
// An empty tags is inefficient (but would be correct)
// If hit, try to turn the value into an EmptyTagUnion in canonicalization
debug_assert!(!tags.is_empty() || !ext_slice.is_empty());
let (union_tags, ext) = type_to_union_tags(
subs,
rank,
pools,
arena,
types,
tags,
ext_slice,
ext_openness,
&mut stack,
);
let content = Content::Structure(FlatType::TagUnion(union_tags, ext));
register_with_known_var(subs, destination, rank, pools, content)
}
FunctionOrTagUnion(symbol, ext_openness) => {
let ext_slice = types.get_type_arguments(typ_index);
let tag_name = types.get_tag_name(&typ_index).clone();
debug_assert!(ext_slice.len() <= 1);
let temp_ext = match ext_slice.into_iter().next() {
Some(ext) => {
let var = helper!(ext);
TagExt::from_can(var, ext_openness)
}
None => TagExt::Any(roc_types::subs::Variable::EMPTY_TAG_UNION),
};
let (it, ext) = roc_types::types::gather_tags_unsorted_iter(
subs,
UnionTags::default(),
temp_ext,
)
.expect("extension var could not be seen as a tag union");
for _ in it {
unreachable!("we assert that the ext var is empty; otherwise we'd already know it was a tag union!");
}
let tag_names = SubsSlice::extend_new(&mut subs.tag_names, [tag_name]);
let symbols = SubsSlice::extend_new(&mut subs.symbol_names, [symbol]);
let content =
Content::Structure(FlatType::FunctionOrTagUnion(tag_names, symbols, ext));
register_with_known_var(subs, destination, rank, pools, content)
}
RecursiveTagUnion(rec_var, tags, ext_openness) => {
let ext_slice = types.get_type_arguments(typ_index);
// An empty tags is inefficient (but would be correct)
// If hit, try to turn the value into an EmptyTagUnion in canonicalization
debug_assert!(!tags.is_empty() || !ext_slice.is_empty());
let (union_tags, ext) = type_to_union_tags(
subs,
rank,
pools,
arena,
types,
tags,
ext_slice,
ext_openness,
&mut stack,
);
let content =
Content::Structure(FlatType::RecursiveTagUnion(rec_var, union_tags, ext));
let tag_union_var = destination;
register_with_known_var(subs, tag_union_var, rank, pools, content);
register_with_known_var(
subs,
rec_var,
rank,
pools,
Content::RecursionVar {
opt_name: None,
structure: tag_union_var,
},
);
tag_union_var
}
DelayedAlias { shared } => {
let AliasShared {
symbol,
type_argument_abilities,
type_argument_regions,
lambda_set_variables,
infer_ext_in_output_variables,
} = types[shared];
let type_arguments = types.get_type_arguments(typ_index);
let alias_variables = {
let all_vars_length = type_arguments.len()
+ lambda_set_variables.len()
+ infer_ext_in_output_variables.len();
let new_variables = VariableSubsSlice::reserve_into_subs(subs, all_vars_length);
let type_arguments_offset = 0;
let lambda_set_vars_offset = type_arguments_offset + type_arguments.len();
let infer_ext_vars_offset = lambda_set_vars_offset + lambda_set_variables.len();
for (((target_index, arg_type), arg_region), abilities) in
(new_variables.indices().skip(type_arguments_offset))
.zip(type_arguments.into_iter())
.zip(type_argument_regions.into_iter())
.zip(type_argument_abilities.into_iter())
{
let copy_var = helper!(arg_type);
subs.variables[target_index] = copy_var;
if !types[abilities].is_empty() {
let arg_region = types[arg_region];
bind_to_abilities.push((Loc::at(arg_region, copy_var), abilities));
}
}
let it = (new_variables.indices().skip(lambda_set_vars_offset))
.zip(lambda_set_variables.into_iter());
for (target_index, ls) in it {
// We MUST do this now, otherwise when linking the ambient function during
// instantiation of the real var, there will be nothing to link against.
let copy_var = type_to_variable(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
arena,
aliases,
types,
ls,
true,
);
subs.variables[target_index] = copy_var;
}
let it = (new_variables.indices().skip(infer_ext_vars_offset))
.zip(infer_ext_in_output_variables.into_iter());
for (target_index, ext_typ) in it {
let copy_var = helper!(ext_typ);
subs.variables[target_index] = copy_var;
}
AliasVariables {
variables_start: new_variables.start,
type_variables_len: type_arguments.len() as _,
lambda_set_variables_len: lambda_set_variables.len() as _,
all_variables_len: all_vars_length as _,
}
};
let (alias_variable, kind) = aliases.instantiate_real_var(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
arena,
types,
symbol,
alias_variables,
);
let content = Content::Alias(symbol, alias_variables, alias_variable, kind);
register_with_known_var(subs, destination, rank, pools, content)
}
StructuralAlias { shared, actual } | OpaqueAlias { shared, actual } => {
let kind = match typ {
StructuralAlias { .. } => AliasKind::Structural,
OpaqueAlias { .. } => AliasKind::Opaque,
_ => internal_error!(),
};
let AliasShared {
symbol,
type_argument_abilities,
type_argument_regions,
lambda_set_variables,
infer_ext_in_output_variables,
} = types[shared];
debug_assert!(roc_types::subs::Variable::get_reserved(symbol).is_none());
let type_arguments = types.get_type_arguments(typ_index);
let alias_variables = {
let all_vars_length = type_arguments.len()
+ lambda_set_variables.len()
+ infer_ext_in_output_variables.len();
let type_arguments_offset = 0;
let lambda_set_vars_offset = type_arguments_offset + type_arguments.len();
let infer_ext_vars_offset = lambda_set_vars_offset + lambda_set_variables.len();
let new_variables = VariableSubsSlice::reserve_into_subs(subs, all_vars_length);
for (((target_index, typ), region), abilities) in
(new_variables.indices().skip(type_arguments_offset))
.zip(type_arguments.into_iter())
.zip(type_argument_regions.into_iter())
.zip(type_argument_abilities.into_iter())
{
let copy_var = helper!(typ);
subs.variables[target_index] = copy_var;
if !types[abilities].is_empty() {
let region = types[region];
bind_to_abilities.push((Loc::at(region, copy_var), abilities));
}
}
let it = (new_variables.indices().skip(lambda_set_vars_offset))
.zip(lambda_set_variables.into_iter());
for (target_index, ls) in it {
let copy_var = helper!(ls);
subs.variables[target_index] = copy_var;
}
let it = (new_variables.indices().skip(infer_ext_vars_offset))
.zip(infer_ext_in_output_variables.into_iter());
for (target_index, ext_typ) in it {
let copy_var = helper!(ext_typ);
subs.variables[target_index] = copy_var;
}
AliasVariables {
variables_start: new_variables.start,
type_variables_len: type_arguments.len() as _,
lambda_set_variables_len: lambda_set_variables.len() as _,
all_variables_len: all_vars_length as _,
}
};
let alias_variable = if let Symbol::RESULT_RESULT = symbol {
roc_result_to_var(subs, rank, pools, arena, types, actual, &mut stack)
} else {
helper!(actual)
};
let content = Content::Alias(symbol, alias_variables, alias_variable, kind);
register_with_known_var(subs, destination, rank, pools, content)
}
HostExposedAlias {
shared,
actual_type: alias_type,
actual_variable: actual_var,
} => {
let AliasShared {
symbol,
type_argument_abilities: _,
type_argument_regions: _,
lambda_set_variables,
infer_ext_in_output_variables: _, // TODO
} = types[shared];
let type_arguments = types.get_type_arguments(typ_index);
let alias_variables = {
let length = type_arguments.len() + lambda_set_variables.len();
let new_variables = VariableSubsSlice::reserve_into_subs(subs, length);
for (target_index, arg_type) in
(new_variables.indices()).zip(type_arguments.into_iter())
{
let copy_var = helper!(arg_type);
subs.variables[target_index] = copy_var;
}
let it = (new_variables.indices().skip(type_arguments.len()))
.zip(lambda_set_variables.into_iter());
for (target_index, ls) in it {
// We MUST do this now, otherwise when linking the ambient function during
// instantiation of the real var, there will be nothing to link against.
let copy_var = type_to_variable(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
arena,
aliases,
types,
ls,
true,
);
subs.variables[target_index] = copy_var;
}
AliasVariables {
variables_start: new_variables.start,
type_variables_len: type_arguments.len() as _,
lambda_set_variables_len: lambda_set_variables.len() as _,
all_variables_len: length as _,
}
};
// cannot use helper! here because this variable may be involved in unification below
let alias_variable = type_to_variable(
subs,
rank,
pools,
problems,
abilities_store,
obligation_cache,
arena,
aliases,
types,
alias_type,
false,
);
// TODO(opaques): I think host-exposed aliases should always be structural
// (when does it make sense to give a host an opaque type?)
let content = Content::Alias(
symbol,
alias_variables,
alias_variable,
AliasKind::Structural,
);
let result = register_with_known_var(subs, destination, rank, pools, content);
// We only want to unify the actual_var with the alias once
// if it's already redirected (and therefore, redundant)
// don't do it again
if !subs.redundant(actual_var) {
let descriptor = subs.get(result);
subs.union(result, actual_var, descriptor);
}
result
}
Error => {
let content = Content::Error;
register_with_known_var(subs, destination, rank, pools, content)
}
};
}
for (Loc { value: var, region }, abilities) in bind_to_abilities {
let abilities = &types[abilities];
match *subs.get_content_unchecked(var) {
Content::RigidVar(a) => {
// TODO(multi-abilities): check run cache
let abilities_slice =
SubsSlice::extend_new(&mut subs.symbol_names, abilities.sorted_iter().copied());
subs.set_content(var, Content::RigidAbleVar(a, abilities_slice));
}
Content::RigidAbleVar(_, abs)
if (subs.get_subs_slice(abs).iter()).eq(abilities.sorted_iter()) =>
{
// pass, already bound
}
_ => {
let abilities_slice =
SubsSlice::extend_new(&mut subs.symbol_names, abilities.sorted_iter().copied());
let flex_ability = register(
subs,
rank,
pools,
Content::FlexAbleVar(None, abilities_slice),
);
let category = Category::OpaqueArg;
match unify(
&mut UEnv::new(subs),
var,
flex_ability,
Mode::EQ,
Polarity::OF_VALUE,
) {
Success {
vars: _,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
// No introduction needed
if !must_implement_ability.is_empty() {
let new_problems = obligation_cache.check_obligations(
subs,
abilities_store,
must_implement_ability,
AbilityImplError::BadExpr(region, category, flex_ability),
);
problems.extend(new_problems);
}
debug_assert!(lambda_sets_to_specialize
.drain()
.all(|(_, vals)| vals.is_empty()));
}
Failure(_vars, actual_type, expected_type, _bad_impls) => {
// No introduction needed
let problem = TypeError::BadExpr(
region,
category,
actual_type,
Expected::NoExpectation(expected_type),
);
problems.push(problem);
}
}
}
}
}
result
}
#[inline(always)]
fn roc_result_to_var(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
types: &mut Types,
result_type: Index<TypeTag>,
stack: &mut bumpalo::collections::Vec<'_, TypeToVar>,
) -> Variable {
match types[result_type] {
TypeTag::TagUnion(tags, _ext_openness) => {
let ext_slice = types.get_type_arguments(result_type);
debug_assert!(ext_slice.is_empty());
debug_assert!(tags.len() == 2);
let (tags_slice, payload_slices_slice) = types.union_tag_slices(tags);
if let ([err, ok], [err_args, ok_args]) =
(&types[tags_slice], &types[payload_slices_slice])
{
debug_assert_eq!(err, &subs.tag_names[0]);
debug_assert_eq!(ok, &subs.tag_names[1]);
debug_assert_eq!(err_args.len(), 1);
debug_assert_eq!(ok_args.len(), 1);
if let (Some(err_type), Some(ok_type)) =
(err_args.into_iter().next(), ok_args.into_iter().next())
{
let err_var = RegisterVariable::with_stack(
subs, rank, pools, arena, types, err_type, stack,
);
let ok_var = RegisterVariable::with_stack(
subs, rank, pools, arena, types, ok_type, stack,
);
let start = subs.variables.len() as u32;
let err_slice = SubsSlice::new(start, 1);
let ok_slice = SubsSlice::new(start + 1, 1);
subs.variables.push(err_var);
subs.variables.push(ok_var);
let variables = SubsSlice::new(subs.variable_slices.len() as _, 2);
subs.variable_slices.push(err_slice);
subs.variable_slices.push(ok_slice);
let union_tags = UnionTags::from_slices(Subs::RESULT_TAG_NAMES, variables);
let ext = TagExt::Any(Variable::EMPTY_TAG_UNION);
let content = Content::Structure(FlatType::TagUnion(union_tags, ext));
return register(subs, rank, pools, content);
}
}
unreachable!("invalid arguments to Result.Result; canonicalization should catch this!")
}
_ => unreachable!("not a valid type inside a Result.Result alias"),
}
}
fn insertion_sort_by<T, F>(arr: &mut [T], mut compare: F)
where
F: FnMut(&T, &T) -> std::cmp::Ordering,
{
for i in 1..arr.len() {
let val = &arr[i];
let mut j = i;
let pos = arr[..i]
.binary_search_by(|x| compare(x, val))
.unwrap_or_else(|pos| pos);
// Swap all elements until specific position.
while j > pos {
arr.swap(j - 1, j);
j -= 1;
}
}
}
fn sorted_no_duplicate_tags(tag_slices: &[TagName]) -> bool {
match tag_slices.split_first() {
None => true,
Some((first, rest)) => {
let mut current = first;
for next in rest {
if current >= next {
return false;
} else {
current = next;
}
}
true
}
}
}
fn sort_and_deduplicate<T>(tag_vars: &mut bumpalo::collections::Vec<(TagName, T)>) {
insertion_sort_by(tag_vars, |(a, _), (b, _)| a.cmp(b));
// deduplicate, keeping the right-most occurrence of a tag name
let mut i = 0;
while i < tag_vars.len() {
match (tag_vars.get(i), tag_vars.get(i + 1)) {
(Some((t1, _)), Some((t2, _))) => {
if t1 == t2 {
tag_vars.remove(i);
} else {
i += 1;
}
}
_ => break,
}
}
}
/// Find whether the current run of tag names is in the subs.tag_names array already. If so,
/// we take a SubsSlice to the existing tag names, so we don't have to add/clone those tag names
/// and keep subs memory consumption low
fn find_tag_name_run(slice: &[TagName], subs: &mut Subs) -> Option<SubsSlice<TagName>> {
use std::cmp::Ordering;
let tag_name = slice.get(0)?;
let mut result = None;
// the `SubsSlice<TagName>` that inserting `slice` into subs would give
let bigger_slice = SubsSlice::new(subs.tag_names.len() as _, slice.len() as _);
match subs.tag_name_cache.get_mut(tag_name) {
Some(occupied) => {
let subs_slice = *occupied;
let prefix_slice = SubsSlice::new(subs_slice.start, slice.len() as _);
if slice.len() == 1 {
return Some(prefix_slice);
}
match slice.len().cmp(&subs_slice.len()) {
Ordering::Less => {
// we might have a prefix
let tag_names = &subs.tag_names[subs_slice.start as usize..];
for (from_subs, from_slice) in tag_names.iter().zip(slice.iter()) {
if from_subs != from_slice {
return None;
}
}
result = Some(prefix_slice);
}
Ordering::Equal => {
let tag_names = &subs.tag_names[subs_slice.indices()];
for (from_subs, from_slice) in tag_names.iter().zip(slice.iter()) {
if from_subs != from_slice {
return None;
}
}
result = Some(subs_slice);
}
Ordering::Greater => {
// switch to the bigger slice that is not inserted yet, but will be soon
*occupied = bigger_slice;
}
}
}
None => {
subs.tag_name_cache.push(tag_name, bigger_slice);
}
}
result
}
#[inline(always)]
fn register_tag_arguments(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
types: &mut Types,
stack: &mut bumpalo::collections::Vec<'_, TypeToVar>,
arguments: Slice<TypeTag>,
) -> VariableSubsSlice {
if arguments.is_empty() {
VariableSubsSlice::default()
} else {
let new_variables = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
let it = new_variables.indices().zip(arguments.into_iter());
for (target_index, argument) in it {
let var =
RegisterVariable::with_stack(subs, rank, pools, arena, types, argument, stack);
subs.variables[target_index] = var;
}
new_variables
}
}
/// Assumes that the tags are sorted and there are no duplicates!
fn insert_tags_fast_path(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
types: &mut Types,
union_tags: UnionTags,
stack: &mut bumpalo::collections::Vec<'_, TypeToVar>,
) -> UnionTags {
let (tags, payload_slices) = types.union_tag_slices(union_tags);
debug_assert_eq!(tags.len(), payload_slices.len());
if let [arguments_slice] = &types[payload_slices] {
let arguments_slice = *arguments_slice;
let variable_slice =
register_tag_arguments(subs, rank, pools, arena, types, stack, arguments_slice);
let new_variable_slices =
SubsSlice::extend_new(&mut subs.variable_slices, [variable_slice]);
macro_rules! subs_tag_name {
($tag_name_slice:expr) => {
return UnionTags::from_slices($tag_name_slice, new_variable_slices)
};
}
match types[tags][0].0.as_str() {
"Ok" => subs_tag_name!(Subs::TAG_NAME_OK.as_slice()),
"Err" => subs_tag_name!(Subs::TAG_NAME_ERR.as_slice()),
"InvalidNumStr" => subs_tag_name!(Subs::TAG_NAME_INVALID_NUM_STR.as_slice()),
"BadUtf8" => subs_tag_name!(Subs::TAG_NAME_BAD_UTF_8.as_slice()),
"OutOfBounds" => subs_tag_name!(Subs::TAG_NAME_OUT_OF_BOUNDS.as_slice()),
_other => {}
}
}
let new_variable_slices = SubsSlice::reserve_variable_slices(subs, tags.len());
match find_tag_name_run(&types[tags], subs) {
Some(new_tag_names) => {
let it = (new_variable_slices.indices()).zip(payload_slices.into_iter());
for (variable_slice_index, arguments_index) in it {
let arguments = types[arguments_index];
subs.variable_slices[variable_slice_index] =
register_tag_arguments(subs, rank, pools, arena, types, stack, arguments);
}
UnionTags::from_slices(new_tag_names, new_variable_slices)
}
None => {
let new_tag_names = SubsSlice::reserve_tag_names(subs, tags.len());
let it = (new_variable_slices.indices())
.zip(new_tag_names.indices())
.zip(tags.into_iter())
.zip(payload_slices.into_iter());
for (((variable_slice_index, tag_name_index), tag_name), arguments_index) in it {
let arguments = types[arguments_index];
subs.variable_slices[variable_slice_index] =
register_tag_arguments(subs, rank, pools, arena, types, stack, arguments);
subs.tag_names[tag_name_index] = types[tag_name].clone();
}
UnionTags::from_slices(new_tag_names, new_variable_slices)
}
}
}
fn insert_tags_slow_path(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
types: &mut Types,
union_tags: UnionTags,
mut tag_vars: bumpalo::collections::Vec<(TagName, VariableSubsSlice)>,
stack: &mut bumpalo::collections::Vec<'_, TypeToVar>,
) -> UnionTags {
let (tags, payload_slices) = types.union_tag_slices(union_tags);
for (tag_index, tag_argument_types_index) in (tags.into_iter()).zip(payload_slices.into_iter())
{
let tag_argument_types = &types[tag_argument_types_index];
let new_slice = VariableSubsSlice::reserve_into_subs(subs, tag_argument_types.len());
for (i, arg) in (new_slice.indices()).zip(tag_argument_types.into_iter()) {
let var = RegisterVariable::with_stack(subs, rank, pools, arena, types, arg, stack);
subs.variables[i] = var;
}
tag_vars.push((types[tag_index].clone(), new_slice));
}
sort_and_deduplicate(&mut tag_vars);
UnionTags::insert_slices_into_subs(subs, tag_vars)
}
fn type_to_union_tags(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
types: &mut Types,
union_tags: UnionTags,
opt_ext_slice: Slice<TypeTag>,
ext_openness: ExtImplicitOpenness,
stack: &mut bumpalo::collections::Vec<'_, TypeToVar>,
) -> (UnionTags, TagExt) {
use bumpalo::collections::Vec;
let (tags, _) = types.union_tag_slices(union_tags);
let sorted = tags.len() == 1 || sorted_no_duplicate_tags(&types[tags]);
debug_assert!(opt_ext_slice.len() <= 1);
match opt_ext_slice.into_iter().next() {
None => {
let ext = Variable::EMPTY_TAG_UNION;
let union_tags = if sorted {
insert_tags_fast_path(subs, rank, pools, arena, types, union_tags, stack)
} else {
let tag_vars = Vec::with_capacity_in(tags.len(), arena);
insert_tags_slow_path(subs, rank, pools, arena, types, union_tags, tag_vars, stack)
};
(union_tags, TagExt::Any(ext))
}
Some(ext) => {
let mut tag_vars = Vec::with_capacity_in(tags.len(), arena);
let temp_ext = {
let temp_ext_var =
RegisterVariable::with_stack(subs, rank, pools, arena, types, ext, stack);
TagExt::from_can(temp_ext_var, ext_openness)
};
let (it, ext) =
roc_types::types::gather_tags_unsorted_iter(subs, UnionTags::default(), temp_ext)
.expect("extension var could not be seen as tag union");
tag_vars.extend(it.map(|(n, v)| (n.clone(), v)));
let union_tags = if tag_vars.is_empty() && sorted {
insert_tags_fast_path(subs, rank, pools, arena, types, union_tags, stack)
} else {
insert_tags_slow_path(subs, rank, pools, arena, types, union_tags, tag_vars, stack)
};
(union_tags, ext)
}
}
}
fn create_union_lambda(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
types: &mut Types,
closure: Symbol,
capture_types: Slice<TypeTag>,
stack: &mut bumpalo::collections::Vec<'_, TypeToVar>,
) -> UnionLambdas {
let variable_slice =
register_tag_arguments(subs, rank, pools, arena, types, stack, capture_types);
let new_variable_slices = SubsSlice::extend_new(&mut subs.variable_slices, [variable_slice]);
let lambda_name_slice = SubsSlice::extend_new(&mut subs.symbol_names, [closure]);
UnionLambdas::from_slices(lambda_name_slice, new_variable_slices)
}
fn check_for_infinite_type(
subs: &mut Subs,
problems: &mut Vec<TypeError>,
symbol: Symbol,
loc_var: Loc<Variable>,
) {
let var = loc_var.value;
'next_occurs_check: while let Err((_, chain)) = subs.occurs(var) {
// walk the chain till we find a tag union or lambda set, starting from the variable that
// occurred recursively, which is always at the end of the chain.
for &var in chain.iter().rev() {
match *subs.get_content_without_compacting(var) {
Content::Structure(FlatType::TagUnion(tags, ext_var)) => {
subs.mark_tag_union_recursive(var, tags, ext_var);
continue 'next_occurs_check;
}
Content::LambdaSet(subs::LambdaSet {
solved,
recursion_var: OptVariable::NONE,
unspecialized,
ambient_function: ambient_function_var,
}) => {
subs.mark_lambda_set_recursive(
var,
solved,
unspecialized,
ambient_function_var,
);
continue 'next_occurs_check;
}
_ => { /* fall through */ }
}
}
circular_error(subs, problems, symbol, &loc_var);
}
}
fn circular_error(
subs: &mut Subs,
problems: &mut Vec<TypeError>,
symbol: Symbol,
loc_var: &Loc<Variable>,
) {
let var = loc_var.value;
let error_type = subs.var_to_error_type(var, Polarity::OF_VALUE);
let problem = TypeError::CircularType(loc_var.region, symbol, error_type);
subs.set_content(var, Content::Error);
problems.push(problem);
}
/// Generalizes variables at the `young_rank`, which did not escape a let-binding
/// into a lower scope.
///
/// Ensures that variables introduced at the `young_rank`, but that should be
/// stuck at a lower level, are marked at that level and not generalized at the
/// present `young_rank`. See [adjust_rank].
fn generalize(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
young_rank: Rank,
pools: &mut Pools,
) {
let young_vars = std::mem::take(pools.get_mut(young_rank));
let rank_table = pool_to_rank_table(subs, young_mark, young_rank, young_vars);
// Get the ranks right for each entry.
// Start at low ranks so we only have to pass over the information once.
for (index, table) in rank_table.iter().enumerate() {
for &var in table.iter() {
adjust_rank(subs, young_mark, visit_mark, Rank::from(index), var);
}
}
let (mut last_pool, all_but_last_pool) = rank_table.split_last();
// For variables that have rank lowerer than young_rank, register them in
// the appropriate old pool if they are not redundant.
for vars in all_but_last_pool {
for var in vars {
let rank = subs.get_rank(var);
pools.get_mut(rank).push(var);
}
}
// For variables with rank young_rank, if rank < young_rank: register in old pool,
// otherwise generalize
for var in last_pool.drain(..) {
let desc_rank = subs.get_rank(var);
if desc_rank < young_rank {
pools.get_mut(desc_rank).push(var);
} else {
subs.set_rank(var, Rank::GENERALIZED);
}
}
// re-use the last_vector (which likely has a good capacity for future runs)
debug_assert!(last_pool.is_empty());
*pools.get_mut(young_rank) = last_pool;
}
/// Sort the variables into buckets by rank.
#[inline]
fn pool_to_rank_table(
subs: &mut Subs,
young_mark: Mark,
young_rank: Rank,
mut young_vars: Vec<Variable>,
) -> Pools {
let mut pools = Pools::new(young_rank.into_usize() + 1);
// the vast majority of young variables have young_rank
let mut i = 0;
while i < young_vars.len() {
let var = subs.get_root_key(young_vars[i]);
subs.set_mark_unchecked(var, young_mark);
let rank = subs.get_rank_unchecked(var);
if rank != young_rank {
debug_assert!(rank.into_usize() < young_rank.into_usize() + 1);
pools.get_mut(rank).push(var);
// swap an element in; don't increment i
young_vars.swap_remove(i);
} else {
i += 1;
}
}
std::mem::swap(pools.get_mut(young_rank), &mut young_vars);
pools
}
/// Adjust variable ranks such that ranks never increase as you move deeper.
/// This way the outermost rank is representative of the entire structure.
///
/// This procedure also catches type variables at a given rank that contain types at a higher rank.
/// In such cases, the contained types must be lowered to the rank of the outer type. This is
/// critical for soundness of the type inference; for example consider
///
/// ```ignore(illustrative)
/// \f -> # rank=1
/// g = \x -> f x # rank=2
/// g
/// ```
///
/// say that during the solving of the outer body at rank 1 we conditionally give `f` the type
/// `a -> b (rank=1)`. Without rank-adjustment, the type of `g` would be solved as `c -> d (rank=2)` for
/// some `c ~ a`, `d ~ b`, and hence would be generalized to the function `c -> d`, even though `c`
/// and `d` are individually at rank 1 after unfication with `a` and `b` respectively.
/// This is incorrect; the whole of `c -> d` must lie at rank 1, and only be generalized at the
/// level that `f` is introduced.
fn adjust_rank(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
group_rank: Rank,
var: Variable,
) -> Rank {
let var = subs.get_root_key(var);
let desc_rank = subs.get_rank_unchecked(var);
let desc_mark = subs.get_mark_unchecked(var);
if desc_mark == young_mark {
let content = *subs.get_content_unchecked(var);
// Mark the variable as visited before adjusting content, as it may be cyclic.
subs.set_mark_unchecked(var, visit_mark);
// Adjust the nested types' ranks, making sure that no nested unbound type variable is at a
// higher rank than the group rank this `var` is at
let max_rank = adjust_rank_content(subs, young_mark, visit_mark, group_rank, &content);
subs.set_rank_unchecked(var, max_rank);
subs.set_mark_unchecked(var, visit_mark);
max_rank
} else if desc_mark == visit_mark {
// we have already visited this variable
// (probably two variables had the same root)
desc_rank
} else {
let min_rank = group_rank.min(desc_rank);
// TODO from elm-compiler: how can min_rank ever be group_rank?
subs.set_rank_unchecked(var, min_rank);
subs.set_mark_unchecked(var, visit_mark);
min_rank
}
}
fn adjust_rank_content(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
group_rank: Rank,
content: &Content,
) -> Rank {
use roc_types::subs::Content::*;
use roc_types::subs::FlatType::*;
match content {
FlexVar(_) | RigidVar(_) | FlexAbleVar(_, _) | RigidAbleVar(_, _) | Error => group_rank,
RecursionVar { .. } => group_rank,
Structure(flat_type) => {
match flat_type {
Apply(_, args) => {
let mut rank = Rank::toplevel();
for var_index in args.into_iter() {
let var = subs[var_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
Func(arg_vars, closure_var, ret_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ret_var);
// TODO investigate further.
//
// My theory is that because the closure_var contains variables already
// contained in the signature only, it does not need to be part of the rank
// calculuation
if true {
rank = rank.max(adjust_rank(
subs,
young_mark,
visit_mark,
group_rank,
*closure_var,
));
}
for index in arg_vars.into_iter() {
let var = subs[index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
EmptyRecord | EmptyTuple => {
// from elm-compiler: THEORY: an empty record never needs to get generalized
//
// But for us, that theory does not hold, because there might be type variables hidden
// inside a lambda set but not on the left or right of an arrow, and records should not
// force de-generalization in such cases.
//
// See https://github.com/roc-lang/roc/issues/3641 for a longer discussion and
// example.
group_rank
}
// THEORY: an empty tag never needs to get generalized
EmptyTagUnion => Rank::toplevel(),
Record(fields, ext_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
for (_, var_index, field_index) in fields.iter_all() {
let var = subs[var_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
// When generalizing annotations with rigid optional/required fields,
// we want to promote them to non-rigid, so that usages at
// specialized sites don't have to exactly include the optional/required field.
match subs[field_index] {
RecordField::RigidOptional(()) => {
subs[field_index] = RecordField::Optional(());
}
RecordField::RigidRequired(()) => {
subs[field_index] = RecordField::Required(());
}
_ => {}
}
}
rank
}
Tuple(elems, ext_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
for (_, var_index) in elems.iter_all() {
let var = subs[var_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
TagUnion(tags, ext_var) => {
let mut rank =
adjust_rank(subs, young_mark, visit_mark, group_rank, ext_var.var());
// For performance reasons, we only keep one representation of empty tag unions
// in subs. That representation exists at rank 0, which we don't always want to
// reflect the whole tag union as, because doing so may over-generalize free
// type variables.
// Normally this is not a problem because of the loop below that maximizes the
// rank from nested types in the union. But suppose we have the simple tag
// union
// [Z]{}
// there are no nested types in the tags, and the empty tag union is at rank 0,
// so we promote the tag union to rank 0. Now if we introduce the presence
// constraint
// [Z]{} += [S a]
// we'll wind up with [Z, S a]{}, but it will be at rank 0, and "a" will get
// over-generalized. Really, the empty tag union should be introduced at
// whatever current group rank we're at, and so that's how we encode it here.
if ext_var.var() == Variable::EMPTY_TAG_UNION && rank.is_generalized() {
rank = group_rank;
}
for (_, index) in tags.iter_all() {
let slice = subs[index];
for var_index in slice {
let var = subs[var_index];
rank = rank
.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
}
rank
}
FunctionOrTagUnion(_, _, ext_var) => {
adjust_rank(subs, young_mark, visit_mark, group_rank, ext_var.var())
}
RecursiveTagUnion(rec_var, tags, ext_var) => {
let mut rank =
adjust_rank(subs, young_mark, visit_mark, group_rank, ext_var.var());
for (_, index) in tags.iter_all() {
let slice = subs[index];
for var_index in slice {
let var = subs[var_index];
rank = rank
.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
}
// The recursion var may have a higher rank than the tag union itself, if it is
// erroneous and escapes into a region where it is let-generalized before it is
// constrained back down to the rank it originated from.
//
// For example, see the `recursion_var_specialization_error` reporting test -
// there, we have
//
// Job a : [Job (List (Job a)) a]
//
// job : Job Str
//
// when job is
// Job lst _ -> lst == ""
//
// In this case, `lst` is generalized and has a higher rank for the type
// `(List (Job a)) as a` - notice that only the recursion var `a` is active
// here, not the entire recursive tag union. In the body of this branch, `lst`
// becomes a type error, but the nested recursion var `a` is left untouched,
// because it is nested under the of `lst`, not the surface type that becomes
// an error.
//
// Had this not become a type error, `lst` would then be constrained against
// `job`, and its rank would get pulled back down. So, this can only happen in
// the presence of type errors.
//
// In all other cases, the recursion var has the same rank as the tag union itself
// all types it uses are also in the tags already, so it cannot influence the
// rank.
if cfg!(debug_assertions)
&& !matches!(
subs.get_content_without_compacting(*rec_var),
Content::Error | Content::FlexVar(..)
)
{
let rec_var_rank =
adjust_rank(subs, young_mark, visit_mark, group_rank, *rec_var);
debug_assert!(
rank >= rec_var_rank,
"rank was {:?} but recursion var <{:?}>{:?} has higher rank {:?}",
rank,
rec_var,
subs.get_content_without_compacting(*rec_var),
rec_var_rank
);
}
rank
}
}
}
Alias(_, args, real_var, _) => {
let mut rank = Rank::toplevel();
// Avoid visiting lambda set variables stored in the type variables of the alias
// independently.
//
// Why? Lambda set variables on the alias are not truly type arguments to the alias,
// and instead are links to the lambda sets that appear in functions under the real
// type of the alias. If their ranks are adjusted independently, we end up looking at
// function types "inside-out" - when the whole point of rank-adjustment is to look
// from the outside-in to determine at what rank a type lies!
//
// So, just wait to adjust their ranks until we visit the function types that contain
// them. If they should be generalized (or pulled to a lower rank) that will happen
// then; otherwise, we risk generalizing a lambda set too early, when its enclosing
// function type should not be.
let adjustable_variables =
(args.type_variables().into_iter()).chain(args.infer_ext_in_output_variables());
for var_index in adjustable_variables {
let var = subs[var_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
// from elm-compiler: THEORY: anything in the real_var would be Rank::toplevel()
// this theory is not true in Roc! aliases of function types capture the closure var
rank = rank.max(adjust_rank(
subs, young_mark, visit_mark, group_rank, *real_var,
));
rank
}
LambdaSet(subs::LambdaSet {
solved,
recursion_var,
unspecialized,
ambient_function: ambient_function_var,
}) => {
let mut rank = group_rank;
for (_, index) in solved.iter_all() {
let slice = subs[index];
for var_index in slice {
let var = subs[var_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
}
for uls_index in *unspecialized {
let Uls(var, _, _) = subs[uls_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
if let (true, Some(rec_var)) = (cfg!(debug_assertions), recursion_var.into_variable()) {
// THEORY: unlike the situation for recursion vars under recursive tag unions,
// recursive vars inside lambda sets can't escape into higher let-generalized regions
// because lambda sets aren't user-facing.
//
// So the recursion var should be fully accounted by everything else in the lambda set
// (since it appears in the lambda set), and if the rank is higher, it's either a
// bug or our theory is wrong and indeed they can escape into higher regions.
let rec_var_rank = adjust_rank(subs, young_mark, visit_mark, group_rank, rec_var);
debug_assert!(
rank >= rec_var_rank,
"rank was {:?} but recursion var <{:?}>{:?} has higher rank {:?}",
rank,
rec_var,
subs.get_content_without_compacting(rec_var),
rec_var_rank
);
}
// NEVER TOUCH the ambient function var, it would already have been passed through.
{
let _ = ambient_function_var;
}
rank
}
RangedNumber(_) => group_rank,
}
}
/// Introduce some variables to Pools at the given rank.
/// Also, set each of their ranks in Subs to be the given rank.
pub(crate) fn introduce(subs: &mut Subs, rank: Rank, pools: &mut Pools, vars: &[Variable]) {
let pool: &mut Vec<Variable> = pools.get_mut(rank);
for &var in vars.iter() {
subs.set_rank(var, rank);
}
pool.extend(vars);
}
pub(crate) fn deep_copy_var_in(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
var: Variable,
arena: &Bump,
) -> Variable {
let mut visited = bumpalo::collections::Vec::with_capacity_in(256, arena);
let pool = pools.get_mut(rank);
let var = subs.get_root_key(var);
match deep_copy_var_decision(subs, rank, var) {
ControlFlow::Break(copy) => copy,
ControlFlow::Continue(copy) => {
deep_copy_var_help(subs, rank, pool, &mut visited, var, copy);
// we have tracked all visited variables, and can now traverse them
// in one go (without looking at the UnificationTable) and clear the copy field
for var in visited {
subs.set_copy_unchecked(var, OptVariable::NONE);
}
copy
}
}
}
#[inline]
fn has_trivial_copy(subs: &Subs, root_var: Variable) -> Option<Variable> {
let existing_copy = subs.get_copy_unchecked(root_var);
if let Some(copy) = existing_copy.into_variable() {
Some(copy)
} else if subs.get_rank_unchecked(root_var) != Rank::GENERALIZED {
Some(root_var)
} else {
None
}
}
#[inline]
fn deep_copy_var_decision(
subs: &mut Subs,
max_rank: Rank,
var: Variable,
) -> ControlFlow<Variable, Variable> {
let var = subs.get_root_key(var);
if let Some(copy) = has_trivial_copy(subs, var) {
ControlFlow::Break(copy)
} else {
let copy_descriptor = Descriptor {
content: Content::Structure(FlatType::EmptyTagUnion),
rank: max_rank,
mark: Mark::NONE,
copy: OptVariable::NONE,
};
let copy = subs.fresh(copy_descriptor);
// Link the original variable to the new variable. This lets us
// avoid making multiple copies of the variable we are instantiating.
//
// Need to do this before recursively copying to avoid looping.
subs.set_mark_unchecked(var, Mark::NONE);
subs.set_copy_unchecked(var, copy.into());
ControlFlow::Continue(copy)
}
}
fn deep_copy_var_help(
subs: &mut Subs,
max_rank: Rank,
pool: &mut Vec<Variable>,
visited: &mut bumpalo::collections::Vec<'_, Variable>,
initial_source: Variable,
initial_copy: Variable,
) -> Variable {
use roc_types::subs::Content::*;
use roc_types::subs::FlatType::*;
struct DeepCopyVarWork {
source: Variable,
copy: Variable,
}
let initial = DeepCopyVarWork {
source: initial_source,
copy: initial_copy,
};
let mut stack = vec![initial];
macro_rules! work {
($variable:expr) => {{
let var = subs.get_root_key($variable);
match deep_copy_var_decision(subs, max_rank, var) {
ControlFlow::Break(copy) => copy,
ControlFlow::Continue(copy) => {
stack.push(DeepCopyVarWork { source: var, copy });
copy
}
}
}};
}
macro_rules! copy_sequence {
($length:expr, $variables:expr) => {{
let new_variables = SubsSlice::reserve_into_subs(subs, $length as _);
for (target_index, var_index) in (new_variables.indices()).zip($variables) {
let var = subs[var_index];
let copy_var = work!(var);
subs.variables[target_index] = copy_var;
}
new_variables
}};
}
macro_rules! copy_union {
($tags:expr) => {{
let new_variable_slices = SubsSlice::reserve_variable_slices(subs, $tags.len());
let it = (new_variable_slices.indices()).zip($tags.variables());
for (target_index, index) in it {
let slice = subs[index];
let new_variables = copy_sequence!(slice.len(), slice);
subs.variable_slices[target_index] = new_variables;
}
UnionLabels::from_slices($tags.labels(), new_variable_slices)
}};
}
// When generalizing annotations with `Openness` extensions
// we want to promote them to `Any`, so that usages at
// specialized sites can grow unboundedly and are not bound to
// openness-polymorphism.
macro_rules! copy_tag_ext {
($ext:expr) => {
TagExt::Any(work!($ext.var()))
};
}
while let Some(DeepCopyVarWork { source: var, copy }) = stack.pop() {
visited.push(var);
pool.push(copy);
let content = *subs.get_content_unchecked(var);
// Now we recursively copy the content of the variable.
// We have already marked the variable as copied, so we
// will not repeat this work or crawl this variable again.
match content {
Structure(flat_type) => {
let new_flat_type = match flat_type {
Apply(symbol, arguments) => {
let new_arguments = copy_sequence!(arguments.len(), arguments);
Apply(symbol, new_arguments)
}
Func(arguments, closure_var, ret_var) => {
let new_ret_var = work!(ret_var);
let new_closure_var = work!(closure_var);
let new_arguments = copy_sequence!(arguments.len(), arguments);
Func(new_arguments, new_closure_var, new_ret_var)
}
same @ EmptyRecord | same @ EmptyTuple | same @ EmptyTagUnion => same,
Record(fields, ext_var) => {
let record_fields = {
let new_variables =
copy_sequence!(fields.len(), fields.iter_variables());
// When copying a let-generalized record to a specialized region, rigid
// optionals just become optionals.
let field_types = subs.get_subs_slice(fields.record_fields());
let has_rigid_optional_field = field_types
.iter()
.any(|f| matches!(f, RecordField::RigidOptional(..)));
let new_field_types_start = if has_rigid_optional_field {
let field_types = field_types.to_vec();
let slice = SubsSlice::extend_new(
&mut subs.record_fields,
field_types.into_iter().map(|f| match f {
RecordField::RigidOptional(())
| RecordField::RigidRequired(()) => internal_error!("Rigid optional/required should be generalized to non-rigid by this point"),
RecordField::Demanded(_)
| RecordField::Required(_)
| RecordField::Optional(_) => f,
}),
);
slice.start
} else {
fields.field_types_start
};
RecordFields {
length: fields.length,
field_names_start: fields.field_names_start,
variables_start: new_variables.start,
field_types_start: new_field_types_start,
}
};
Record(record_fields, work!(ext_var))
}
Tuple(elems, ext_var) => {
let tuple_elems = {
let new_variables = copy_sequence!(elems.len(), elems.iter_variables());
TupleElems {
length: elems.length,
variables_start: new_variables.start,
elem_index_start: elems.elem_index_start,
}
};
Tuple(tuple_elems, work!(ext_var))
}
TagUnion(tags, ext_var) => {
let union_tags = copy_union!(tags);
TagUnion(union_tags, copy_tag_ext!(ext_var))
}
FunctionOrTagUnion(tag_name, symbol, ext_var) => {
FunctionOrTagUnion(tag_name, symbol, copy_tag_ext!(ext_var))
}
RecursiveTagUnion(rec_var, tags, ext_var) => {
let union_tags = copy_union!(tags);
RecursiveTagUnion(work!(rec_var), union_tags, copy_tag_ext!(ext_var))
}
};
subs.set_content_unchecked(copy, Structure(new_flat_type));
}
FlexVar(_) | FlexAbleVar(_, _) | Error => {
subs.set_content_unchecked(copy, content);
}
RecursionVar {
opt_name,
structure,
} => {
let content = RecursionVar {
opt_name,
structure: work!(structure),
};
subs.set_content_unchecked(copy, content);
}
RigidVar(name) => {
subs.set_content_unchecked(copy, FlexVar(Some(name)));
}
RigidAbleVar(name, ability) => {
subs.set_content_unchecked(copy, FlexAbleVar(Some(name), ability));
}
Alias(symbol, arguments, real_type_var, kind) => {
let new_variables =
copy_sequence!(arguments.all_variables_len, arguments.all_variables());
let new_arguments = AliasVariables {
variables_start: new_variables.start,
..arguments
};
let new_real_type_var = work!(real_type_var);
let new_content = Alias(symbol, new_arguments, new_real_type_var, kind);
subs.set_content_unchecked(copy, new_content);
}
LambdaSet(subs::LambdaSet {
solved,
recursion_var,
unspecialized,
ambient_function: ambient_function_var,
}) => {
let lambda_set_var = copy;
let new_solved = copy_union!(solved);
let new_rec_var = recursion_var.map(|v| work!(v));
let new_unspecialized = SubsSlice::reserve_uls_slice(subs, unspecialized.len());
for (new_uls_index, uls_index) in
(new_unspecialized.into_iter()).zip(unspecialized.into_iter())
{
let Uls(var, sym, region) = subs[uls_index];
let new_var = work!(var);
deep_copy_uls_precondition(subs, var, new_var);
subs[new_uls_index] = Uls(new_var, sym, region);
subs.uls_of_var.add(new_var, lambda_set_var);
}
let new_ambient_function_var = work!(ambient_function_var);
debug_assert_ne!(
ambient_function_var, new_ambient_function_var,
"lambda set cloned but its ambient function wasn't?"
);
subs.set_content_unchecked(
lambda_set_var,
LambdaSet(subs::LambdaSet {
solved: new_solved,
recursion_var: new_rec_var,
unspecialized: new_unspecialized,
ambient_function: new_ambient_function_var,
}),
);
}
RangedNumber(range) => {
let new_content = RangedNumber(range);
subs.set_content_unchecked(copy, new_content);
}
}
}
initial_copy
}
#[inline(always)]
fn deep_copy_uls_precondition(subs: &Subs, original_var: Variable, new_var: Variable) {
if cfg!(debug_assertions) {
let content = subs.get_content_without_compacting(original_var);
debug_assert!(
matches!(
content,
Content::FlexAbleVar(..) | Content::RigidAbleVar(..)
),
"var in unspecialized lamba set is not bound to an ability, it is {:?}",
roc_types::subs::SubsFmtContent(content, subs)
);
debug_assert!(
original_var != new_var,
"unspecialized lamba set var was not instantiated"
);
}
}
#[inline(always)]
fn register(subs: &mut Subs, rank: Rank, pools: &mut Pools, content: Content) -> Variable {
let descriptor = Descriptor {
content,
rank,
mark: Mark::NONE,
copy: OptVariable::NONE,
};
let var = subs.fresh(descriptor);
pools.get_mut(rank).push(var);
var
}
fn register_with_known_var(
subs: &mut Subs,
var: Variable,
rank: Rank,
pools: &mut Pools,
content: Content,
) -> Variable {
let descriptor = Descriptor {
content,
rank,
mark: Mark::NONE,
copy: OptVariable::NONE,
};
subs.set(var, descriptor);
pools.get_mut(rank).push(var);
var
}