roc/crates/compiler/gen_dev/src/lib.rs
2023-09-13 20:24:16 +02:00

2475 lines
90 KiB
Rust

//! Provides the compiler backend to generate Roc binaries fast, for a nice
//! developer experience. See [README.md](./compiler/gen_dev/README.md) for
//! more information.
#![warn(clippy::dbg_macro)]
// See github.com/roc-lang/roc/issues/800 for discussion of the large_enum_variant check.
#![allow(clippy::large_enum_variant, clippy::upper_case_acronyms)]
use std::collections::hash_map::Entry;
use bumpalo::{collections::Vec, Bump};
use roc_builtins::bitcode::{self, FloatWidth, IntWidth};
use roc_collections::all::{MutMap, MutSet};
use roc_error_macros::{internal_error, todo_lambda_erasure};
use roc_module::ident::ModuleName;
use roc_module::low_level::{LowLevel, LowLevelWrapperType};
use roc_module::symbol::{Interns, ModuleId, Symbol};
use roc_mono::code_gen_help::{CallerProc, CodeGenHelp};
use roc_mono::ir::{
BranchInfo, CallType, CrashTag, Expr, HigherOrderLowLevel, JoinPointId, ListLiteralElement,
Literal, ModifyRc, Param, Proc, ProcLayout, SelfRecursive, Stmt,
};
use roc_mono::layout::{
Builtin, InLayout, LambdaName, Layout, LayoutIds, LayoutInterner, LayoutRepr, STLayoutInterner,
TagIdIntType, UnionLayout,
};
use roc_mono::list_element_layout;
mod generic64;
mod object_builder;
pub use object_builder::build_module;
mod run_roc;
#[derive(Debug, Clone, Copy)]
pub enum AssemblyBackendMode {
/// Assumes primitives (roc_alloc, roc_panic, etc) are provided by the host
Binary,
/// Provides a testing implementation of primitives (roc_alloc, roc_panic, etc)
Test,
}
impl AssemblyBackendMode {
fn generate_allocators(self) -> bool {
match self {
AssemblyBackendMode::Binary => false,
AssemblyBackendMode::Test => true,
}
}
fn generate_roc_panic(self) -> bool {
match self {
AssemblyBackendMode::Binary => false,
AssemblyBackendMode::Test => true,
}
}
}
pub struct Env<'a> {
pub arena: &'a Bump,
pub module_id: ModuleId,
pub exposed_to_host: MutSet<Symbol>,
pub lazy_literals: bool,
pub mode: AssemblyBackendMode,
}
// These relocations likely will need a length.
// They may even need more definition, but this should be at least good enough for how we will use elf.
#[derive(Debug, Clone)]
#[allow(dead_code)]
pub enum Relocation {
LocalData {
offset: u64,
// This should probably technically be a bumpalo::Vec.
// The problem is that it currently is built in a place that can't access the arena.
data: std::vec::Vec<u8>,
},
LinkedFunction {
offset: u64,
name: String,
},
LinkedData {
offset: u64,
name: String,
},
JmpToReturn {
inst_loc: u64,
inst_size: u64,
offset: u64,
},
}
#[repr(u8)]
enum UpdateMode {
Immutable = 0,
}
struct ListArgument<'a> {
element_layout: InLayout<'a>,
alignment: Symbol,
element_width: Symbol,
}
// Track when a variable is last used (and hence when it can be disregarded). This is non-trivial
// in the presence of join points. Consider this example:
//
// let len = 3
//
// joinpoint f = \a ->
// joinpoint g = \b ->
// # len is used here
// in
// ...
// in
// ...
//
// we have to keep `len` alive until after the joinpoint goes out of scope!
#[derive(Debug, Default)]
struct LastSeenMap<'a> {
last_seen: MutMap<Symbol, *const Stmt<'a>>,
join_map: MutMap<JoinPointId, &'a [Param<'a>]>,
}
impl<'a> LastSeenMap<'a> {
fn set_last_seen(&mut self, symbol: Symbol, stmt: &'a Stmt<'a>) {
self.last_seen.insert(symbol, stmt);
}
/// scan_ast runs through the ast and fill the last seen map.
/// This must iterate through the ast in the same way that build_stmt does. i.e. then before else.
fn scan_ast(root: &'a Stmt<'a>) -> MutMap<Symbol, *const Stmt<'a>> {
let mut this: Self = Default::default();
this.scan_ast_help(root);
this.last_seen
}
fn scan_ast_help(&mut self, stmt: &'a Stmt<'a>) {
match stmt {
Stmt::Let(sym, expr, _, following) => {
self.set_last_seen(*sym, stmt);
match expr {
Expr::Literal(_) => {}
Expr::NullPointer => {}
Expr::Call(call) => self.scan_ast_call(call, stmt),
Expr::Tag {
arguments, reuse, ..
} => {
if let Some(ru) = reuse {
self.set_last_seen(ru.symbol, stmt);
}
for sym in *arguments {
self.set_last_seen(*sym, stmt);
}
}
Expr::ErasedMake { value, callee } => {
value.map(|v| self.set_last_seen(v, stmt));
self.set_last_seen(*callee, stmt);
}
Expr::ErasedLoad { symbol, field: _ } => {
self.set_last_seen(*symbol, stmt);
}
Expr::Struct(syms) => {
for sym in *syms {
self.set_last_seen(*sym, stmt);
}
}
Expr::StructAtIndex { structure, .. } => {
self.set_last_seen(*structure, stmt);
}
Expr::GetTagId { structure, .. } => {
self.set_last_seen(*structure, stmt);
}
Expr::UnionAtIndex { structure, .. } => {
self.set_last_seen(*structure, stmt);
}
Expr::UnionFieldPtrAtIndex { structure, .. } => {
self.set_last_seen(*structure, stmt);
}
Expr::Array { elems, .. } => {
for elem in *elems {
if let ListLiteralElement::Symbol(sym) = elem {
self.set_last_seen(*sym, stmt);
}
}
}
Expr::Reset { symbol, .. } | Expr::ResetRef { symbol, .. } => {
self.set_last_seen(*symbol, stmt);
}
Expr::Alloca { initializer, .. } => {
if let Some(initializer) = initializer {
self.set_last_seen(*initializer, stmt);
}
}
Expr::RuntimeErrorFunction(_) => {}
Expr::FunctionPointer { .. } => todo_lambda_erasure!(),
Expr::EmptyArray => {}
}
self.scan_ast_help(following);
}
Stmt::Switch {
cond_symbol,
branches,
default_branch,
..
} => {
self.set_last_seen(*cond_symbol, stmt);
for (_, _, branch) in *branches {
self.scan_ast_help(branch);
}
self.scan_ast_help(default_branch.1);
}
Stmt::Ret(sym) => {
self.set_last_seen(*sym, stmt);
}
Stmt::Refcounting(modify, following) => {
let sym = modify.get_symbol();
self.set_last_seen(sym, stmt);
self.scan_ast_help(following);
}
Stmt::Join {
parameters,
body: continuation,
remainder,
id: JoinPointId(sym),
..
} => {
self.set_last_seen(*sym, stmt);
self.join_map.insert(JoinPointId(*sym), parameters);
self.scan_ast_help(remainder);
for (symbol, symbol_stmt) in Self::scan_ast(continuation) {
match self.last_seen.entry(symbol) {
Entry::Occupied(mut occupied) => {
// lives for the joinpoint
occupied.insert(stmt);
}
Entry::Vacant(vacant) => {
// lives for some time within the continuation
vacant.insert(symbol_stmt);
}
}
}
for param in *parameters {
self.set_last_seen(param.symbol, stmt);
}
}
Stmt::Jump(JoinPointId(sym), symbols) => {
if let Some(parameters) = self.join_map.get(&JoinPointId(*sym)) {
// Keep the parameters around. They will be overwritten when jumping.
for param in *parameters {
self.set_last_seen(param.symbol, stmt);
}
}
for sym in *symbols {
self.set_last_seen(*sym, stmt);
}
}
Stmt::Dbg { .. } => todo!("dbg not implemented in the dev backend"),
Stmt::Expect { .. } => todo!("expect is not implemented in the dev backend"),
Stmt::ExpectFx { .. } => todo!("expect-fx is not implemented in the dev backend"),
Stmt::Crash(msg, _crash_tag) => {
self.set_last_seen(*msg, stmt);
}
}
}
fn scan_ast_call(&mut self, call: &roc_mono::ir::Call, stmt: &'a roc_mono::ir::Stmt<'a>) {
let roc_mono::ir::Call {
call_type,
arguments,
} = call;
for sym in *arguments {
self.set_last_seen(*sym, stmt);
}
match call_type {
CallType::ByName { .. } => {}
CallType::ByPointer { .. } => {}
CallType::LowLevel { .. } => {}
CallType::HigherOrder { .. } => {}
CallType::Foreign { .. } => {}
}
}
}
trait Backend<'a> {
fn env(&self) -> &Env<'a>;
fn interns(&self) -> &Interns;
fn interns_mut(&mut self) -> &mut Interns;
fn interner(&self) -> &STLayoutInterner<'a>;
fn relocations_mut(&mut self) -> &mut Vec<'a, Relocation>;
fn interner_mut(&mut self) -> &mut STLayoutInterner<'a> {
self.module_interns_helpers_mut().1
}
fn debug_symbol(&mut self, name: &str) -> Symbol {
let module_id = self.env().module_id;
self.debug_symbol_in(module_id, name)
}
fn debug_symbol_in(&mut self, module_id: ModuleId, name: &str) -> Symbol {
let ident_ids = self
.interns_mut()
.all_ident_ids
.get_mut(&module_id)
.unwrap();
let ident_id = ident_ids.add_str(name);
Symbol::new(module_id, ident_id)
}
// This method is suboptimal, but it seems to be the only way to make rust understand
// that all of these values can be mutable at the same time. By returning them together,
// rust understands that they are part of a single use of mutable self.
fn module_interns_helpers_mut(
&mut self,
) -> (
ModuleId,
&mut STLayoutInterner<'a>,
&mut Interns,
&mut CodeGenHelp<'a>,
&mut Vec<'a, CallerProc<'a>>,
);
fn lambda_name_to_string<'b, I>(
&self,
name: LambdaName,
arguments: I,
_lambda_set: Option<InLayout>,
result: InLayout,
) -> String
where
I: Iterator<Item = InLayout<'b>>,
{
use std::fmt::Write;
use std::hash::{BuildHasher, Hash, Hasher};
let symbol = name.name();
let mut buf = String::with_capacity(1024);
for a in arguments {
write!(buf, "{:?}", self.interner().dbg_stable(a)).expect("capacity");
}
// lambda set should not matter; it should already be added as an argument
// but the niche of the lambda name may be the only thing differentiating two different
// implementations of a function with the same symbol
write!(buf, "{:?}", name.niche().dbg_stable(self.interner())).expect("capacity");
write!(buf, "{:?}", self.interner().dbg_stable(result)).expect("capacity");
// NOTE: due to randomness, this will not be consistent between runs
let mut state = roc_collections::all::BuildHasher::default().build_hasher();
buf.hash(&mut state);
let interns = self.interns();
let ident_string = symbol.as_str(interns);
let module_string = interns.module_ids.get_name(symbol.module_id()).unwrap();
// the functions from the generates #help module (refcounting, equality) is always suffixed
// with 1. That is fine, they are always unique anyway.
if ident_string.contains("#help") {
format!("{module_string}_{ident_string}_1")
} else {
format!("{}_{}_{}", module_string, ident_string, state.finish())
}
}
fn defined_in_app_module(&self, symbol: Symbol) -> bool {
symbol
.module_string(self.interns())
.starts_with(ModuleName::APP)
}
fn list_argument(&mut self, list_layout: InLayout<'a>) -> ListArgument<'a> {
let element_layout = match self.interner().get_repr(list_layout) {
LayoutRepr::Builtin(Builtin::List(e)) => e,
_ => unreachable!(),
};
let (element_width_int, alignment_int) =
self.interner().stack_size_and_alignment(element_layout);
let alignment = self.debug_symbol("alignment");
self.load_literal_i32(&alignment, Ord::max(alignment_int, 8) as i32);
let element_width = self.debug_symbol("element_width");
self.load_literal_i64(&element_width, element_width_int as i64);
ListArgument {
element_layout,
alignment,
element_width,
}
}
fn increment_fn_pointer(&mut self, layout: InLayout<'a>) -> Symbol {
let box_layout = self
.interner_mut()
.insert_direct_no_semantic(LayoutRepr::Ptr(layout));
let element_increment = self.debug_symbol("element_increment");
let element_increment_symbol = self.build_indirect_inc(layout);
let element_increment_string = self.lambda_name_to_string(
LambdaName::no_niche(element_increment_symbol),
[box_layout].into_iter(),
None,
Layout::UNIT,
);
self.build_fn_pointer(&element_increment, element_increment_string);
element_increment
}
fn decrement_fn_pointer(&mut self, layout: InLayout<'a>) -> Symbol {
let box_layout = self
.interner_mut()
.insert_direct_no_semantic(LayoutRepr::Ptr(layout));
let element_decrement = self.debug_symbol("element_decrement");
let element_decrement_symbol = self.build_indirect_dec(layout);
let element_decrement_string = self.lambda_name_to_string(
LambdaName::no_niche(element_decrement_symbol),
[box_layout].into_iter(),
None,
Layout::UNIT,
);
self.build_fn_pointer(&element_decrement, element_decrement_string);
element_decrement
}
fn helper_proc_gen_mut(&mut self) -> &mut CodeGenHelp<'a>;
fn helper_proc_symbols_mut(&mut self) -> &mut Vec<'a, (Symbol, ProcLayout<'a>)>;
fn helper_proc_symbols(&self) -> &Vec<'a, (Symbol, ProcLayout<'a>)>;
fn caller_procs(&self) -> &Vec<'a, CallerProc<'a>>;
/// reset resets any registers or other values that may be occupied at the end of a procedure.
/// It also passes basic procedure information to the builder for setup of the next function.
fn reset(&mut self, name: String, is_self_recursive: SelfRecursive);
/// finalize does any setup and cleanup that should happen around the procedure.
/// finalize does setup because things like stack size and jump locations are not know until the function is written.
/// For example, this can store the frame pointer and setup stack space.
/// finalize is run at the end of build_proc when all internal code is finalized.
fn finalize(&mut self) -> (Vec<u8>, Vec<Relocation>);
// load_args is used to let the backend know what the args are.
// The backend should track these args so it can use them as needed.
fn load_args(&mut self, args: &'a [(InLayout<'a>, Symbol)], ret_layout: &InLayout<'a>);
/// Used for generating wrappers for malloc/realloc/free
fn build_wrapped_jmp(&mut self) -> (&'a [u8], u64);
// use for roc_panic
fn build_roc_setjmp(&mut self) -> &'a [u8];
fn build_roc_longjmp(&mut self) -> &'a [u8];
fn build_roc_panic(&mut self) -> (&'a [u8], Vec<'a, Relocation>);
/// build_proc creates a procedure and outputs it to the wrapped object writer.
/// Returns the procedure bytes, its relocations, and the names of the refcounting functions it references.
fn build_proc(
&mut self,
proc: Proc<'a>,
layout_ids: &mut LayoutIds<'a>,
) -> (Vec<u8>, Vec<Relocation>, Vec<'a, (Symbol, String)>) {
let proc_name = self.lambda_name_to_string(
proc.name,
proc.args.iter().map(|t| t.0),
proc.closure_data_layout,
proc.ret_layout,
);
let body = self.env().arena.alloc(proc.body);
self.reset(proc_name, proc.is_self_recursive);
self.load_args(proc.args, &proc.ret_layout);
for (layout, sym) in proc.args {
self.set_layout_map(*sym, layout);
}
self.scan_ast(body);
self.create_free_map();
self.build_stmt(layout_ids, body, &proc.ret_layout);
let mut helper_proc_names = bumpalo::vec![in self.env().arena];
helper_proc_names.reserve(self.helper_proc_symbols().len());
for (rc_proc_sym, rc_proc_layout) in self.helper_proc_symbols() {
let name = layout_ids
.get_toplevel(*rc_proc_sym, rc_proc_layout)
.to_symbol_string(*rc_proc_sym, self.interns());
helper_proc_names.push((*rc_proc_sym, name));
}
for caller_proc in self.caller_procs() {
let proc_layout = caller_proc.proc_layout;
let proc_symbol = caller_proc.proc_symbol;
let name = layout_ids
.get_toplevel(proc_symbol, &proc_layout)
.to_symbol_string(proc_symbol, self.interns());
helper_proc_names.push((proc_symbol, name));
}
let (bytes, relocs) = self.finalize();
(bytes, relocs, helper_proc_names)
}
/// build_stmt builds a statement and outputs at the end of the buffer.
fn build_stmt(
&mut self,
layout_ids: &mut LayoutIds<'a>,
stmt: &Stmt<'a>,
ret_layout: &InLayout<'a>,
) {
match stmt {
Stmt::Let(sym, expr, layout, following) => {
self.build_expr(sym, expr, layout);
self.set_layout_map(*sym, layout);
self.free_symbols(stmt);
self.build_stmt(layout_ids, following, ret_layout);
}
Stmt::Ret(sym) => {
self.load_literal_symbols(&[*sym]);
self.return_symbol(sym, ret_layout);
self.free_symbols(stmt);
}
Stmt::Refcounting(ModifyRc::Free(symbol), following) => {
let dst = Symbol::DEV_TMP;
let layout = *self.layout_map().get(symbol).unwrap();
let alignment_bytes = self.interner().allocation_alignment_bytes(layout);
let alignment = self.debug_symbol("alignment");
self.load_literal_i32(&alignment, alignment_bytes as i32);
// NOTE: UTILS_FREE_DATA_PTR clears any tag id bits
self.build_fn_call(
&dst,
bitcode::UTILS_FREE_DATA_PTR.to_string(),
&[*symbol, alignment],
&[Layout::I64, Layout::I32],
&Layout::UNIT,
);
self.free_symbol(&dst);
self.free_symbol(&alignment);
self.build_stmt(layout_ids, following, ret_layout)
}
Stmt::Refcounting(modify, following) => {
let sym = modify.get_symbol();
let layout = *self.layout_map().get(&sym).unwrap();
// Expand the Refcounting statement into more detailed IR with a function call
// If this layout requires a new RC proc, we get enough info to create a linker symbol
// for it. Here we don't create linker symbols at this time, but in Wasm backend, we do.
let (rc_stmt, new_specializations) = {
let (module_id, layout_interner, interns, rc_proc_gen, _) =
self.module_interns_helpers_mut();
let ident_ids = interns.all_ident_ids.get_mut(&module_id).unwrap();
rc_proc_gen.expand_refcount_stmt(
ident_ids,
layout_interner,
layout,
modify,
following,
)
};
for spec in new_specializations.into_iter() {
self.helper_proc_symbols_mut().push(spec);
}
self.build_stmt(layout_ids, rc_stmt, ret_layout)
}
Stmt::Switch {
cond_symbol,
cond_layout,
branches,
default_branch,
ret_layout,
} => {
self.load_literal_symbols(&[*cond_symbol]);
self.build_switch(
layout_ids,
cond_symbol,
cond_layout,
branches,
default_branch,
ret_layout,
);
self.free_symbols(stmt);
}
Stmt::Join {
id,
parameters,
body,
remainder,
} => {
for param in parameters.iter() {
self.set_layout_map(param.symbol, &param.layout);
}
self.build_join(layout_ids, id, parameters, body, remainder, ret_layout);
self.free_symbols(stmt);
}
Stmt::Jump(id, args) => {
self.load_literal_symbols(args);
let mut arg_layouts: bumpalo::collections::Vec<InLayout<'a>> =
bumpalo::vec![in self.env().arena];
arg_layouts.reserve(args.len());
let layout_map = self.layout_map();
for arg in *args {
if let Some(layout) = layout_map.get(arg) {
arg_layouts.push(*layout);
} else {
internal_error!("the argument, {:?}, has no know layout", arg);
}
}
self.build_jump(id, args, arg_layouts.into_bump_slice(), ret_layout);
self.free_symbols(stmt);
}
Stmt::Crash(msg, crash_tag) => self.roc_panic(*msg, *crash_tag),
x => todo!("the statement, {:?}", x),
}
}
fn roc_panic(&mut self, msg: Symbol, crash_tag: CrashTag) {
let error_message = self.debug_symbol("error_message");
self.load_literal(
&error_message,
&Layout::U32,
&Literal::Int((crash_tag as u128).to_ne_bytes()),
);
// Now that the arguments are needed, load them if they are literals.
let arguments = &[msg, error_message];
self.load_literal_symbols(arguments);
self.build_fn_call(
&Symbol::DEV_TMP2,
String::from("roc_panic"),
arguments,
&[Layout::STR, Layout::U32],
&Layout::UNIT,
);
self.free_symbol(&error_message);
self.free_symbol(&Symbol::DEV_TMP2);
}
// build_switch generates a instructions for a switch statement.
fn build_switch(
&mut self,
layout_ids: &mut LayoutIds<'a>,
cond_symbol: &Symbol,
cond_layout: &InLayout<'a>,
branches: &'a [(u64, BranchInfo<'a>, Stmt<'a>)],
default_branch: &(BranchInfo<'a>, &'a Stmt<'a>),
ret_layout: &InLayout<'a>,
);
// build_join generates a instructions for a join statement.
fn build_join(
&mut self,
layout_ids: &mut LayoutIds<'a>,
id: &JoinPointId,
parameters: &'a [Param<'a>],
body: &'a Stmt<'a>,
remainder: &'a Stmt<'a>,
ret_layout: &InLayout<'a>,
);
// build_jump generates a instructions for a jump statement.
fn build_jump(
&mut self,
id: &JoinPointId,
args: &[Symbol],
arg_layouts: &[InLayout<'a>],
ret_layout: &InLayout<'a>,
);
/// build_expr builds the expressions for the specified symbol.
/// The builder must keep track of the symbol because it may be referred to later.
fn build_expr(&mut self, sym: &Symbol, expr: &Expr<'a>, layout: &InLayout<'a>) {
match expr {
Expr::Literal(lit) => {
if self.env().lazy_literals {
self.literal_map().insert(*sym, (lit, layout));
} else {
self.load_literal(sym, layout, lit);
}
}
Expr::Call(roc_mono::ir::Call {
call_type,
arguments,
}) => {
match call_type {
CallType::ByName {
name: func_sym,
arg_layouts,
ret_layout,
..
} => {
if let LowLevelWrapperType::CanBeReplacedBy(lowlevel) =
LowLevelWrapperType::from_symbol(func_sym.name())
{
return self.build_run_low_level(
sym,
&lowlevel,
arguments,
arg_layouts,
ret_layout,
);
} else if func_sym.name().is_builtin() {
// These builtins can be built through `build_fn_call` as well, but the
// implementation in `build_builtin` inlines some of the symbols.
return self.build_builtin(
sym,
*func_sym,
arguments,
arg_layouts,
ret_layout,
);
}
let fn_name = self.lambda_name_to_string(
*func_sym,
arg_layouts.iter().copied(),
None,
*ret_layout,
);
// Now that the arguments are needed, load them if they are literals.
self.load_literal_symbols(arguments);
self.build_fn_call(sym, fn_name, arguments, arg_layouts, ret_layout)
}
CallType::ByPointer { .. } => {
todo_lambda_erasure!()
}
CallType::LowLevel { op: lowlevel, .. } => {
let mut arg_layouts: bumpalo::collections::Vec<InLayout<'a>> =
bumpalo::vec![in self.env().arena];
arg_layouts.reserve(arguments.len());
let layout_map = self.layout_map();
for arg in *arguments {
if let Some(layout) = layout_map.get(arg) {
arg_layouts.push(*layout);
} else {
internal_error!("the argument, {:?}, has no know layout", arg);
}
}
self.build_run_low_level(
sym,
lowlevel,
arguments,
arg_layouts.into_bump_slice(),
layout,
)
}
CallType::HigherOrder(higher_order) => {
self.build_higher_order_lowlevel(sym, higher_order, *layout)
}
CallType::Foreign {
foreign_symbol,
ret_layout,
} => {
let mut arg_layouts: bumpalo::collections::Vec<InLayout<'a>> =
bumpalo::vec![in self.env().arena];
arg_layouts.reserve(arguments.len());
let layout_map = self.layout_map();
for arg in *arguments {
if let Some(layout) = layout_map.get(arg) {
arg_layouts.push(*layout);
} else {
internal_error!("the argument, {:?}, has no know layout", arg);
}
}
self.load_literal_symbols(arguments);
self.build_fn_call(
sym,
foreign_symbol.as_str().to_string(),
arguments,
arg_layouts.into_bump_slice(),
ret_layout,
);
}
}
}
Expr::EmptyArray => {
self.create_empty_array(sym);
}
Expr::Array { elem_layout, elems } => {
let mut syms = bumpalo::vec![in self.env().arena];
for sym in elems.iter().filter_map(|x| match x {
ListLiteralElement::Symbol(sym) => Some(sym),
_ => None,
}) {
syms.push(*sym);
}
self.create_array(sym, elem_layout, elems);
}
Expr::Struct(fields) => {
self.load_literal_symbols(fields);
self.create_struct(sym, layout, fields);
}
Expr::StructAtIndex {
index,
field_layouts,
structure,
} => {
self.load_struct_at_index(sym, structure, *index, field_layouts);
}
Expr::UnionAtIndex {
structure,
tag_id,
union_layout,
index,
} => {
self.load_union_at_index(sym, structure, *tag_id, *index, union_layout);
}
Expr::UnionFieldPtrAtIndex {
structure,
tag_id,
union_layout,
index,
} => {
self.load_union_field_ptr_at_index(sym, structure, *tag_id, *index, union_layout);
}
Expr::GetTagId {
structure,
union_layout,
} => {
self.get_tag_id(sym, structure, union_layout);
}
Expr::Tag {
tag_layout,
tag_id,
arguments,
reuse,
} => {
self.load_literal_symbols(arguments);
let reuse = reuse.map(|ru| ru.symbol);
self.tag(sym, arguments, tag_layout, *tag_id, reuse);
}
Expr::NullPointer => {
self.load_literal_i64(sym, 0);
}
Expr::FunctionPointer { .. } => todo_lambda_erasure!(),
Expr::ErasedMake { .. } => todo_lambda_erasure!(),
Expr::ErasedLoad { .. } => todo_lambda_erasure!(),
Expr::Reset { symbol, .. } => {
let layout = *self.layout_map().get(symbol).unwrap();
// Expand the Refcounting statement into more detailed IR with a function call
// If this layout requires a new RC proc, we get enough info to create a linker symbol
// for it. Here we don't create linker symbols at this time, but in Wasm backend, we do.
let (new_expr, new_specializations) = {
let (module_id, layout_interner, interns, rc_proc_gen, _) =
self.module_interns_helpers_mut();
let ident_ids = interns.all_ident_ids.get_mut(&module_id).unwrap();
rc_proc_gen.call_reset_refcount(ident_ids, layout_interner, layout, *symbol)
};
for spec in new_specializations.into_iter() {
self.helper_proc_symbols_mut().push(spec);
}
self.build_expr(sym, &new_expr, &Layout::BOOL)
}
Expr::ResetRef { symbol, .. } => {
let layout = *self.layout_map().get(symbol).unwrap();
// Expand the Refcounting statement into more detailed IR with a function call
// If this layout requires a new RC proc, we get enough info to create a linker symbol
// for it. Here we don't create linker symbols at this time, but in Wasm backend, we do.
let (new_expr, new_specializations) = {
let (module_id, layout_interner, interns, rc_proc_gen, _) =
self.module_interns_helpers_mut();
let ident_ids = interns.all_ident_ids.get_mut(&module_id).unwrap();
rc_proc_gen.call_resetref_refcount(ident_ids, layout_interner, layout, *symbol)
};
for spec in new_specializations.into_iter() {
self.helper_proc_symbols_mut().push(spec);
}
self.build_expr(sym, &new_expr, &Layout::BOOL)
}
Expr::Alloca {
initializer,
element_layout,
} => {
self.build_alloca(*sym, *initializer, *element_layout);
}
Expr::RuntimeErrorFunction(_) => todo!(),
}
}
/// build_run_low_level builds the low level opertation and outputs to the specified symbol.
/// The builder must keep track of the symbol because it may be referred to later.
fn build_run_low_level(
&mut self,
sym: &Symbol,
lowlevel: &LowLevel,
args: &'a [Symbol],
arg_layouts: &[InLayout<'a>],
ret_layout: &InLayout<'a>,
) {
// Now that the arguments are needed, load them if they are literals.
self.load_literal_symbols(args);
match lowlevel {
LowLevel::NumAbs => {
debug_assert_eq!(
1,
args.len(),
"NumAbs: expected to have exactly one argument"
);
debug_assert_eq!(
arg_layouts[0], *ret_layout,
"NumAbs: expected to have the same argument and return layout"
);
self.build_num_abs(sym, &args[0], ret_layout)
}
LowLevel::NumAdd => {
debug_assert_eq!(
2,
args.len(),
"NumAdd: expected to have exactly two argument"
);
debug_assert_eq!(
arg_layouts[0], arg_layouts[1],
"NumAdd: expected all arguments of to have the same layout"
);
debug_assert_eq!(
arg_layouts[0], *ret_layout,
"NumAdd: expected to have the same argument and return layout"
);
self.build_num_add(sym, &args[0], &args[1], ret_layout)
}
LowLevel::NumAddSaturated => {
self.build_num_add_saturated(*sym, args[0], args[1], *ret_layout);
}
LowLevel::NumAddWrap => {
debug_assert_eq!(
2,
args.len(),
"NumAdd: expected to have exactly two argument"
);
debug_assert_eq!(
arg_layouts[0], arg_layouts[1],
"NumAdd: expected all arguments of to have the same layout"
);
debug_assert_eq!(
arg_layouts[0], *ret_layout,
"NumAdd: expected to have the same argument and return layout"
);
self.build_num_add(sym, &args[0], &args[1], ret_layout)
}
LowLevel::NumAddChecked => {
self.build_num_add_checked(sym, &args[0], &args[1], &arg_layouts[0], ret_layout)
}
LowLevel::NumSubChecked => {
self.build_num_sub_checked(sym, &args[0], &args[1], &arg_layouts[0], ret_layout)
}
LowLevel::NumAcos => self.build_fn_call(
sym,
bitcode::NUM_ACOS[FloatWidth::F64].to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::NumAsin => self.build_fn_call(
sym,
bitcode::NUM_ASIN[FloatWidth::F64].to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::NumAtan => self.build_fn_call(
sym,
bitcode::NUM_ATAN[FloatWidth::F64].to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::NumMul => self.build_num_mul(sym, &args[0], &args[1], ret_layout),
LowLevel::NumMulWrap => self.build_num_mul_wrap(sym, &args[0], &args[1], ret_layout),
LowLevel::NumDivTruncUnchecked | LowLevel::NumDivFrac => {
debug_assert_eq!(
2,
args.len(),
"NumDiv: expected to have exactly two argument"
);
debug_assert_eq!(
arg_layouts[0], arg_layouts[1],
"NumDiv: expected all arguments of to have the same layout"
);
debug_assert_eq!(
arg_layouts[0], *ret_layout,
"NumDiv: expected to have the same argument and return layout"
);
self.build_num_div(sym, &args[0], &args[1], ret_layout)
}
LowLevel::NumRemUnchecked => self.build_num_rem(sym, &args[0], &args[1], ret_layout),
LowLevel::NumNeg => {
debug_assert_eq!(
1,
args.len(),
"NumNeg: expected to have exactly one argument"
);
debug_assert_eq!(
arg_layouts[0], *ret_layout,
"NumNeg: expected to have the same argument and return layout"
);
self.build_num_neg(sym, &args[0], ret_layout)
}
LowLevel::NumPowInt => self.build_fn_call(
sym,
bitcode::NUM_POW_INT[IntWidth::I64].to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::NumSub => {
debug_assert_eq!(
2,
args.len(),
"NumSub: expected to have exactly two argument"
);
debug_assert_eq!(
arg_layouts[0], arg_layouts[1],
"NumSub: expected all arguments of to have the same layout"
);
debug_assert_eq!(
arg_layouts[0], *ret_layout,
"NumSub: expected to have the same argument and return layout"
);
self.build_num_sub(sym, &args[0], &args[1], ret_layout)
}
LowLevel::NumSubWrap => {
debug_assert_eq!(
2,
args.len(),
"NumSubWrap: expected to have exactly two argument"
);
debug_assert_eq!(
arg_layouts[0], arg_layouts[1],
"NumSubWrap: expected all arguments of to have the same layout"
);
debug_assert_eq!(
arg_layouts[0], *ret_layout,
"NumSubWrap: expected to have the same argument and return layout"
);
self.build_num_sub_wrap(sym, &args[0], &args[1], ret_layout)
}
LowLevel::NumSubSaturated => match self.interner().get_repr(*ret_layout) {
LayoutRepr::Builtin(Builtin::Int(int_width)) => self.build_fn_call(
sym,
bitcode::NUM_SUB_SATURATED_INT[int_width].to_string(),
args,
arg_layouts,
ret_layout,
),
LayoutRepr::Builtin(Builtin::Float(FloatWidth::F32)) => {
self.build_num_sub(sym, &args[0], &args[1], ret_layout)
}
LayoutRepr::Builtin(Builtin::Float(FloatWidth::F64)) => {
// saturated sub is just normal sub
self.build_num_sub(sym, &args[0], &args[1], ret_layout)
}
LayoutRepr::Builtin(Builtin::Decimal) => {
// self.load_args_and_call_zig(backend, bitcode::DEC_SUB_SATURATED)
todo!()
}
_ => internal_error!("invalid return type"),
},
LowLevel::NumBitwiseAnd => {
if let LayoutRepr::Builtin(Builtin::Int(int_width)) =
self.interner().get_repr(*ret_layout)
{
self.build_int_bitwise_and(sym, &args[0], &args[1], int_width)
} else {
internal_error!("bitwise and on a non-integer")
}
}
LowLevel::NumBitwiseOr => {
if let LayoutRepr::Builtin(Builtin::Int(int_width)) =
self.interner().get_repr(*ret_layout)
{
self.build_int_bitwise_or(sym, &args[0], &args[1], int_width)
} else {
internal_error!("bitwise or on a non-integer")
}
}
LowLevel::NumBitwiseXor => {
if let LayoutRepr::Builtin(Builtin::Int(int_width)) =
self.interner().get_repr(*ret_layout)
{
self.build_int_bitwise_xor(sym, &args[0], &args[1], int_width)
} else {
internal_error!("bitwise xor on a non-integer")
}
}
LowLevel::And => {
if let LayoutRepr::Builtin(Builtin::Bool) = self.interner().get_repr(*ret_layout) {
self.build_int_bitwise_and(sym, &args[0], &args[1], IntWidth::U8)
} else {
internal_error!("bitwise and on a non-integer")
}
}
LowLevel::Or => {
if let LayoutRepr::Builtin(Builtin::Bool) = self.interner().get_repr(*ret_layout) {
self.build_int_bitwise_or(sym, &args[0], &args[1], IntWidth::U8)
} else {
internal_error!("bitwise or on a non-integer")
}
}
LowLevel::NumShiftLeftBy => {
if let LayoutRepr::Builtin(Builtin::Int(int_width)) =
self.interner().get_repr(*ret_layout)
{
self.build_int_shift_left(sym, &args[0], &args[1], int_width)
} else {
internal_error!("shift left on a non-integer")
}
}
LowLevel::NumShiftRightBy => {
if let LayoutRepr::Builtin(Builtin::Int(int_width)) =
self.interner().get_repr(*ret_layout)
{
self.build_int_shift_right(sym, &args[0], &args[1], int_width)
} else {
internal_error!("shift right on a non-integer")
}
}
LowLevel::NumShiftRightZfBy => {
if let LayoutRepr::Builtin(Builtin::Int(int_width)) =
self.interner().get_repr(*ret_layout)
{
self.build_int_shift_right_zero_fill(sym, &args[0], &args[1], int_width)
} else {
internal_error!("shift right zero-fill on a non-integer")
}
}
LowLevel::Eq => {
debug_assert_eq!(2, args.len(), "Eq: expected to have exactly two argument");
let a = Layout::runtime_representation_in(arg_layouts[0], self.interner());
let b = Layout::runtime_representation_in(arg_layouts[1], self.interner());
debug_assert!(
self.interner().eq_repr(a, b),
"Eq: expected all arguments to have the same layout, but {} != {}",
self.interner().dbg(a),
self.interner().dbg(b),
);
self.build_eq(sym, &args[0], &args[1], &arg_layouts[0])
}
LowLevel::NotEq => {
debug_assert_eq!(
2,
args.len(),
"NotEq: expected to have exactly two argument"
);
let a = Layout::runtime_representation_in(arg_layouts[0], self.interner());
let b = Layout::runtime_representation_in(arg_layouts[1], self.interner());
debug_assert!(
self.interner().eq_repr(a, b),
"NotEq: expected all arguments to have the same layout, but {} != {}",
self.interner().dbg(a),
self.interner().dbg(b),
);
debug_assert!(
self.interner().eq_repr(Layout::BOOL, *ret_layout,),
"NotEq: expected to have return layout of type Bool"
);
self.build_neq(sym, &args[0], &args[1], &arg_layouts[0])
}
LowLevel::Not => {
debug_assert_eq!(1, args.len(), "Not: expected to have exactly one argument");
debug_assert!(
self.interner().eq_repr(Layout::BOOL, *ret_layout,),
"Not: expected to have return layout of type Bool"
);
self.build_not(sym, &args[0], &arg_layouts[0])
}
LowLevel::NumLt => {
debug_assert_eq!(
2,
args.len(),
"NumLt: expected to have exactly two argument"
);
debug_assert!(
self.interner().eq_repr(arg_layouts[0], arg_layouts[1],),
"NumLt: expected all arguments of to have the same layout"
);
debug_assert!(
self.interner().eq_repr(Layout::BOOL, *ret_layout,),
"NumLt: expected to have return layout of type Bool"
);
self.build_num_lt(sym, &args[0], &args[1], &arg_layouts[0])
}
LowLevel::NumGt => {
debug_assert_eq!(
2,
args.len(),
"NumGt: expected to have exactly two argument"
);
debug_assert!(
self.interner().eq_repr(arg_layouts[0], arg_layouts[1],),
"NumGt: expected all arguments of to have the same layout"
);
debug_assert!(
self.interner().eq_repr(Layout::BOOL, *ret_layout,),
"NumGt: expected to have return layout of type Bool"
);
self.build_num_gt(sym, &args[0], &args[1], &arg_layouts[0])
}
LowLevel::NumToFrac => {
debug_assert_eq!(
1,
args.len(),
"NumToFrac: expected to have exactly one argument"
);
debug_assert!(
matches!(*ret_layout, Layout::F32 | Layout::F64 | Layout::DEC),
"NumToFrac: expected to have return layout of type Float"
);
self.build_num_to_frac(sym, &args[0], &arg_layouts[0], ret_layout)
}
LowLevel::NumIsNan => {
debug_assert_eq!(
1,
args.len(),
"NumIsNan: expected to have exactly one argument"
);
debug_assert!(
self.interner().eq_repr(Layout::BOOL, *ret_layout,),
"NumIsNan: expected to have return layout of type Bool"
);
self.build_num_is_nan(sym, &args[0], &arg_layouts[0])
}
LowLevel::NumIsInfinite => {
debug_assert_eq!(
1,
args.len(),
"NumIsInfinite: expected to have exactly one argument"
);
debug_assert!(
self.interner().eq_repr(Layout::BOOL, *ret_layout,),
"NumIsInfinite: expected to have return layout of type Bool"
);
self.build_num_is_infinite(sym, &args[0], &arg_layouts[0])
}
LowLevel::NumIsFinite => {
debug_assert_eq!(
1,
args.len(),
"NumIsFinite: expected to have exactly one argument"
);
debug_assert!(
self.interner().eq_repr(Layout::BOOL, *ret_layout,),
"NumIsFinite: expected to have return layout of type Bool"
);
self.build_num_is_finite(sym, &args[0], &arg_layouts[0])
}
LowLevel::NumLte => {
debug_assert_eq!(
2,
args.len(),
"NumLte: expected to have exactly two argument"
);
debug_assert_eq!(
arg_layouts[0], arg_layouts[1],
"NumLte: expected all arguments of to have the same layout"
);
debug_assert!(
self.interner().eq_repr(Layout::BOOL, *ret_layout,),
"NumLte: expected to have return layout of type Bool"
);
self.build_num_lte(sym, &args[0], &args[1], &arg_layouts[0])
}
LowLevel::NumGte => {
debug_assert_eq!(
2,
args.len(),
"NumGte: expected to have exactly two argument"
);
debug_assert_eq!(
arg_layouts[0], arg_layouts[1],
"NumGte: expected all arguments of to have the same layout"
);
debug_assert!(
self.interner().eq_repr(Layout::BOOL, *ret_layout,),
"NumGte: expected to have return layout of type Bool"
);
self.build_num_gte(sym, &args[0], &args[1], &arg_layouts[0])
}
LowLevel::NumLogUnchecked => {
let float_width = match arg_layouts[0] {
Layout::F64 => FloatWidth::F64,
Layout::F32 => FloatWidth::F32,
_ => unreachable!("invalid layout for sqrt"),
};
self.build_fn_call(
sym,
bitcode::NUM_LOG[float_width].to_string(),
args,
arg_layouts,
ret_layout,
)
}
LowLevel::NumSqrtUnchecked => {
let float_width = match arg_layouts[0] {
Layout::F64 => FloatWidth::F64,
Layout::F32 => FloatWidth::F32,
_ => unreachable!("invalid layout for sqrt"),
};
self.build_num_sqrt(*sym, args[0], float_width);
}
LowLevel::NumRound => self.build_fn_call(
sym,
bitcode::NUM_ROUND_F64[IntWidth::I64].to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::ListLen => {
debug_assert_eq!(
1,
args.len(),
"ListLen: expected to have exactly one argument"
);
self.build_list_len(sym, &args[0])
}
LowLevel::ListWithCapacity => {
debug_assert_eq!(
1,
args.len(),
"ListWithCapacity: expected to have exactly one argument"
);
let elem_layout = list_element_layout!(self.interner(), *ret_layout);
self.build_list_with_capacity(sym, args[0], arg_layouts[0], elem_layout, ret_layout)
}
LowLevel::ListReserve => {
debug_assert_eq!(
2,
args.len(),
"ListReserve: expected to have exactly two arguments"
);
self.build_list_reserve(sym, args, arg_layouts, ret_layout)
}
LowLevel::ListAppendUnsafe => {
debug_assert_eq!(
2,
args.len(),
"ListAppendUnsafe: expected to have exactly two arguments"
);
self.build_list_append_unsafe(sym, args, arg_layouts, ret_layout)
}
LowLevel::ListGetUnsafe => {
debug_assert_eq!(
2,
args.len(),
"ListGetUnsafe: expected to have exactly two arguments"
);
self.build_list_get_unsafe(sym, &args[0], &args[1], ret_layout)
}
LowLevel::ListReplaceUnsafe => {
debug_assert_eq!(
3,
args.len(),
"ListReplaceUnsafe: expected to have exactly three arguments"
);
self.build_list_replace_unsafe(sym, args, arg_layouts, ret_layout)
}
LowLevel::ListConcat => {
debug_assert_eq!(
2,
args.len(),
"ListConcat: expected to have exactly two arguments"
);
let elem_layout = list_element_layout!(self.interner(), *ret_layout);
self.build_list_concat(sym, args, arg_layouts, elem_layout, ret_layout)
}
LowLevel::ListPrepend => {
debug_assert_eq!(
2,
args.len(),
"ListPrepend: expected to have exactly two arguments"
);
self.build_list_prepend(sym, args, arg_layouts, ret_layout)
}
LowLevel::StrConcat => self.build_fn_call(
sym,
bitcode::STR_CONCAT.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrJoinWith => self.build_fn_call(
sym,
bitcode::STR_JOIN_WITH.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrSplit => self.build_fn_call(
sym,
bitcode::STR_SPLIT.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrStartsWith => self.build_fn_call(
sym,
bitcode::STR_STARTS_WITH.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrStartsWithScalar => self.build_fn_call(
sym,
bitcode::STR_STARTS_WITH_SCALAR.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrAppendScalar => self.build_fn_call(
sym,
bitcode::STR_APPEND_SCALAR.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrEndsWith => self.build_fn_call(
sym,
bitcode::STR_ENDS_WITH.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrCountGraphemes => self.build_fn_call(
sym,
bitcode::STR_COUNT_GRAPEHEME_CLUSTERS.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrSubstringUnsafe => self.build_fn_call(
sym,
bitcode::STR_SUBSTRING_UNSAFE.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrToUtf8 => self.build_fn_call(
sym,
bitcode::STR_TO_UTF8.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrCountUtf8Bytes => self.build_fn_call(
sym,
bitcode::STR_COUNT_UTF8_BYTES.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrFromUtf8Range => self.build_fn_call(
sym,
bitcode::STR_FROM_UTF8_RANGE.to_string(),
args,
arg_layouts,
ret_layout,
),
// LowLevel::StrToUtf8 => self.build_fn_call(
// sym,
// bitcode::STR_TO_UTF8.to_string(),
// args,
// arg_layouts,
// ret_layout,
// ),
LowLevel::StrRepeat => self.build_fn_call(
sym,
bitcode::STR_REPEAT.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrTrim => self.build_fn_call(
sym,
bitcode::STR_TRIM.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrTrimStart => self.build_fn_call(
sym,
bitcode::STR_TRIM_START.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrTrimEnd => self.build_fn_call(
sym,
bitcode::STR_TRIM_END.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrReserve => self.build_fn_call(
sym,
bitcode::STR_RESERVE.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrWithCapacity => self.build_fn_call(
sym,
bitcode::STR_WITH_CAPACITY.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrToScalars => self.build_fn_call(
sym,
bitcode::STR_TO_SCALARS.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrGetUnsafe => self.build_fn_call(
sym,
bitcode::STR_GET_UNSAFE.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrGetScalarUnsafe => self.build_fn_call(
sym,
bitcode::STR_GET_SCALAR_UNSAFE.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::StrToNum => {
let number_layout = match self.interner().get_repr(*ret_layout) {
LayoutRepr::Struct(field_layouts) => field_layouts[0], // TODO: why is it sometimes a struct?
_ => unreachable!(),
};
// match on the return layout to figure out which zig builtin we need
let intrinsic = match self.interner().get_repr(number_layout) {
LayoutRepr::Builtin(Builtin::Int(int_width)) => &bitcode::STR_TO_INT[int_width],
LayoutRepr::Builtin(Builtin::Float(float_width)) => {
&bitcode::STR_TO_FLOAT[float_width]
}
LayoutRepr::Builtin(Builtin::Decimal) => bitcode::DEC_FROM_STR,
_ => unreachable!(),
};
self.build_fn_call(sym, intrinsic.to_string(), args, arg_layouts, ret_layout)
}
LowLevel::PtrCast => {
debug_assert_eq!(
1,
args.len(),
"RefCountGetPtr: expected to have exactly one argument"
);
debug_assert_eq!(
self.interner().stack_size_and_alignment(arg_layouts[0]),
(8, 8),
"cannot pointer cast from source: {}",
self.interner().dbg(arg_layouts[0])
);
debug_assert_eq!(
self.interner().stack_size_and_alignment(*ret_layout),
(8, 8),
"cannot pointer cast to target: {}",
self.interner().dbg(*ret_layout)
);
self.build_ptr_cast(sym, &args[0])
}
LowLevel::PtrStore => {
let element_layout = match self.interner().get_repr(arg_layouts[0]) {
LayoutRepr::Ptr(inner) => inner,
_ => unreachable!("cannot write to {:?}", self.interner().dbg(*ret_layout)),
};
self.build_ptr_store(*sym, args[0], args[1], element_layout);
}
LowLevel::PtrLoad => {
self.build_ptr_load(*sym, args[0], *ret_layout);
}
LowLevel::PtrClearTagId => {
self.build_ptr_clear_tag_id(*sym, args[0]);
}
LowLevel::RefCountDecRcPtr => self.build_fn_call(
sym,
bitcode::UTILS_DECREF_RC_PTR.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::RefCountIncRcPtr => self.build_fn_call(
sym,
bitcode::UTILS_INCREF_RC_PTR.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::RefCountDecDataPtr => self.build_fn_call(
sym,
bitcode::UTILS_DECREF_DATA_PTR.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::RefCountIncDataPtr => self.build_fn_call(
sym,
bitcode::UTILS_INCREF_DATA_PTR.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::RefCountIsUnique => self.build_fn_call(
sym,
bitcode::UTILS_IS_UNIQUE.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::SetJmp => self.build_fn_call(
sym,
String::from("roc_setjmp"),
args,
arg_layouts,
ret_layout,
),
LowLevel::LongJmp => self.build_fn_call(
sym,
String::from("roc_longjmp"),
args,
arg_layouts,
ret_layout,
),
LowLevel::SetLongJmpBuffer => {
self.build_data_pointer(sym, String::from("setlongjmp_buffer"));
}
LowLevel::DictPseudoSeed => self.build_fn_call(
sym,
bitcode::UTILS_DICT_PSEUDO_SEED.to_string(),
args,
arg_layouts,
ret_layout,
),
LowLevel::NumToStr => {
let arg_layout = arg_layouts[0];
let intrinsic = match self.interner().get_repr(arg_layout) {
LayoutRepr::Builtin(Builtin::Int(width)) => &bitcode::STR_FROM_INT[width],
LayoutRepr::Builtin(Builtin::Float(width)) => &bitcode::STR_FROM_FLOAT[width],
LayoutRepr::Builtin(Builtin::Decimal) => bitcode::DEC_TO_STR,
x => internal_error!("NumToStr is not defined for {:?}", x),
};
self.build_fn_call(sym, intrinsic.to_string(), args, arg_layouts, ret_layout)
}
LowLevel::StrIsEmpty => {
let intrinsic = bitcode::STR_IS_EMPTY.to_string();
self.build_fn_call(sym, intrinsic, args, arg_layouts, ret_layout);
}
LowLevel::NumIntCast => {
let source_width = match self.interner().get_repr(arg_layouts[0]) {
LayoutRepr::Builtin(Builtin::Int(width)) => width,
_ => unreachable!(),
};
let target_width = match self.interner().get_repr(*ret_layout) {
LayoutRepr::Builtin(Builtin::Int(width)) => width,
_ => unreachable!(),
};
self.build_num_int_cast(sym, &args[0], source_width, target_width)
}
LowLevel::NumIsMultipleOf => {
let int_width = arg_layouts[0].try_int_width().unwrap();
let intrinsic = bitcode::NUM_IS_MULTIPLE_OF[int_width].to_string();
self.build_fn_call(sym, intrinsic, args, arg_layouts, ret_layout);
}
LowLevel::ListSublist => {
// list: RocList,
// alignment: u32,
// element_width: usize,
// start: usize,
// len: usize,
// dec: Dec,
let list = args[0];
let start = args[1];
let len = args[2];
let list_layout = arg_layouts[0];
let list_argument = self.list_argument(list_layout);
let element_layout = list_argument.element_layout;
let args = [
list,
list_argument.alignment,
list_argument.element_width,
start,
len,
self.decrement_fn_pointer(element_layout),
];
let layout_usize = Layout::U64;
let arg_layouts = [
arg_layouts[0],
Layout::U32,
layout_usize,
arg_layouts[1],
arg_layouts[2],
layout_usize,
];
let intrinsic = bitcode::LIST_SUBLIST.to_string();
self.build_fn_call(sym, intrinsic, &args, &arg_layouts, &list_layout);
}
LowLevel::ListSwap => {
let list = args[0];
let i = args[1];
let j = args[2];
let list_layout = arg_layouts[0];
let list_argument = self.list_argument(list_layout);
let update_mode = self.debug_symbol("update_mode");
self.load_literal_i8(&update_mode, UpdateMode::Immutable as i8);
let layout_usize = Layout::U64;
// list: RocList,
// alignment: u32,
// element_width: usize,
// index_1: usize,
// index_2: usize,
// update_mode: UpdateMode,
self.build_fn_call(
sym,
bitcode::LIST_SWAP.to_string(),
&[
list,
list_argument.alignment,
list_argument.element_width,
i,
j,
update_mode,
],
&[
list_layout,
Layout::U32,
layout_usize,
layout_usize,
layout_usize,
Layout::U8,
],
ret_layout,
);
}
LowLevel::ListReleaseExcessCapacity => {
let list = args[0];
let list_layout = arg_layouts[0];
let list_argument = self.list_argument(list_layout);
let update_mode = self.debug_symbol("update_mode");
self.load_literal_i8(&update_mode, UpdateMode::Immutable as i8);
let layout_usize = Layout::U64;
// list: RocList,
// alignment: u32,
// element_width: usize,
// update_mode: UpdateMode,
self.build_fn_call(
sym,
bitcode::LIST_RELEASE_EXCESS_CAPACITY.to_string(),
&[
list,
list_argument.alignment,
list_argument.element_width,
update_mode,
],
&[list_layout, Layout::U32, layout_usize, Layout::U8],
ret_layout,
);
}
LowLevel::ListDropAt => {
let list = args[0];
let drop_index = args[1];
let list_layout = arg_layouts[0];
let list_argument = self.list_argument(list_layout);
let element_layout = list_argument.element_layout;
let update_mode = self.debug_symbol("update_mode");
self.load_literal_i8(&update_mode, UpdateMode::Immutable as i8);
let layout_usize = Layout::U64;
let element_decrement = self.decrement_fn_pointer(element_layout);
// list: RocList,
// alignment: u32,
// element_width: usize,
// drop_index: usize,
// dec: Dec,
self.build_fn_call(
sym,
bitcode::LIST_DROP_AT.to_string(),
&[
list,
list_argument.alignment,
list_argument.element_width,
drop_index,
element_decrement,
],
&[
list_layout,
Layout::U32,
layout_usize,
layout_usize,
layout_usize,
],
ret_layout,
);
}
LowLevel::NumCompare => {
self.build_num_cmp(sym, &args[0], &args[1], &arg_layouts[0]);
}
x => todo!("low level, {:?}", x),
}
}
/// Builds a builtin functions that do not map directly to a low level
/// If the builtin is simple enough, it will be inlined.
fn build_builtin(
&mut self,
sym: &Symbol,
func_name: LambdaName,
args: &'a [Symbol],
arg_layouts: &[InLayout<'a>],
ret_layout: &InLayout<'a>,
) {
match func_name.name() {
Symbol::NUM_IS_ZERO => {
debug_assert_eq!(
1,
args.len(),
"NumIsZero: expected to have exactly one argument"
);
debug_assert!(
self.interner().eq_repr(Layout::BOOL, *ret_layout,),
"NumIsZero: expected to have return layout of type Bool"
);
self.load_literal_symbols(args);
self.load_literal(
&Symbol::DEV_TMP,
&arg_layouts[0],
&Literal::Int(0i128.to_ne_bytes()),
);
self.build_eq(sym, &args[0], &Symbol::DEV_TMP, &arg_layouts[0]);
self.free_symbol(&Symbol::DEV_TMP)
}
Symbol::LIST_GET | Symbol::LIST_SET | Symbol::LIST_REPLACE | Symbol::LIST_APPEND => {
// TODO: This is probably simple enough to be worth inlining.
let fn_name = self.lambda_name_to_string(
func_name,
arg_layouts.iter().copied(),
None,
*ret_layout,
);
// Now that the arguments are needed, load them if they are literals.
self.load_literal_symbols(args);
self.build_fn_call(sym, fn_name, args, arg_layouts, ret_layout)
}
Symbol::BOOL_TRUE => {
const LITERAL: &Literal<'static> = &Literal::Bool(true);
const BOOL_LAYOUT: &InLayout<'static> = &Layout::BOOL;
if self.env().lazy_literals {
self.literal_map().insert(*sym, (LITERAL, BOOL_LAYOUT));
} else {
self.load_literal(sym, BOOL_LAYOUT, LITERAL);
}
}
Symbol::BOOL_FALSE => {
const LITERAL: &Literal<'static> = &Literal::Bool(false);
const BOOL_LAYOUT: &InLayout<'static> = &Layout::BOOL;
if self.env().lazy_literals {
self.literal_map().insert(*sym, (LITERAL, BOOL_LAYOUT));
} else {
self.load_literal(sym, BOOL_LAYOUT, LITERAL);
}
}
Symbol::STR_IS_VALID_SCALAR => {
// just call the function
let fn_name = self.lambda_name_to_string(
func_name,
arg_layouts.iter().copied(),
None,
*ret_layout,
);
// Now that the arguments are needed, load them if they are literals.
self.load_literal_symbols(args);
self.build_fn_call(sym, fn_name, args, arg_layouts, ret_layout)
}
_other => {
// just call the function
let fn_name = self.lambda_name_to_string(
func_name,
arg_layouts.iter().copied(),
None,
*ret_layout,
);
// Now that the arguments are needed, load them if they are literals.
self.load_literal_symbols(args);
self.build_fn_call(sym, fn_name, args, arg_layouts, ret_layout)
}
}
}
/// build_fn_call creates a call site for a function.
/// This includes dealing with things like saving regs and propagating the returned value.
fn build_fn_call(
&mut self,
dst: &Symbol,
fn_name: String,
args: &[Symbol],
arg_layouts: &[InLayout<'a>],
ret_layout: &InLayout<'a>,
);
fn build_fn_pointer(&mut self, dst: &Symbol, fn_name: String);
fn build_data_pointer(&mut self, dst: &Symbol, data_name: String);
/// Move a returned value into `dst`
fn move_return_value(&mut self, dst: &Symbol, ret_layout: &InLayout<'a>);
/// build_num_abs stores the absolute value of src into dst.
fn build_num_int_cast(
&mut self,
dst: &Symbol,
src: &Symbol,
source: IntWidth,
target: IntWidth,
);
/// build_num_abs stores the absolute value of src into dst.
fn build_num_abs(&mut self, dst: &Symbol, src: &Symbol, layout: &InLayout<'a>);
/// build_num_add stores the sum of src1 and src2 into dst.
fn build_num_add(&mut self, dst: &Symbol, src1: &Symbol, src2: &Symbol, layout: &InLayout<'a>);
/// build_num_add_saturated stores the sum of src1 and src2 into dst.
fn build_num_add_saturated(
&mut self,
dst: Symbol,
src1: Symbol,
src2: Symbol,
layout: InLayout<'a>,
);
/// build_num_add_checked stores the sum of src1 and src2 into dst.
fn build_num_add_checked(
&mut self,
dst: &Symbol,
src1: &Symbol,
src2: &Symbol,
num_layout: &InLayout<'a>,
return_layout: &InLayout<'a>,
);
/// build_num_sub_checked stores the sum of src1 and src2 into dst.
fn build_num_sub_checked(
&mut self,
dst: &Symbol,
src1: &Symbol,
src2: &Symbol,
num_layout: &InLayout<'a>,
return_layout: &InLayout<'a>,
);
/// build_num_mul stores `src1 * src2` into dst.
fn build_num_mul(&mut self, dst: &Symbol, src1: &Symbol, src2: &Symbol, layout: &InLayout<'a>);
/// build_num_mul_wrap stores `src1 * src2` into dst.
fn build_num_mul_wrap(
&mut self,
dst: &Symbol,
src1: &Symbol,
src2: &Symbol,
layout: &InLayout<'a>,
);
/// build_num_mul stores `src1 / src2` into dst.
fn build_num_div(&mut self, dst: &Symbol, src1: &Symbol, src2: &Symbol, layout: &InLayout<'a>);
/// build_num_mul stores `src1 % src2` into dst.
fn build_num_rem(&mut self, dst: &Symbol, src1: &Symbol, src2: &Symbol, layout: &InLayout<'a>);
/// build_num_neg stores the negated value of src into dst.
fn build_num_neg(&mut self, dst: &Symbol, src: &Symbol, layout: &InLayout<'a>);
/// build_num_sub stores the `src1 - src2` difference into dst.
fn build_num_sub(&mut self, dst: &Symbol, src1: &Symbol, src2: &Symbol, layout: &InLayout<'a>);
/// build_num_sub_wrap stores the `src1 - src2` difference into dst.
fn build_num_sub_wrap(
&mut self,
dst: &Symbol,
src1: &Symbol,
src2: &Symbol,
layout: &InLayout<'a>,
);
/// stores the `src1 & src2` into dst.
fn build_int_bitwise_and(
&mut self,
dst: &Symbol,
src1: &Symbol,
src2: &Symbol,
int_width: IntWidth,
);
/// stores the `src1 | src2` into dst.
fn build_int_bitwise_or(
&mut self,
dst: &Symbol,
src1: &Symbol,
src2: &Symbol,
int_width: IntWidth,
);
/// stores the `src1 ^ src2` into dst.
fn build_int_bitwise_xor(
&mut self,
dst: &Symbol,
src1: &Symbol,
src2: &Symbol,
int_width: IntWidth,
);
/// stores the `Num.shiftLeftBy src1 src2` into dst.
fn build_int_shift_left(
&mut self,
dst: &Symbol,
src1: &Symbol,
src2: &Symbol,
int_width: IntWidth,
);
/// stores the `Num.shiftRightBy src1 src2` into dst.
fn build_int_shift_right(
&mut self,
dst: &Symbol,
src1: &Symbol,
src2: &Symbol,
int_width: IntWidth,
);
/// stores the `Num.shiftRightZfBy src1 src2` into dst.
fn build_int_shift_right_zero_fill(
&mut self,
dst: &Symbol,
src1: &Symbol,
src2: &Symbol,
int_width: IntWidth,
);
/// build_eq stores the result of `src1 == src2` into dst.
fn build_eq(&mut self, dst: &Symbol, src1: &Symbol, src2: &Symbol, arg_layout: &InLayout<'a>);
/// build_neq stores the result of `src1 != src2` into dst.
fn build_neq(&mut self, dst: &Symbol, src1: &Symbol, src2: &Symbol, arg_layout: &InLayout<'a>);
/// build_not stores the result of `!src` into dst.
fn build_not(&mut self, dst: &Symbol, src: &Symbol, arg_layout: &InLayout<'a>);
fn build_num_cmp(
&mut self,
dst: &Symbol,
src1: &Symbol,
src2: &Symbol,
arg_layout: &InLayout<'a>,
);
/// build_num_lt stores the result of `src1 < src2` into dst.
fn build_num_lt(
&mut self,
dst: &Symbol,
src1: &Symbol,
src2: &Symbol,
arg_layout: &InLayout<'a>,
);
/// build_num_gt stores the result of `src1 > src2` into dst.
fn build_num_gt(
&mut self,
dst: &Symbol,
src1: &Symbol,
src2: &Symbol,
arg_layout: &InLayout<'a>,
);
/// build_num_to_frac convert Number to Frac
fn build_num_to_frac(
&mut self,
dst: &Symbol,
src: &Symbol,
arg_layout: &InLayout<'a>,
ret_layout: &InLayout<'a>,
);
/// build_num_is_nan check is a Frac is NaN
fn build_num_is_nan(&mut self, dst: &Symbol, src: &Symbol, arg_layout: &InLayout<'a>);
/// build_num_is_infinite check is a Frac is infinite
fn build_num_is_infinite(&mut self, dst: &Symbol, src: &Symbol, arg_layout: &InLayout<'a>);
/// build_num_is_finite check is a Frac is finite
fn build_num_is_finite(&mut self, dst: &Symbol, src: &Symbol, arg_layout: &InLayout<'a>);
/// build_num_lte stores the result of `src1 <= src2` into dst.
fn build_num_lte(
&mut self,
dst: &Symbol,
src1: &Symbol,
src2: &Symbol,
arg_layout: &InLayout<'a>,
);
/// build_num_gte stores the result of `src1 >= src2` into dst.
fn build_num_gte(
&mut self,
dst: &Symbol,
src1: &Symbol,
src2: &Symbol,
arg_layout: &InLayout<'a>,
);
/// build_sqrt stores the result of `sqrt(src)` into dst.
fn build_num_sqrt(&mut self, dst: Symbol, src: Symbol, float_width: FloatWidth);
/// build_list_len returns the length of a list.
fn build_list_len(&mut self, dst: &Symbol, list: &Symbol);
/// generate a call to a higher-order lowlevel
fn build_higher_order_lowlevel(
&mut self,
dst: &Symbol,
holl: &HigherOrderLowLevel<'a>,
ret_layout: InLayout<'a>,
);
fn build_indirect_inc(&mut self, layout: InLayout<'a>) -> Symbol;
fn build_indirect_dec(&mut self, layout: InLayout<'a>) -> Symbol;
/// build_list_with_capacity creates and returns a list with the given capacity.
fn build_list_with_capacity(
&mut self,
dst: &Symbol,
capacity: Symbol,
capacity_layout: InLayout<'a>,
elem_layout: InLayout<'a>,
ret_layout: &InLayout<'a>,
);
/// build_list_reserve enlarges a list to at least accommodate the given capacity.
fn build_list_reserve(
&mut self,
dst: &Symbol,
args: &'a [Symbol],
arg_layouts: &[InLayout<'a>],
ret_layout: &InLayout<'a>,
);
/// build_list_append_unsafe returns a new list with a given element appended.
fn build_list_append_unsafe(
&mut self,
dst: &Symbol,
args: &'a [Symbol],
arg_layouts: &[InLayout<'a>],
ret_layout: &InLayout<'a>,
);
/// build_list_get_unsafe loads the element from the list at the index.
fn build_list_get_unsafe(
&mut self,
dst: &Symbol,
list: &Symbol,
index: &Symbol,
ret_layout: &InLayout<'a>,
);
/// build_list_replace_unsafe returns the old element and new list with the list having the new element inserted.
fn build_list_replace_unsafe(
&mut self,
dst: &Symbol,
args: &'a [Symbol],
arg_layouts: &[InLayout<'a>],
ret_layout: &InLayout<'a>,
);
/// build_list_concat returns a new list containing the two argument lists concatenated.
fn build_list_concat(
&mut self,
dst: &Symbol,
args: &'a [Symbol],
arg_layouts: &[InLayout<'a>],
elem_layout: InLayout<'a>,
ret_layout: &InLayout<'a>,
);
/// build_list_prepend returns a new list with a given element prepended.
fn build_list_prepend(
&mut self,
dst: &Symbol,
args: &'a [Symbol],
arg_layouts: &[InLayout<'a>],
ret_layout: &InLayout<'a>,
);
/// build_refcount_getptr loads the pointer to the reference count of src into dst.
fn build_ptr_cast(&mut self, dst: &Symbol, src: &Symbol);
fn build_ptr_store(
&mut self,
sym: Symbol,
ptr: Symbol,
value: Symbol,
element_layout: InLayout<'a>,
);
fn build_ptr_load(&mut self, sym: Symbol, ptr: Symbol, element_layout: InLayout<'a>);
fn build_ptr_clear_tag_id(&mut self, sym: Symbol, ptr: Symbol);
fn build_alloca(&mut self, sym: Symbol, value: Option<Symbol>, element_layout: InLayout<'a>);
/// literal_map gets the map from symbol to literal and layout, used for lazy loading and literal folding.
fn literal_map(&mut self) -> &mut MutMap<Symbol, (*const Literal<'a>, *const InLayout<'a>)>;
fn load_literal_symbols(&mut self, syms: &[Symbol]) {
if self.env().lazy_literals {
for sym in syms {
if let Some((lit, layout)) = self.literal_map().remove(sym) {
// This operation is always safe but complicates lifetimes.
// The map is reset when building a procedure and then used for that single procedure.
// Since the lifetime is shorter than the entire backend, we need to use a pointer.
let (lit, layout) = unsafe { (*lit, *layout) };
self.load_literal(sym, &layout, &lit);
}
}
}
}
/// load_literal sets a symbol to be equal to a literal.
fn load_literal(&mut self, sym: &Symbol, layout: &InLayout<'a>, lit: &Literal<'a>);
fn load_literal_i64(&mut self, sym: &Symbol, value: i64) {
let literal = Literal::Int((value as i128).to_ne_bytes());
self.load_literal(sym, &Layout::I64, &literal)
}
fn load_literal_i32(&mut self, sym: &Symbol, value: i32) {
let literal = Literal::Int((value as i128).to_ne_bytes());
self.load_literal(sym, &Layout::I32, &literal)
}
fn load_literal_i16(&mut self, sym: &Symbol, value: i16) {
let literal = Literal::Int((value as i128).to_ne_bytes());
self.load_literal(sym, &Layout::I16, &literal)
}
fn load_literal_i8(&mut self, sym: &Symbol, value: i8) {
let literal = Literal::Int((value as i128).to_ne_bytes());
self.load_literal(sym, &Layout::I8, &literal)
}
/// create_empty_array creates an empty array with nullptr, zero length, and zero capacity.
fn create_empty_array(&mut self, sym: &Symbol);
/// create_array creates an array filling it with the specified objects.
fn create_array(
&mut self,
sym: &Symbol,
elem_layout: &InLayout<'a>,
elems: &'a [ListLiteralElement<'a>],
);
/// create_struct creates a struct with the elements specified loaded into it as data.
fn create_struct(&mut self, sym: &Symbol, layout: &InLayout<'a>, fields: &'a [Symbol]);
/// load_struct_at_index loads into `sym` the value at `index` in `structure`.
fn load_struct_at_index(
&mut self,
sym: &Symbol,
structure: &Symbol,
index: u64,
field_layouts: &'a [InLayout<'a>],
);
/// load_union_at_index loads into `sym` the value at `index` for `tag_id`.
fn load_union_at_index(
&mut self,
sym: &Symbol,
structure: &Symbol,
tag_id: TagIdIntType,
index: u64,
union_layout: &UnionLayout<'a>,
);
/// load_union_at_index loads into `sym` the value at `index` for `tag_id`.
fn load_union_field_ptr_at_index(
&mut self,
sym: &Symbol,
structure: &Symbol,
tag_id: TagIdIntType,
index: u64,
union_layout: &UnionLayout<'a>,
);
/// get_tag_id loads the tag id from a the union.
fn get_tag_id(&mut self, sym: &Symbol, structure: &Symbol, union_layout: &UnionLayout<'a>);
/// tag sets the tag for a union.
fn tag(
&mut self,
sym: &Symbol,
args: &'a [Symbol],
tag_layout: &UnionLayout<'a>,
tag_id: TagIdIntType,
reuse: Option<Symbol>,
);
/// load a value from a pointer
fn expr_unbox(&mut self, sym: Symbol, ptr: Symbol, element_layout: InLayout<'a>);
/// store a refcounted value on the heap
fn expr_box(
&mut self,
sym: Symbol,
value: Symbol,
element_layout: InLayout<'a>,
reuse: Option<Symbol>,
);
/// return_symbol moves a symbol to the correct return location for the backend and adds a jump to the end of the function.
fn return_symbol(&mut self, sym: &Symbol, layout: &InLayout<'a>);
/// free_symbols will free all symbols for the given statement.
fn free_symbols(&mut self, stmt: &Stmt<'a>) {
if let Some(syms) = self.free_map().remove(&(stmt as *const Stmt<'a>)) {
for sym in syms {
// println!("Freeing symbol: {:?}", sym);
self.free_symbol(&sym);
}
}
}
/// free_symbol frees any registers or stack space used to hold a symbol.
fn free_symbol(&mut self, sym: &Symbol);
/// last_seen_map gets the map from symbol to when it is last seen in the function.
fn last_seen_map(&mut self) -> &mut MutMap<Symbol, *const Stmt<'a>>;
/// set_layout_map sets the layout for a specific symbol.
fn set_layout_map(&mut self, sym: Symbol, layout: &InLayout<'a>) {
if let Some(old_layout) = self.layout_map().insert(sym, *layout) {
// Layout map already contains the symbol. We should never need to overwrite.
// If the layout is not the same, that is a bug.
if &old_layout != layout {
internal_error!(
"Overwriting layout for symbol, {:?}: got {:?}, want {:?}",
sym,
layout,
old_layout
)
}
}
}
/// layout_map gets the map from symbol to layout.
fn layout_map(&mut self) -> &mut MutMap<Symbol, InLayout<'a>>;
fn create_free_map(&mut self) {
let mut free_map = MutMap::default();
let arena = self.env().arena;
for (sym, stmt) in self.last_seen_map() {
let vals = free_map
.entry(*stmt)
.or_insert_with(|| bumpalo::vec![in arena]);
vals.push(*sym);
}
self.set_free_map(free_map);
}
/// free_map gets the map statement to the symbols that are free after they run.
fn free_map(&mut self) -> &mut MutMap<*const Stmt<'a>, Vec<'a, Symbol>>;
/// set_free_map sets the free map to the given map.
fn set_free_map(&mut self, map: MutMap<*const Stmt<'a>, Vec<'a, Symbol>>);
/// scan_ast runs through the ast and fill the last seen map.
/// This must iterate through the ast in the same way that build_stmt does. i.e. then before else.
fn scan_ast(&mut self, stmt: &'a Stmt<'a>) {
*self.last_seen_map() = LastSeenMap::scan_ast(stmt);
}
}