roc/crates/compiler/can/src/expr.rs

3567 lines
120 KiB
Rust

use crate::abilities::SpecializationId;
use crate::annotation::{freshen_opaque_def, IntroducedVariables};
use crate::builtins::builtin_defs_map;
use crate::def::{can_defs_with_return, Annotation, Def};
use crate::env::Env;
use crate::num::{
finish_parsing_base, finish_parsing_float, finish_parsing_num, float_expr_from_result,
int_expr_from_result, num_expr_from_result, FloatBound, IntBound, NumBound,
};
use crate::params_in_abilities_unimplemented;
use crate::pattern::{canonicalize_pattern, BindingsFromPattern, Pattern, PermitShadows};
use crate::procedure::{QualifiedReference, References};
use crate::scope::{Scope, SymbolLookup};
use crate::traverse::{walk_expr, Visitor};
use roc_collections::soa::Index;
use roc_collections::{SendMap, VecMap, VecSet};
use roc_error_macros::internal_error;
use roc_module::called_via::CalledVia;
use roc_module::ident::{ForeignSymbol, Lowercase, TagName};
use roc_module::low_level::LowLevel;
use roc_module::symbol::{IdentId, ModuleId, Symbol};
use roc_parse::ast::{self, Defs, PrecedenceConflict, StrLiteral};
use roc_parse::ident::Accessor;
use roc_parse::pattern::PatternType::*;
use roc_problem::can::{PrecedenceProblem, Problem, RuntimeError};
use roc_region::all::{Loc, Region};
use roc_types::num::SingleQuoteBound;
use roc_types::subs::{ExhaustiveMark, IllegalCycleMark, RedundantMark, VarStore, Variable};
use roc_types::types::{Alias, Category, IndexOrField, LambdaSet, OptAbleVar, Type};
use std::fmt::{Debug, Display};
use std::path::PathBuf;
use std::sync::Arc;
use std::{char, u32};
/// Derives that an opaque type has claimed, to checked and recorded after solving.
pub type PendingDerives = VecMap<Symbol, (Type, Vec<Loc<Symbol>>)>;
#[derive(Clone, Default, Debug)]
pub struct Output {
pub references: References,
pub tail_call: Option<Symbol>,
pub introduced_variables: IntroducedVariables,
pub aliases: VecMap<Symbol, Alias>,
pub non_closures: VecSet<Symbol>,
pub pending_derives: PendingDerives,
}
impl Output {
pub fn union(&mut self, other: Self) {
self.references.union_mut(&other.references);
if let (None, Some(later)) = (self.tail_call, other.tail_call) {
self.tail_call = Some(later);
}
self.introduced_variables
.union_owned(other.introduced_variables);
self.aliases.extend(other.aliases);
self.non_closures.extend(other.non_closures);
{
let expected_derives_size = self.pending_derives.len() + other.pending_derives.len();
self.pending_derives.extend(other.pending_derives);
debug_assert!(
expected_derives_size == self.pending_derives.len(),
"Derives overwritten from nested scope - something is very wrong"
);
}
}
}
#[derive(Clone, Debug, PartialEq, Eq, Copy)]
pub enum IntValue {
I128([u8; 16]),
U128([u8; 16]),
}
impl Display for IntValue {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
IntValue::I128(n) => Display::fmt(&i128::from_ne_bytes(*n), f),
IntValue::U128(n) => Display::fmt(&u128::from_ne_bytes(*n), f),
}
}
}
#[derive(Clone, Debug)]
pub enum Expr {
// Literals
// Num stores the `a` variable in `Num a`. Not the same as the variable
// stored in Int and Float below, which is strictly for better error messages
Num(Variable, Box<str>, IntValue, NumBound),
// Int and Float store a variable to generate better error messages
Int(Variable, Variable, Box<str>, IntValue, IntBound),
Float(Variable, Variable, Box<str>, f64, FloatBound),
Str(Box<str>),
// Number variable, precision variable, value, bound
SingleQuote(Variable, Variable, char, SingleQuoteBound),
List {
elem_var: Variable,
loc_elems: Vec<Loc<Expr>>,
},
// An ingested files, it's bytes, and the type variable.
IngestedFile(Box<PathBuf>, Arc<Vec<u8>>, Variable),
// Lookups
Var(Symbol, Variable),
/// Like Var, but from a module with params
ParamsVar {
symbol: Symbol,
var: Variable,
params_symbol: Symbol,
params_var: Variable,
},
AbilityMember(
/// Actual member name
Symbol,
/// Specialization to use, and its variable.
/// The specialization id may be [`None`] if construction of an ability member usage can
/// prove the usage is polymorphic.
Option<SpecializationId>,
Variable,
),
// Branching
When {
/// The actual condition of the when expression.
loc_cond: Box<Loc<Expr>>,
cond_var: Variable,
/// Result type produced by the branches.
expr_var: Variable,
region: Region,
/// The branches of the when, and the type of the condition that they expect to be matched
/// against.
branches: Vec<WhenBranch>,
branches_cond_var: Variable,
/// Whether the branches are exhaustive.
exhaustive: ExhaustiveMark,
},
If {
cond_var: Variable,
branch_var: Variable,
branches: Vec<(Loc<Expr>, Loc<Expr>)>,
final_else: Box<Loc<Expr>>,
},
// Let
LetRec(Vec<Def>, Box<Loc<Expr>>, IllegalCycleMark),
LetNonRec(Box<Def>, Box<Loc<Expr>>),
/// This is *only* for calling functions, not for tag application.
/// The Tag variant contains any applied values inside it.
Call(
Box<(Variable, Loc<Expr>, Variable, Variable)>,
Vec<(Variable, Loc<Expr>)>,
CalledVia,
),
RunLowLevel {
op: LowLevel,
args: Vec<(Variable, Expr)>,
ret_var: Variable,
},
ForeignCall {
foreign_symbol: ForeignSymbol,
args: Vec<(Variable, Expr)>,
ret_var: Variable,
},
Closure(ClosureData),
// Product Types
Record {
record_var: Variable,
fields: SendMap<Lowercase, Field>,
},
/// Empty record constant
EmptyRecord,
Tuple {
tuple_var: Variable,
elems: Vec<(Variable, Box<Loc<Expr>>)>,
},
/// Module params expression in import
ImportParams(ModuleId, Region, Option<(Variable, Box<Expr>)>),
/// The "crash" keyword
Crash {
msg: Box<Loc<Expr>>,
ret_var: Variable,
},
/// Look up exactly one field on a record, e.g. (expr).foo.
RecordAccess {
record_var: Variable,
ext_var: Variable,
field_var: Variable,
loc_expr: Box<Loc<Expr>>,
field: Lowercase,
},
/// tuple or field accessor as a function, e.g. (.foo) expr or (.1) expr
RecordAccessor(StructAccessorData),
TupleAccess {
tuple_var: Variable,
ext_var: Variable,
elem_var: Variable,
loc_expr: Box<Loc<Expr>>,
index: usize,
},
RecordUpdate {
record_var: Variable,
ext_var: Variable,
symbol: Symbol,
updates: SendMap<Lowercase, Field>,
},
// Sum Types
Tag {
tag_union_var: Variable,
ext_var: Variable,
name: TagName,
arguments: Vec<(Variable, Loc<Expr>)>,
},
ZeroArgumentTag {
closure_name: Symbol,
variant_var: Variable,
ext_var: Variable,
name: TagName,
},
/// A wrapping of an opaque type, like `@Age 21`
OpaqueRef {
opaque_var: Variable,
name: Symbol,
argument: Box<(Variable, Loc<Expr>)>,
// The following help us link this opaque reference to the type specified by its
// definition, which we then use during constraint generation. For example
// suppose we have
//
// Id n := [Id U64 n]
// @Id "sasha"
//
// Then `opaque` is "Id", `argument` is "sasha", but this is not enough for us to
// infer the type of the expression as "Id Str" - we need to link the specialized type of
// the variable "n".
// That's what `specialized_def_type` and `type_arguments` are for; they are specialized
// for the expression from the opaque definition. `type_arguments` is something like
// [(n, fresh1)], and `specialized_def_type` becomes "[Id U64 fresh1]".
specialized_def_type: Box<Type>,
type_arguments: Vec<OptAbleVar>,
lambda_set_variables: Vec<LambdaSet>,
},
// Opaque as a function, e.g. @Id as a shorthand for \x -> @Id x
OpaqueWrapFunction(OpaqueWrapFunctionData),
// Test
Expect {
loc_condition: Box<Loc<Expr>>,
loc_continuation: Box<Loc<Expr>>,
lookups_in_cond: Vec<ExpectLookup>,
},
// not parsed, but is generated when lowering toplevel effectful expects
ExpectFx {
loc_condition: Box<Loc<Expr>>,
loc_continuation: Box<Loc<Expr>>,
lookups_in_cond: Vec<ExpectLookup>,
},
Dbg {
source_location: Box<str>,
source: Box<str>,
loc_message: Box<Loc<Expr>>,
loc_continuation: Box<Loc<Expr>>,
variable: Variable,
symbol: Symbol,
},
/// Rendered as empty box in editor
TypedHole(Variable),
/// Compiles, but will crash if reached
RuntimeError(RuntimeError),
}
#[derive(Clone, Copy, Debug)]
pub struct ExpectLookup {
pub symbol: Symbol,
pub var: Variable,
pub ability_info: Option<SpecializationId>,
}
#[derive(Clone, Copy, Debug)]
pub struct DbgLookup {
pub symbol: Symbol,
pub var: Variable,
pub region: Region,
pub ability_info: Option<SpecializationId>,
}
impl Expr {
pub fn category(&self) -> Category {
match self {
Self::Num(..) => Category::Num,
Self::Int(..) => Category::Int,
Self::Float(..) => Category::Frac,
Self::Str(..) => Category::Str,
Self::IngestedFile(file_path, _, _) => Category::IngestedFile(file_path.clone()),
Self::SingleQuote(..) => Category::Character,
Self::List { .. } => Category::List,
&Self::Var(sym, _) => Category::Lookup(sym),
&Self::ParamsVar {
symbol,
var: _,
params_symbol: _,
params_var: _,
} => Category::Lookup(symbol),
&Self::AbilityMember(sym, _, _) => Category::Lookup(sym),
Self::When { .. } => Category::When,
Self::If { .. } => Category::If,
Self::LetRec(_, expr, _) => expr.value.category(),
Self::LetNonRec(_, expr) => expr.value.category(),
&Self::Call(_, _, called_via) => Category::CallResult(None, called_via),
&Self::RunLowLevel { op, .. } => Category::LowLevelOpResult(op),
Self::ForeignCall { .. } => Category::ForeignCall,
Self::Closure(..) => Category::Lambda,
Self::Tuple { .. } => Category::Tuple,
Self::Record { .. } => Category::Record,
Self::EmptyRecord => Category::Record,
Self::RecordAccess { field, .. } => Category::RecordAccess(field.clone()),
Self::RecordAccessor(data) => Category::Accessor(data.field.clone()),
Self::TupleAccess { index, .. } => Category::TupleAccess(*index),
Self::RecordUpdate { .. } => Category::Record,
Self::ImportParams(_, _, Some((_, expr))) => expr.category(),
Self::ImportParams(_, _, None) => Category::Unknown,
Self::Tag {
name, arguments, ..
} => Category::TagApply {
tag_name: name.clone(),
args_count: arguments.len(),
},
Self::ZeroArgumentTag { name, .. } => Category::TagApply {
tag_name: name.clone(),
args_count: 0,
},
&Self::OpaqueRef { name, .. } => Category::OpaqueWrap(name),
&Self::OpaqueWrapFunction(OpaqueWrapFunctionData { opaque_name, .. }) => {
Category::OpaqueWrap(opaque_name)
}
Self::Expect { .. } => Category::Expect,
Self::ExpectFx { .. } => Category::Expect,
Self::Crash { .. } => Category::Crash,
Self::Dbg { .. } => Category::Expect,
// these nodes place no constraints on the expression's type
Self::TypedHole(_) | Self::RuntimeError(..) => Category::Unknown,
}
}
}
/// Stores exhaustiveness-checking metadata for a closure argument that may
/// have an annotated type.
#[derive(Clone, Copy, Debug)]
pub struct AnnotatedMark {
pub annotation_var: Variable,
pub exhaustive: ExhaustiveMark,
}
impl AnnotatedMark {
pub fn new(var_store: &mut VarStore) -> Self {
Self {
annotation_var: var_store.fresh(),
exhaustive: ExhaustiveMark::new(var_store),
}
}
// NOTE: only ever use this if you *know* a pattern match is surely exhaustive!
// Otherwise you will get unpleasant unification errors.
pub fn known_exhaustive() -> Self {
Self {
annotation_var: Variable::EMPTY_TAG_UNION,
exhaustive: ExhaustiveMark::known_exhaustive(),
}
}
}
#[derive(Clone, Debug)]
pub struct ClosureData {
pub function_type: Variable,
pub closure_type: Variable,
pub return_type: Variable,
pub name: Symbol,
pub captured_symbols: Vec<(Symbol, Variable)>,
pub recursive: Recursive,
pub arguments: Vec<(Variable, AnnotatedMark, Loc<Pattern>)>,
pub loc_body: Box<Loc<Expr>>,
}
/// A record or tuple accessor like `.foo` or `.0`, which is equivalent to `\r -> r.foo`
/// Struct accessors are desugared to closures; they need to have a name
/// so the closure can have a correct lambda set.
///
/// We distinguish them from closures so we can have better error messages
/// during constraint generation.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct StructAccessorData {
pub name: Symbol,
pub function_var: Variable,
pub record_var: Variable,
pub closure_var: Variable,
pub ext_var: Variable,
pub field_var: Variable,
/// Note that the `field` field is an `IndexOrField` in order to represent both
/// record and tuple accessors. This is different from `TupleAccess` and
/// `RecordAccess` (and RecordFields/TupleElems), which share less of their implementation.
pub field: IndexOrField,
}
impl StructAccessorData {
pub fn to_closure_data(self, record_symbol: Symbol) -> ClosureData {
let StructAccessorData {
name,
function_var,
record_var,
closure_var,
ext_var,
field_var,
field,
} = self;
// IDEA: convert accessor from
//
// .foo
//
// into
//
// (\r -> r.foo)
let body = match field {
IndexOrField::Index(index) => Expr::TupleAccess {
tuple_var: record_var,
ext_var,
elem_var: field_var,
loc_expr: Box::new(Loc::at_zero(Expr::Var(record_symbol, record_var))),
index,
},
IndexOrField::Field(field) => Expr::RecordAccess {
record_var,
ext_var,
field_var,
loc_expr: Box::new(Loc::at_zero(Expr::Var(record_symbol, record_var))),
field,
},
};
let loc_body = Loc::at_zero(body);
let arguments = vec![(
record_var,
AnnotatedMark::known_exhaustive(),
Loc::at_zero(Pattern::Identifier(record_symbol)),
)];
ClosureData {
function_type: function_var,
closure_type: closure_var,
return_type: field_var,
name,
captured_symbols: vec![],
recursive: Recursive::NotRecursive,
arguments,
loc_body: Box::new(loc_body),
}
}
}
/// An opaque wrapper like `@Foo`, which is equivalent to `\p -> @Foo p`
/// These are desugared to closures, but we distinguish them so we can have
/// better error messages during constraint generation.
#[derive(Clone, Debug)]
pub struct OpaqueWrapFunctionData {
pub opaque_name: Symbol,
pub opaque_var: Variable,
// The following fields help link the concrete opaque type; see
// `Expr::OpaqueRef` for more info on how they're used.
pub specialized_def_type: Type,
pub type_arguments: Vec<OptAbleVar>,
pub lambda_set_variables: Vec<LambdaSet>,
pub function_name: Symbol,
pub function_var: Variable,
pub argument_var: Variable,
pub closure_var: Variable,
}
impl OpaqueWrapFunctionData {
pub fn to_closure_data(self, argument_symbol: Symbol) -> ClosureData {
let OpaqueWrapFunctionData {
opaque_name,
opaque_var,
specialized_def_type,
type_arguments,
lambda_set_variables,
function_name,
function_var,
argument_var,
closure_var,
} = self;
// IDEA: convert
//
// @Foo
//
// into
//
// (\p -> @Foo p)
let body = Expr::OpaqueRef {
opaque_var,
name: opaque_name,
argument: Box::new((
argument_var,
Loc::at_zero(Expr::Var(argument_symbol, argument_var)),
)),
specialized_def_type: Box::new(specialized_def_type),
type_arguments,
lambda_set_variables,
};
let loc_body = Loc::at_zero(body);
let arguments = vec![(
argument_var,
AnnotatedMark::known_exhaustive(),
Loc::at_zero(Pattern::Identifier(argument_symbol)),
)];
ClosureData {
function_type: function_var,
closure_type: closure_var,
return_type: opaque_var,
name: function_name,
captured_symbols: vec![],
recursive: Recursive::NotRecursive,
arguments,
loc_body: Box::new(loc_body),
}
}
}
#[derive(Clone, Debug)]
pub struct Field {
pub var: Variable,
// The region of the full `foo: f bar`, rather than just `f bar`
pub region: Region,
pub loc_expr: Box<Loc<Expr>>,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Recursive {
NotRecursive = 0,
Recursive = 1,
TailRecursive = 2,
}
impl Recursive {
pub fn is_recursive(&self) -> bool {
match self {
Recursive::NotRecursive => false,
Recursive::Recursive | Recursive::TailRecursive => true,
}
}
}
#[derive(Clone, Debug)]
pub struct WhenBranchPattern {
pub pattern: Loc<Pattern>,
/// Degenerate branch patterns are those that don't fully bind symbols that the branch body
/// needs. For example, in `A x | B y -> x`, the `B y` pattern is degenerate.
/// Degenerate patterns emit a runtime error if reached in a program.
pub degenerate: bool,
}
#[derive(Clone, Debug)]
pub struct WhenBranch {
pub patterns: Vec<WhenBranchPattern>,
pub value: Loc<Expr>,
pub guard: Option<Loc<Expr>>,
/// Whether this branch is redundant in the `when` it appears in
pub redundant: RedundantMark,
}
impl WhenBranch {
pub fn pattern_region(&self) -> Region {
Region::span_across(
&self
.patterns
.first()
.expect("when branch has no pattern?")
.pattern
.region,
&self
.patterns
.last()
.expect("when branch has no pattern?")
.pattern
.region,
)
}
}
impl WhenBranch {
pub fn region(&self) -> Region {
Region::across_all(
self.patterns
.iter()
.map(|p| &p.pattern.region)
.chain([self.value.region].iter()),
)
}
}
pub fn canonicalize_expr<'a>(
env: &mut Env<'a>,
var_store: &mut VarStore,
scope: &mut Scope,
region: Region,
expr: &'a ast::Expr<'a>,
) -> (Loc<Expr>, Output) {
use Expr::*;
let (expr, output) = match expr {
&ast::Expr::Num(str) => {
let answer = num_expr_from_result(var_store, finish_parsing_num(str), region, env);
(answer, Output::default())
}
&ast::Expr::Float(str) => {
let answer = float_expr_from_result(var_store, finish_parsing_float(str), region, env);
(answer, Output::default())
}
ast::Expr::Record(fields) => canonicalize_record(env, var_store, scope, region, *fields),
ast::Expr::RecordUpdate {
fields,
update: loc_update,
} => {
let (can_update, update_out) =
canonicalize_expr(env, var_store, scope, loc_update.region, &loc_update.value);
if let Var(symbol, _) = &can_update.value {
match canonicalize_fields(env, var_store, scope, region, fields.items) {
Ok((can_fields, mut output)) => {
output.references.union_mut(&update_out.references);
let answer = RecordUpdate {
record_var: var_store.fresh(),
ext_var: var_store.fresh(),
symbol: *symbol,
updates: can_fields,
};
(answer, output)
}
Err(CanonicalizeRecordProblem::InvalidOptionalValue {
field_name,
field_region,
record_region,
}) => (
Expr::RuntimeError(roc_problem::can::RuntimeError::InvalidOptionalValue {
field_name,
field_region,
record_region,
}),
Output::default(),
),
}
} else {
// only (optionally qualified) variables can be updated, not arbitrary expressions
let error = roc_problem::can::RuntimeError::InvalidRecordUpdate {
region: can_update.region,
};
let answer = Expr::RuntimeError(error.clone());
env.problems.push(Problem::RuntimeError(error));
(answer, Output::default())
}
}
ast::Expr::Tuple(fields) => {
let mut can_elems = Vec::with_capacity(fields.len());
let mut references = References::new();
for loc_elem in fields.iter() {
let (can_expr, elem_out) =
canonicalize_expr(env, var_store, scope, loc_elem.region, &loc_elem.value);
references.union_mut(&elem_out.references);
can_elems.push((var_store.fresh(), Box::new(can_expr)));
}
let output = Output {
references,
tail_call: None,
..Default::default()
};
(
Tuple {
tuple_var: var_store.fresh(),
elems: can_elems,
},
output,
)
}
ast::Expr::Str(literal) => flatten_str_literal(env, var_store, scope, literal),
ast::Expr::SingleQuote(string) => {
let mut it = string.chars().peekable();
if let Some(char) = it.next() {
if it.peek().is_none() {
(
Expr::SingleQuote(
var_store.fresh(),
var_store.fresh(),
char,
SingleQuoteBound::from_char(char),
),
Output::default(),
)
} else {
// multiple chars is found
let error = roc_problem::can::RuntimeError::MultipleCharsInSingleQuote(region);
let answer = Expr::RuntimeError(error);
(answer, Output::default())
}
} else {
// no characters found
let error = roc_problem::can::RuntimeError::EmptySingleQuote(region);
let answer = Expr::RuntimeError(error);
(answer, Output::default())
}
}
ast::Expr::List(loc_elems) => {
if loc_elems.is_empty() {
(
List {
elem_var: var_store.fresh(),
loc_elems: Vec::new(),
},
Output::default(),
)
} else {
let mut can_elems = Vec::with_capacity(loc_elems.len());
let mut references = References::new();
for loc_elem in loc_elems.iter() {
let (can_expr, elem_out) =
canonicalize_expr(env, var_store, scope, loc_elem.region, &loc_elem.value);
references.union_mut(&elem_out.references);
can_elems.push(can_expr);
}
let output = Output {
references,
tail_call: None,
..Default::default()
};
(
List {
elem_var: var_store.fresh(),
loc_elems: can_elems,
},
output,
)
}
}
ast::Expr::Apply(loc_fn, loc_args, application_style) => {
// The expression that evaluates to the function being called, e.g. `foo` in
// (foo) bar baz
let fn_region = loc_fn.region;
// The function's return type
let mut args = Vec::new();
let mut output = Output::default();
for loc_arg in loc_args.iter() {
let (arg_expr, arg_out) =
canonicalize_expr(env, var_store, scope, loc_arg.region, &loc_arg.value);
args.push((var_store.fresh(), arg_expr));
output.references.union_mut(&arg_out.references);
}
if let ast::Expr::OpaqueRef(name) = loc_fn.value {
// We treat opaques specially, since an opaque can wrap exactly one argument.
debug_assert!(!args.is_empty());
if args.len() > 1 {
let problem =
roc_problem::can::RuntimeError::OpaqueAppliedToMultipleArgs(region);
env.problem(Problem::RuntimeError(problem.clone()));
(RuntimeError(problem), output)
} else {
match scope.lookup_opaque_ref(name, loc_fn.region) {
Err(runtime_error) => {
env.problem(Problem::RuntimeError(runtime_error.clone()));
(RuntimeError(runtime_error), output)
}
Ok((name, opaque_def)) => {
let argument = Box::new(args.pop().unwrap());
output
.references
.insert_type_lookup(name, QualifiedReference::Unqualified);
let (type_arguments, lambda_set_variables, specialized_def_type) =
freshen_opaque_def(var_store, opaque_def);
let opaque_ref = OpaqueRef {
opaque_var: var_store.fresh(),
name,
argument,
specialized_def_type: Box::new(specialized_def_type),
type_arguments,
lambda_set_variables,
};
(opaque_ref, output)
}
}
}
} else if let ast::Expr::Crash = loc_fn.value {
// We treat crash specially, since crashing must be applied with one argument.
debug_assert!(!args.is_empty());
let mut args = Vec::new();
let mut output = Output::default();
for loc_arg in loc_args.iter() {
let (arg_expr, arg_out) =
canonicalize_expr(env, var_store, scope, loc_arg.region, &loc_arg.value);
args.push(arg_expr);
output.references.union_mut(&arg_out.references);
}
let crash = if args.len() > 1 {
let args_region = Region::span_across(
&loc_args.first().unwrap().region,
&loc_args.last().unwrap().region,
);
env.problem(Problem::OverAppliedCrash {
region: args_region,
});
// Still crash, just with our own message, and drop the references.
Crash {
msg: Box::new(Loc::at(
region,
Expr::Str(String::from("hit a crash!").into_boxed_str()),
)),
ret_var: var_store.fresh(),
}
} else {
let msg = args.pop().unwrap();
Crash {
msg: Box::new(msg),
ret_var: var_store.fresh(),
}
};
(crash, output)
} else {
// Canonicalize the function expression and its arguments
let (fn_expr, fn_expr_output) =
canonicalize_expr(env, var_store, scope, fn_region, &loc_fn.value);
output.union(fn_expr_output);
// Default: We're not tail-calling a symbol (by name), we're tail-calling a function value.
output.tail_call = None;
let expr = match fn_expr.value {
Var(symbol, _) => {
output.references.insert_call(symbol);
// we're tail-calling a symbol by name, check if it's the tail-callable symbol
output.tail_call = match &env.tailcallable_symbol {
Some(tc_sym) if *tc_sym == symbol => Some(symbol),
Some(_) | None => None,
};
Call(
Box::new((
var_store.fresh(),
fn_expr,
var_store.fresh(),
var_store.fresh(),
)),
args,
*application_style,
)
}
RuntimeError(_) => {
// We can't call a runtime error; bail out by propagating it!
return (fn_expr, output);
}
Tag {
tag_union_var: variant_var,
ext_var,
name,
..
} => Tag {
tag_union_var: variant_var,
ext_var,
name,
arguments: args,
},
ZeroArgumentTag {
variant_var,
ext_var,
name,
..
} => Tag {
tag_union_var: variant_var,
ext_var,
name,
arguments: args,
},
_ => {
// This could be something like ((if True then fn1 else fn2) arg1 arg2).
Call(
Box::new((
var_store.fresh(),
fn_expr,
var_store.fresh(),
var_store.fresh(),
)),
args,
*application_style,
)
}
};
(expr, output)
}
}
ast::Expr::Var { module_name, ident } => {
canonicalize_var_lookup(env, var_store, scope, module_name, ident, region)
}
ast::Expr::Underscore(name) => {
// we parse underscores, but they are not valid expression syntax
let problem = roc_problem::can::RuntimeError::MalformedIdentifier(
(*name).into(),
if name.is_empty() {
roc_parse::ident::BadIdent::UnderscoreAlone(region.start())
} else {
roc_parse::ident::BadIdent::UnderscoreAtStart {
position: region.start(),
// Check if there's an ignored identifier with this name in scope (for better error messages)
declaration_region: scope.lookup_ignored_local(name),
}
},
region,
);
env.problem(Problem::RuntimeError(problem.clone()));
(RuntimeError(problem), Output::default())
}
ast::Expr::Crash => {
// Naked crashes aren't allowed; we'll admit this with our own message, but yield an
// error.
env.problem(Problem::UnappliedCrash { region });
(
Crash {
msg: Box::new(Loc::at(
region,
Expr::Str(String::from("hit a crash!").into_boxed_str()),
)),
ret_var: var_store.fresh(),
},
Output::default(),
)
}
ast::Expr::Defs(loc_defs, loc_ret) => {
// The body expression gets a new scope for canonicalization,
scope.inner_scope(|inner_scope| {
let defs: Defs = (*loc_defs).clone();
can_defs_with_return(env, var_store, inner_scope, env.arena.alloc(defs), loc_ret)
})
}
ast::Expr::RecordBuilder { .. } => {
internal_error!("Record builder should have been desugared by now")
}
ast::Expr::Backpassing(_, _, _) => {
internal_error!("Backpassing should have been desugared by now")
}
ast::Expr::RecordUpdater(_) => {
internal_error!("Record updater should have been desugared by now")
}
ast::Expr::Closure(loc_arg_patterns, loc_body_expr) => {
let (closure_data, output) =
canonicalize_closure(env, var_store, scope, loc_arg_patterns, loc_body_expr, None);
(Closure(closure_data), output)
}
ast::Expr::When(loc_cond, branches) => {
// Infer the condition expression's type.
let cond_var = var_store.fresh();
let (can_cond, mut output) =
canonicalize_expr(env, var_store, scope, loc_cond.region, &loc_cond.value);
// the condition can never be a tail-call
output.tail_call = None;
let mut can_branches = Vec::with_capacity(branches.len());
for branch in branches.iter() {
let (can_when_branch, branch_references) = scope.inner_scope(|inner_scope| {
canonicalize_when_branch(
env,
var_store,
inner_scope,
region,
branch,
&mut output,
)
});
output.references.union_mut(&branch_references);
can_branches.push(can_when_branch);
}
// A "when" with no branches is a runtime error, but it will mess things up
// if code gen mistakenly thinks this is a tail call just because its condition
// happened to be one. (The condition gave us our initial output value.)
if branches.is_empty() {
output.tail_call = None;
}
// Incorporate all three expressions into a combined Output value.
let expr = When {
expr_var: var_store.fresh(),
cond_var,
region,
loc_cond: Box::new(can_cond),
branches: can_branches,
branches_cond_var: var_store.fresh(),
exhaustive: ExhaustiveMark::new(var_store),
};
(expr, output)
}
ast::Expr::RecordAccess(record_expr, field) => {
let (loc_expr, output) = canonicalize_expr(env, var_store, scope, region, record_expr);
(
RecordAccess {
record_var: var_store.fresh(),
field_var: var_store.fresh(),
ext_var: var_store.fresh(),
loc_expr: Box::new(loc_expr),
field: Lowercase::from(*field),
},
output,
)
}
ast::Expr::AccessorFunction(field) => (
RecordAccessor(StructAccessorData {
name: scope.gen_unique_symbol(),
function_var: var_store.fresh(),
record_var: var_store.fresh(),
ext_var: var_store.fresh(),
closure_var: var_store.fresh(),
field_var: var_store.fresh(),
field: match field {
Accessor::RecordField(field) => IndexOrField::Field((*field).into()),
Accessor::TupleIndex(index) => IndexOrField::Index(index.parse().unwrap()),
},
}),
Output::default(),
),
ast::Expr::TupleAccess(tuple_expr, field) => {
let (loc_expr, output) = canonicalize_expr(env, var_store, scope, region, tuple_expr);
(
TupleAccess {
tuple_var: var_store.fresh(),
ext_var: var_store.fresh(),
elem_var: var_store.fresh(),
loc_expr: Box::new(loc_expr),
index: field.parse().unwrap(),
},
output,
)
}
ast::Expr::TrySuffix { .. } => internal_error!(
"a Expr::TrySuffix expression was not completely removed in desugar_value_def_suffixed"
),
ast::Expr::Tag(tag) => {
let variant_var = var_store.fresh();
let ext_var = var_store.fresh();
let symbol = scope.gen_unique_symbol();
(
ZeroArgumentTag {
name: TagName((*tag).into()),
variant_var,
closure_name: symbol,
ext_var,
},
Output::default(),
)
}
ast::Expr::OpaqueRef(name) => {
// If we're here, the opaque reference is definitely not wrapping an argument - wrapped
// arguments are handled in the Apply branch.
// Treat this as a function \payload -> @Opaque payload
match scope.lookup_opaque_ref(name, region) {
Err(runtime_error) => {
env.problem(Problem::RuntimeError(runtime_error.clone()));
(RuntimeError(runtime_error), Output::default())
}
Ok((name, opaque_def)) => {
let mut output = Output::default();
output
.references
.insert_type_lookup(name, QualifiedReference::Unqualified);
let (type_arguments, lambda_set_variables, specialized_def_type) =
freshen_opaque_def(var_store, opaque_def);
let fn_symbol = scope.gen_unique_symbol();
(
OpaqueWrapFunction(OpaqueWrapFunctionData {
opaque_name: name,
opaque_var: var_store.fresh(),
specialized_def_type,
type_arguments,
lambda_set_variables,
function_name: fn_symbol,
function_var: var_store.fresh(),
argument_var: var_store.fresh(),
closure_var: var_store.fresh(),
}),
output,
)
}
}
}
ast::Expr::Expect(condition, continuation) => {
let mut output = Output::default();
let (loc_condition, output1) =
canonicalize_expr(env, var_store, scope, condition.region, &condition.value);
// Get all the lookups that were referenced in the condition,
// so we can print their values later.
let lookups_in_cond = get_lookup_symbols(&loc_condition.value);
let (loc_continuation, output2) = canonicalize_expr(
env,
var_store,
scope,
continuation.region,
&continuation.value,
);
output.union(output1);
output.union(output2);
(
Expect {
loc_condition: Box::new(loc_condition),
loc_continuation: Box::new(loc_continuation),
lookups_in_cond,
},
output,
)
}
ast::Expr::Dbg => {
// Dbg was not desugared as either part of an `Apply` or a `Pizza` binop, so it's
// invalid.
env.problem(Problem::UnappliedDbg { region });
let invalid_dbg_expr = crate::desugar::desugar_invalid_dbg_expr(env, scope, region);
let (loc_expr, output) =
canonicalize_expr(env, var_store, scope, region, invalid_dbg_expr);
(loc_expr.value, output)
}
ast::Expr::DbgStmt(_, _) => {
internal_error!("DbgStmt should have been desugared by now")
}
ast::Expr::LowLevelDbg((source_location, source), message, continuation) => {
let mut output = Output::default();
let (loc_message, output1) =
canonicalize_expr(env, var_store, scope, message.region, &message.value);
let (loc_continuation, output2) = canonicalize_expr(
env,
var_store,
scope,
continuation.region,
&continuation.value,
);
output.union(output1);
output.union(output2);
// the symbol is used to bind the message `x = message`, and identify this `dbg`.
// That would cause issues if we dbg a variable, like `dbg y`, because in the IR we
// cannot alias variables. Hence, we make the dbg use that same variable `y`
let symbol = match &loc_message.value {
Expr::Var(symbol, _) => *symbol,
_ => scope.gen_unique_symbol(),
};
(
Dbg {
source_location: (*source_location).into(),
source: (*source).into(),
loc_message: Box::new(loc_message),
loc_continuation: Box::new(loc_continuation),
variable: var_store.fresh(),
symbol,
},
output,
)
}
ast::Expr::If {
if_thens,
final_else: final_else_branch,
..
} => {
let mut branches = Vec::with_capacity(if_thens.len());
let mut output = Output::default();
for (condition, then_branch) in if_thens.iter() {
let (loc_cond, cond_output) =
canonicalize_expr(env, var_store, scope, condition.region, &condition.value);
let (loc_then, then_output) = canonicalize_expr(
env,
var_store,
scope,
then_branch.region,
&then_branch.value,
);
branches.push((loc_cond, loc_then));
output.references.union_mut(&cond_output.references);
output.references.union_mut(&then_output.references);
}
let (loc_else, else_output) = canonicalize_expr(
env,
var_store,
scope,
final_else_branch.region,
&final_else_branch.value,
);
output.references.union_mut(&else_output.references);
(
If {
cond_var: var_store.fresh(),
branch_var: var_store.fresh(),
branches,
final_else: Box::new(loc_else),
},
output,
)
}
ast::Expr::PrecedenceConflict(ast::PrecedenceConflict {
whole_region,
binop1_position,
binop2_position,
binop1,
binop2,
expr: _,
}) => {
use roc_problem::can::RuntimeError::*;
let region1 = Region::new(
*binop1_position,
binop1_position.bump_column(binop1.width() as u32),
);
let loc_binop1 = Loc::at(region1, *binop1);
let region2 = Region::new(
*binop2_position,
binop2_position.bump_column(binop2.width() as u32),
);
let loc_binop2 = Loc::at(region2, *binop2);
let problem =
PrecedenceProblem::BothNonAssociative(*whole_region, loc_binop1, loc_binop2);
env.problem(Problem::PrecedenceProblem(problem.clone()));
(
RuntimeError(InvalidPrecedence(problem, region)),
Output::default(),
)
}
ast::Expr::MalformedClosure => {
use roc_problem::can::RuntimeError::*;
(RuntimeError(MalformedClosure(region)), Output::default())
}
ast::Expr::MalformedIdent(name, bad_ident) => {
use roc_problem::can::RuntimeError::*;
let problem = MalformedIdentifier((*name).into(), *bad_ident, region);
env.problem(Problem::RuntimeError(problem.clone()));
(RuntimeError(problem), Output::default())
}
ast::Expr::MalformedSuffixed(..) => {
use roc_problem::can::RuntimeError::*;
(RuntimeError(MalformedSuffixed(region)), Output::default())
}
ast::Expr::EmptyRecordBuilder(sub_expr) => {
use roc_problem::can::RuntimeError::*;
let problem = EmptyRecordBuilder(sub_expr.region);
env.problem(Problem::RuntimeError(problem.clone()));
(RuntimeError(problem), Output::default())
}
ast::Expr::SingleFieldRecordBuilder(sub_expr) => {
use roc_problem::can::RuntimeError::*;
let problem = SingleFieldRecordBuilder(sub_expr.region);
env.problem(Problem::RuntimeError(problem.clone()));
(RuntimeError(problem), Output::default())
}
ast::Expr::OptionalFieldInRecordBuilder(loc_name, loc_value) => {
use roc_problem::can::RuntimeError::*;
let sub_region = Region::span_across(&loc_name.region, &loc_value.region);
let problem = OptionalFieldInRecordBuilder {
record: region,
field: sub_region,
};
env.problem(Problem::RuntimeError(problem.clone()));
(RuntimeError(problem), Output::default())
}
&ast::Expr::NonBase10Int {
string,
base,
is_negative,
} => {
// the minus sign is added before parsing, to get correct overflow/underflow behavior
let answer = match finish_parsing_base(string, base, is_negative) {
Ok((int, bound)) => {
// Done in this kinda round about way with intermediate variables
// to keep borrowed values around and make this compile
let int_string = int.to_string();
let int_str = int_string.as_str();
int_expr_from_result(var_store, Ok((int_str, int, bound)), region, base, env)
}
Err(e) => int_expr_from_result(var_store, Err(e), region, base, env),
};
(answer, Output::default())
}
&ast::Expr::ParensAround(sub_expr) => {
let (loc_expr, output) = canonicalize_expr(env, var_store, scope, region, sub_expr);
(loc_expr.value, output)
}
// Below this point, we shouln't see any of these nodes anymore because
// operator desugaring should have removed them!
bad_expr @ ast::Expr::SpaceBefore(_, _) => {
internal_error!(
"A SpaceBefore did not get removed during operator desugaring somehow: {:#?}",
bad_expr
);
}
bad_expr @ ast::Expr::SpaceAfter(_, _) => {
internal_error!(
"A SpaceAfter did not get removed during operator desugaring somehow: {:#?}",
bad_expr
);
}
bad_expr @ ast::Expr::BinOps { .. } => {
internal_error!(
"A binary operator chain did not get desugared somehow: {:#?}",
bad_expr
);
}
bad_expr @ ast::Expr::UnaryOp(_, _) => {
internal_error!(
"A unary operator did not get desugared somehow: {:#?}",
bad_expr
);
}
};
// At the end, diff used_idents and defined_idents to see which were unused.
// Add warnings for those!
// In a later phase, unused top level declarations won't get monomorphized or code-genned.
// We aren't going to bother with DCE at the level of local defs. It's going to be
// a rounding error anyway (especially given that they'll be surfaced as warnings), LLVM will
// DCE them in optimized builds, and it's not worth the bookkeeping for dev builds.
(
Loc {
region,
value: expr,
},
output,
)
}
pub fn canonicalize_record<'a>(
env: &mut Env<'a>,
var_store: &mut VarStore,
scope: &mut Scope,
region: Region,
fields: ast::Collection<'a, Loc<ast::AssignedField<'a, ast::Expr<'a>>>>,
) -> (Expr, Output) {
use Expr::*;
if fields.is_empty() {
(EmptyRecord, Output::default())
} else {
match canonicalize_fields(env, var_store, scope, region, fields.items) {
Ok((can_fields, output)) => (
Record {
record_var: var_store.fresh(),
fields: can_fields,
},
output,
),
Err(CanonicalizeRecordProblem::InvalidOptionalValue {
field_name,
field_region,
record_region,
}) => (
Expr::RuntimeError(roc_problem::can::RuntimeError::InvalidOptionalValue {
field_name,
field_region,
record_region,
}),
Output::default(),
),
}
}
}
pub fn canonicalize_closure<'a>(
env: &mut Env<'a>,
var_store: &mut VarStore,
scope: &mut Scope,
loc_arg_patterns: &'a [Loc<ast::Pattern<'a>>],
loc_body_expr: &'a Loc<ast::Expr<'a>>,
opt_def_name: Option<Symbol>,
) -> (ClosureData, Output) {
scope.inner_scope(|inner_scope| {
canonicalize_closure_body(
env,
var_store,
inner_scope,
loc_arg_patterns,
loc_body_expr,
opt_def_name,
)
})
}
fn canonicalize_closure_body<'a>(
env: &mut Env<'a>,
var_store: &mut VarStore,
scope: &mut Scope,
loc_arg_patterns: &'a [Loc<ast::Pattern<'a>>],
loc_body_expr: &'a Loc<ast::Expr<'a>>,
opt_def_name: Option<Symbol>,
) -> (ClosureData, Output) {
// The globally unique symbol that will refer to this closure once it gets converted
// into a top-level procedure for code gen.
let (symbol, is_anonymous) = match opt_def_name {
Some(name) => (name, false),
None => (scope.gen_unique_symbol(), true),
};
let mut can_args = Vec::with_capacity(loc_arg_patterns.len());
let mut output = Output::default();
for loc_pattern in loc_arg_patterns.iter() {
let can_argument_pattern = canonicalize_pattern(
env,
var_store,
scope,
&mut output,
FunctionArg,
&loc_pattern.value,
loc_pattern.region,
PermitShadows(false),
);
can_args.push((
var_store.fresh(),
AnnotatedMark::new(var_store),
can_argument_pattern,
));
}
let bound_by_argument_patterns: Vec<_> =
BindingsFromPattern::new_many(can_args.iter().map(|x| &x.2)).collect();
let (loc_body_expr, new_output) = canonicalize_expr(
env,
var_store,
scope,
loc_body_expr.region,
&loc_body_expr.value,
);
let mut references_top_level = false;
let mut captured_symbols: Vec<_> = new_output
.references
.value_lookups()
.copied()
// filter out the closure's name itself
.filter(|s| *s != symbol)
// symbols bound either in this pattern or deeper down are not captured!
.filter(|s| !new_output.references.bound_symbols().any(|x| x == s))
.filter(|s| bound_by_argument_patterns.iter().all(|(k, _)| s != k))
// filter out top-level symbols those will be globally available, and don't need to be captured
.filter(|s| {
let is_top_level = env.top_level_symbols.contains(s);
references_top_level = references_top_level || is_top_level;
!is_top_level
})
// filter out imported symbols those will be globally available, and don't need to be captured
.filter(|s| s.module_id() == env.home)
// filter out functions that don't close over anything
.filter(|s| !new_output.non_closures.contains(s))
.filter(|s| !output.non_closures.contains(s))
.map(|s| (s, var_store.fresh()))
.collect();
if references_top_level {
if let Some(params_record) = env.home_params_record {
// If this module has params and the closure references top-level symbols,
// we need to capture the whole record so we can pass it.
// The lower_params pass will take care of removing the captures for top-level fns.
captured_symbols.push(params_record);
}
}
output.union(new_output);
// Now that we've collected all the references, check to see if any of the args we defined
// went unreferenced. If any did, report them as unused arguments.
for (sub_symbol, region) in bound_by_argument_patterns {
if !output.references.has_value_lookup(sub_symbol) {
// The body never referenced this argument we declared. It's an unused argument!
env.problem(Problem::UnusedArgument(
symbol,
is_anonymous,
sub_symbol,
region,
));
} else {
// We shouldn't ultimately count arguments as referenced locals. Otherwise,
// we end up with weird conclusions like the expression (\x -> x + 1)
// references the (nonexistent) local variable x!
output.references.remove_value_lookup(&sub_symbol);
}
}
// store the references of this function in the Env. This information is used
// when we canonicalize a surrounding def (if it exists)
env.closures.insert(symbol, output.references.clone());
// sort symbols, so we know the order in which they're stored in the closure record
captured_symbols.sort();
// store that this function doesn't capture anything. It will be promoted to a
// top-level function, and does not need to be captured by other surrounding functions.
if captured_symbols.is_empty() {
output.non_closures.insert(symbol);
}
let closure_data = ClosureData {
function_type: var_store.fresh(),
closure_type: var_store.fresh(),
return_type: var_store.fresh(),
name: symbol,
captured_symbols,
recursive: Recursive::NotRecursive,
arguments: can_args,
loc_body: Box::new(loc_body_expr),
};
(closure_data, output)
}
enum MultiPatternVariables {
OnePattern,
MultiPattern {
num_patterns: usize,
bound_occurrences: VecMap<Symbol, (Region, usize)>,
},
}
impl MultiPatternVariables {
#[inline(always)]
fn new(num_patterns: usize) -> Self {
if num_patterns > 1 {
Self::MultiPattern {
num_patterns,
bound_occurrences: VecMap::with_capacity(num_patterns),
}
} else {
Self::OnePattern
}
}
#[inline(always)]
fn add_pattern(&mut self, pattern: &Loc<Pattern>) {
match self {
MultiPatternVariables::OnePattern => {}
MultiPatternVariables::MultiPattern {
bound_occurrences, ..
} => {
for (sym, region) in BindingsFromPattern::new(pattern) {
if !bound_occurrences.contains_key(&sym) {
bound_occurrences.insert(sym, (region, 0));
}
bound_occurrences.get_mut(&sym).unwrap().1 += 1;
}
}
}
}
#[inline(always)]
fn get_unbound(self) -> impl Iterator<Item = (Symbol, Region)> {
let (bound_occurrences, num_patterns) = match self {
MultiPatternVariables::OnePattern => (Default::default(), 1),
MultiPatternVariables::MultiPattern {
bound_occurrences,
num_patterns,
} => (bound_occurrences, num_patterns),
};
bound_occurrences
.into_iter()
.filter_map(move |(sym, (region, occurs))| {
if occurs != num_patterns {
Some((sym, region))
} else {
None
}
})
}
}
#[inline(always)]
fn canonicalize_when_branch<'a>(
env: &mut Env<'a>,
var_store: &mut VarStore,
scope: &mut Scope,
_region: Region,
branch: &'a ast::WhenBranch<'a>,
output: &mut Output,
) -> (WhenBranch, References) {
let mut patterns = Vec::with_capacity(branch.patterns.len());
let mut multi_pattern_variables = MultiPatternVariables::new(branch.patterns.len());
for (i, loc_pattern) in branch.patterns.iter().enumerate() {
let permit_shadows = PermitShadows(i > 0); // patterns can shadow symbols defined in the first pattern.
let can_pattern = canonicalize_pattern(
env,
var_store,
scope,
output,
WhenBranch,
&loc_pattern.value,
loc_pattern.region,
permit_shadows,
);
multi_pattern_variables.add_pattern(&can_pattern);
patterns.push(WhenBranchPattern {
pattern: can_pattern,
degenerate: false,
});
}
let mut some_symbols_not_bound_in_all_patterns = false;
for (unbound_symbol, region) in multi_pattern_variables.get_unbound() {
env.problem(Problem::NotBoundInAllPatterns {
unbound_symbol,
region,
});
some_symbols_not_bound_in_all_patterns = true;
}
let (value, mut branch_output) = canonicalize_expr(
env,
var_store,
scope,
branch.value.region,
&branch.value.value,
);
let guard = match &branch.guard {
None => None,
Some(loc_expr) => {
let (can_guard, guard_branch_output) =
canonicalize_expr(env, var_store, scope, loc_expr.region, &loc_expr.value);
branch_output.union(guard_branch_output);
Some(can_guard)
}
};
let references = branch_output.references.clone();
output.union(branch_output);
// Now that we've collected all the references for this branch, check to see if
// any of the new idents it defined were unused. If any were, report it.
let mut pattern_bound_symbols_body_needs = VecSet::default();
for (symbol, region) in BindingsFromPattern::new_many(patterns.iter().map(|pat| &pat.pattern)) {
if output.references.has_value_lookup(symbol) {
pattern_bound_symbols_body_needs.insert(symbol);
} else {
env.problem(Problem::UnusedBranchDef(symbol, region));
}
}
if some_symbols_not_bound_in_all_patterns && !pattern_bound_symbols_body_needs.is_empty() {
// There might be branches that don't bind all the symbols needed by the body; mark those
// branches degenerate.
for pattern in patterns.iter_mut() {
let bound_by_pattern: VecSet<_> = BindingsFromPattern::new(&pattern.pattern)
.map(|(sym, _)| sym)
.collect();
let binds_all_needed = pattern_bound_symbols_body_needs
.iter()
.all(|sym| bound_by_pattern.contains(sym));
if !binds_all_needed {
pattern.degenerate = true;
}
}
}
(
WhenBranch {
patterns,
value,
guard,
redundant: RedundantMark::new(var_store),
},
references,
)
}
enum CanonicalizeRecordProblem {
InvalidOptionalValue {
field_name: Lowercase,
field_region: Region,
record_region: Region,
},
}
fn canonicalize_fields<'a>(
env: &mut Env<'a>,
var_store: &mut VarStore,
scope: &mut Scope,
region: Region,
fields: &'a [Loc<ast::AssignedField<'a, ast::Expr<'a>>>],
) -> Result<(SendMap<Lowercase, Field>, Output), CanonicalizeRecordProblem> {
let mut can_fields = SendMap::default();
let mut output = Output::default();
for loc_field in fields.iter() {
match canonicalize_field(env, var_store, scope, &loc_field.value) {
Ok((label, field_expr, field_out, field_var)) => {
let field = Field {
var: field_var,
region: loc_field.region,
loc_expr: Box::new(field_expr),
};
let replaced = can_fields.insert(label.clone(), field);
if let Some(old) = replaced {
env.problems.push(Problem::DuplicateRecordFieldValue {
field_name: label,
field_region: loc_field.region,
record_region: region,
replaced_region: old.region,
});
}
output.references.union_mut(&field_out.references);
}
Err(CanonicalizeFieldProblem::InvalidOptionalValue {
field_name,
field_region,
}) => {
env.problems.push(Problem::InvalidOptionalValue {
field_name: field_name.clone(),
field_region,
record_region: region,
});
return Err(CanonicalizeRecordProblem::InvalidOptionalValue {
field_name,
field_region,
record_region: region,
});
}
}
}
Ok((can_fields, output))
}
enum CanonicalizeFieldProblem {
InvalidOptionalValue {
field_name: Lowercase,
field_region: Region,
},
}
fn canonicalize_field<'a>(
env: &mut Env<'a>,
var_store: &mut VarStore,
scope: &mut Scope,
field: &'a ast::AssignedField<'a, ast::Expr<'a>>,
) -> Result<(Lowercase, Loc<Expr>, Output, Variable), CanonicalizeFieldProblem> {
use roc_parse::ast::AssignedField::*;
match field {
// Both a label and a value, e.g. `{ name: "blah" }`
RequiredValue(label, _, loc_expr) => {
let field_var = var_store.fresh();
let (loc_can_expr, output) =
canonicalize_expr(env, var_store, scope, loc_expr.region, &loc_expr.value);
Ok((
Lowercase::from(label.value),
loc_can_expr,
output,
field_var,
))
}
OptionalValue(label, _, loc_expr) => Err(CanonicalizeFieldProblem::InvalidOptionalValue {
field_name: Lowercase::from(label.value),
field_region: Region::span_across(&label.region, &loc_expr.region),
}),
// An ignored value, e.g. `{ _name: 123 }`
IgnoredValue(_, _, _) => {
internal_error!("Somehow an IgnoredValue record field was not desugared!");
}
// A label with no value, e.g. `{ name }` (this is sugar for { name: name })
LabelOnly(_) => {
internal_error!("Somehow a LabelOnly record field was not desugared!");
}
SpaceBefore(sub_field, _) | SpaceAfter(sub_field, _) => {
canonicalize_field(env, var_store, scope, sub_field)
}
Malformed(_string) => {
internal_error!("TODO canonicalize malformed record field");
}
}
}
fn canonicalize_var_lookup(
env: &mut Env<'_>,
var_store: &mut VarStore,
scope: &mut Scope,
module_name: &str,
ident: &str,
region: Region,
) -> (Expr, Output) {
use Expr::*;
let mut output = Output::default();
let can_expr = if module_name.is_empty() {
// Since module_name was empty, this is an unqualified var.
// Look it up in scope!
match scope.lookup_str(ident, region) {
Ok(lookup) => {
output
.references
.insert_value_lookup(lookup, QualifiedReference::Unqualified);
if scope.abilities_store.is_ability_member_name(lookup.symbol) {
AbilityMember(
params_in_abilities_unimplemented!(lookup),
Some(scope.abilities_store.fresh_specialization_id()),
var_store.fresh(),
)
} else {
lookup_to_expr(var_store, lookup)
}
}
Err(problem) => {
env.problem(Problem::RuntimeError(problem.clone()));
RuntimeError(problem)
}
}
} else {
// Since module_name was nonempty, this is a qualified var.
// Look it up in the env!
match env.qualified_lookup(scope, module_name, ident, region) {
Ok(lookup) => {
output
.references
.insert_value_lookup(lookup, QualifiedReference::Qualified);
if scope.abilities_store.is_ability_member_name(lookup.symbol) {
AbilityMember(
params_in_abilities_unimplemented!(lookup),
Some(scope.abilities_store.fresh_specialization_id()),
var_store.fresh(),
)
} else {
lookup_to_expr(var_store, lookup)
}
}
Err(problem) => {
// Either the module wasn't imported, or
// it was imported but it doesn't expose this ident.
env.problem(Problem::RuntimeError(problem.clone()));
RuntimeError(problem)
}
}
};
// If it's valid, this ident should be in scope already.
(can_expr, output)
}
fn lookup_to_expr(
var_store: &mut VarStore,
SymbolLookup {
symbol,
module_params,
}: SymbolLookup,
) -> Expr {
if let Some((params_var, params_symbol)) = module_params {
Expr::ParamsVar {
symbol,
var: var_store.fresh(),
params_symbol,
params_var,
}
} else {
Expr::Var(symbol, var_store.fresh())
}
}
/// Currently uses the heuristic of "only inline if it's a builtin"
pub fn inline_calls(var_store: &mut VarStore, expr: Expr) -> Expr {
use Expr::*;
match expr {
// Num stores the `a` variable in `Num a`. Not the same as the variable
// stored in Int and Float below, which is strictly for better error messages
other @ Num(..)
| other @ Int(..)
| other @ Float(..)
| other @ Str { .. }
| other @ IngestedFile(..)
| other @ SingleQuote(..)
| other @ RuntimeError(_)
| other @ EmptyRecord
| other @ RecordAccessor { .. }
| other @ RecordUpdate { .. }
| other @ Var(..)
| other @ ParamsVar { .. }
| other @ AbilityMember(..)
| other @ RunLowLevel { .. }
| other @ TypedHole { .. }
| other @ ForeignCall { .. }
| other @ OpaqueWrapFunction(_)
| other @ Crash { .. } => other,
List {
elem_var,
loc_elems,
} => {
let mut new_elems = Vec::with_capacity(loc_elems.len());
for loc_elem in loc_elems {
let value = inline_calls(var_store, loc_elem.value);
new_elems.push(Loc {
value,
region: loc_elem.region,
});
}
List {
elem_var,
loc_elems: new_elems,
}
}
// Branching
When {
cond_var,
expr_var,
region,
loc_cond,
branches,
branches_cond_var,
exhaustive,
} => {
let loc_cond = Box::new(Loc {
region: loc_cond.region,
value: inline_calls(var_store, loc_cond.value),
});
let mut new_branches = Vec::with_capacity(branches.len());
for branch in branches {
let value = Loc {
value: inline_calls(var_store, branch.value.value),
region: branch.value.region,
};
let guard = match branch.guard {
Some(loc_expr) => Some(Loc {
region: loc_expr.region,
value: inline_calls(var_store, loc_expr.value),
}),
None => None,
};
let new_branch = WhenBranch {
patterns: branch.patterns,
value,
guard,
redundant: RedundantMark::new(var_store),
};
new_branches.push(new_branch);
}
When {
cond_var,
expr_var,
region,
loc_cond,
branches: new_branches,
branches_cond_var,
exhaustive,
}
}
If {
cond_var,
branch_var,
branches,
final_else,
} => {
let mut new_branches = Vec::with_capacity(branches.len());
for (loc_cond, loc_expr) in branches {
let loc_cond = Loc {
value: inline_calls(var_store, loc_cond.value),
region: loc_cond.region,
};
let loc_expr = Loc {
value: inline_calls(var_store, loc_expr.value),
region: loc_expr.region,
};
new_branches.push((loc_cond, loc_expr));
}
let final_else = Box::new(Loc {
region: final_else.region,
value: inline_calls(var_store, final_else.value),
});
If {
cond_var,
branch_var,
branches: new_branches,
final_else,
}
}
Expect {
loc_condition,
loc_continuation,
lookups_in_cond,
} => {
let loc_condition = Loc {
region: loc_condition.region,
value: inline_calls(var_store, loc_condition.value),
};
let loc_continuation = Loc {
region: loc_continuation.region,
value: inline_calls(var_store, loc_continuation.value),
};
Expect {
loc_condition: Box::new(loc_condition),
loc_continuation: Box::new(loc_continuation),
lookups_in_cond,
}
}
ExpectFx {
loc_condition,
loc_continuation,
lookups_in_cond,
} => {
let loc_condition = Loc {
region: loc_condition.region,
value: inline_calls(var_store, loc_condition.value),
};
let loc_continuation = Loc {
region: loc_continuation.region,
value: inline_calls(var_store, loc_continuation.value),
};
ExpectFx {
loc_condition: Box::new(loc_condition),
loc_continuation: Box::new(loc_continuation),
lookups_in_cond,
}
}
Dbg {
source_location,
source,
loc_message,
loc_continuation,
variable,
symbol,
} => {
let loc_message = Loc {
region: loc_message.region,
value: inline_calls(var_store, loc_message.value),
};
let loc_continuation = Loc {
region: loc_continuation.region,
value: inline_calls(var_store, loc_continuation.value),
};
Dbg {
source_location,
source,
loc_message: Box::new(loc_message),
loc_continuation: Box::new(loc_continuation),
variable,
symbol,
}
}
LetRec(defs, loc_expr, mark) => {
let mut new_defs = Vec::with_capacity(defs.len());
for def in defs {
new_defs.push(Def {
loc_pattern: def.loc_pattern,
loc_expr: Loc {
region: def.loc_expr.region,
value: inline_calls(var_store, def.loc_expr.value),
},
expr_var: def.expr_var,
pattern_vars: def.pattern_vars,
annotation: def.annotation,
});
}
let loc_expr = Loc {
region: loc_expr.region,
value: inline_calls(var_store, loc_expr.value),
};
LetRec(new_defs, Box::new(loc_expr), mark)
}
LetNonRec(def, loc_expr) => {
let def = Def {
loc_pattern: def.loc_pattern,
loc_expr: Loc {
region: def.loc_expr.region,
value: inline_calls(var_store, def.loc_expr.value),
},
expr_var: def.expr_var,
pattern_vars: def.pattern_vars,
annotation: def.annotation,
};
let loc_expr = Loc {
region: loc_expr.region,
value: inline_calls(var_store, loc_expr.value),
};
LetNonRec(Box::new(def), Box::new(loc_expr))
}
Closure(ClosureData {
function_type,
closure_type,
return_type,
recursive,
name,
captured_symbols,
arguments,
loc_body,
}) => {
let loc_expr = *loc_body;
let loc_expr = Loc {
value: inline_calls(var_store, loc_expr.value),
region: loc_expr.region,
};
Closure(ClosureData {
function_type,
closure_type,
return_type,
recursive,
name,
captured_symbols,
arguments,
loc_body: Box::new(loc_expr),
})
}
Record { record_var, fields } => {
todo!(
"Inlining for Record with record_var {:?} and fields {:?}",
record_var,
fields
);
}
ImportParams(module_id, region, Some((var, expr))) => ImportParams(
module_id,
region,
Some((var, Box::new(inline_calls(var_store, *expr)))),
),
ImportParams(module_id, region, None) => ImportParams(module_id, region, None),
RecordAccess {
record_var,
ext_var,
field_var,
loc_expr,
field,
} => {
todo!("Inlining for RecordAccess with record_var {:?}, ext_var {:?}, field_var {:?}, loc_expr {:?}, field {:?}", record_var, ext_var, field_var, loc_expr, field);
}
Tuple { tuple_var, elems } => {
todo!(
"Inlining for Tuple with tuple_var {:?} and elems {:?}",
tuple_var,
elems
);
}
TupleAccess {
tuple_var,
ext_var,
elem_var,
loc_expr,
index,
} => {
todo!("Inlining for TupleAccess with tuple_var {:?}, ext_var {:?}, elem_var {:?}, loc_expr {:?}, index {:?}", tuple_var, ext_var, elem_var, loc_expr, index);
}
Tag {
tag_union_var: variant_var,
ext_var,
name,
arguments,
} => {
todo!(
"Inlining for Tag with variant_var {:?}, ext_var {:?}, name {:?}, arguments {:?}",
variant_var,
ext_var,
name,
arguments
);
}
OpaqueRef {
opaque_var,
name,
argument,
specialized_def_type,
type_arguments,
lambda_set_variables,
} => {
let (var, loc_expr) = *argument;
let argument = Box::new((
var,
loc_expr.map_owned(|expr| inline_calls(var_store, expr)),
));
OpaqueRef {
opaque_var,
name,
argument,
specialized_def_type,
type_arguments,
lambda_set_variables,
}
}
ZeroArgumentTag {
closure_name,
variant_var,
ext_var,
name,
} => {
todo!(
"Inlining for ZeroArgumentTag with closure_name {:?}, variant_var {:?}, ext_var {:?}, name {:?}",
closure_name,
variant_var,
ext_var,
name,
);
}
Call(boxed_tuple, args, called_via) => {
let (fn_var, loc_expr, closure_var, expr_var) = *boxed_tuple;
match loc_expr.value {
Var(symbol, _) if symbol.is_builtin() => {
match builtin_defs_map(symbol, var_store) {
Some(Def {
loc_expr:
Loc {
value:
Closure(ClosureData {
recursive,
arguments: params,
loc_body: boxed_body,
..
}),
..
},
..
}) => {
debug_assert_eq!(recursive, Recursive::NotRecursive);
// Since this is a canonicalized Expr, we should have
// already detected any arity mismatches and replaced this
// with a RuntimeError if there was a mismatch.
debug_assert_eq!(params.len(), args.len());
// Start with the function's body as the answer.
let mut loc_answer = *boxed_body;
// Wrap the body in one LetNonRec for each argument,
// such that at the end we have all the arguments in
// scope with the values the caller provided.
for (
(_param_var, _exhaustive_mark, loc_pattern),
(expr_var, loc_expr),
) in params.iter().cloned().zip(args.into_iter()).rev()
{
// TODO get the correct vars into here.
// Not sure if param_var should be involved.
let pattern_vars = SendMap::default();
let def = Def {
loc_pattern,
loc_expr,
expr_var,
pattern_vars,
annotation: None,
};
loc_answer = Loc {
region: Region::zero(),
value: LetNonRec(Box::new(def), Box::new(loc_answer)),
};
}
loc_answer.value
}
Some(_) => {
internal_error!("Tried to inline a non-function");
}
None => {
internal_error!(
"Tried to inline a builtin that wasn't registered: {:?}",
symbol
);
}
}
}
_ => {
// For now, we only inline calls to builtins. Leave this alone!
Call(
Box::new((fn_var, loc_expr, closure_var, expr_var)),
args,
called_via,
)
}
}
}
}
}
fn flatten_str_literal<'a>(
env: &mut Env<'a>,
var_store: &mut VarStore,
scope: &mut Scope,
literal: &StrLiteral<'a>,
) -> (Expr, Output) {
use ast::StrLiteral::*;
match literal {
PlainLine(str_slice) => (Expr::Str((*str_slice).into()), Output::default()),
Line(segments) => flatten_str_lines(env, var_store, scope, &[segments]),
Block(lines) => flatten_str_lines(env, var_store, scope, lines),
}
}
/// Comments, newlines, and nested interpolation are disallowed inside interpolation
pub fn is_valid_interpolation(expr: &ast::Expr<'_>) -> bool {
match expr {
// These definitely contain neither comments nor newlines, so they are valid
ast::Expr::Var { .. }
| ast::Expr::SingleQuote(_)
| ast::Expr::Str(StrLiteral::PlainLine(_))
| ast::Expr::Float(_)
| ast::Expr::Num(_)
| ast::Expr::NonBase10Int { .. }
| ast::Expr::AccessorFunction(_)
| ast::Expr::RecordUpdater(_)
| ast::Expr::Crash
| ast::Expr::Dbg
| ast::Expr::Underscore(_)
| ast::Expr::MalformedIdent(_, _)
| ast::Expr::Tag(_)
| ast::Expr::OpaqueRef(_)
| ast::Expr::MalformedClosure => true,
// Newlines are disallowed inside interpolation, and these all require newlines
ast::Expr::DbgStmt(_, _)
| ast::Expr::LowLevelDbg(_, _, _)
| ast::Expr::Expect(_, _)
| ast::Expr::When(_, _)
| ast::Expr::Backpassing(_, _, _)
| ast::Expr::SpaceBefore(_, _)
| ast::Expr::Str(StrLiteral::Block(_))
| ast::Expr::SpaceAfter(_, _) => false,
// Desugared dbg expression
ast::Expr::Defs(_, loc_ret) => match loc_ret.value {
ast::Expr::LowLevelDbg(_, _, continuation) => {
is_valid_interpolation(&continuation.value)
}
_ => false,
},
// These can contain subexpressions, so we need to recursively check those
ast::Expr::Str(StrLiteral::Line(segments)) => {
segments.iter().all(|segment| match segment {
ast::StrSegment::EscapedChar(_)
| ast::StrSegment::Unicode(_)
| ast::StrSegment::Plaintext(_) => true,
// Disallow nested interpolation. Alternatively, we could allow it but require
// a comment above it apologizing to the next person who has to read the code.
ast::StrSegment::Interpolated(_) => false,
})
}
ast::Expr::Record(fields) => fields.iter().all(|loc_field| match loc_field.value {
ast::AssignedField::RequiredValue(_label, loc_comments, loc_val)
| ast::AssignedField::OptionalValue(_label, loc_comments, loc_val)
| ast::AssignedField::IgnoredValue(_label, loc_comments, loc_val) => {
loc_comments.is_empty() && is_valid_interpolation(&loc_val.value)
}
ast::AssignedField::Malformed(_) | ast::AssignedField::LabelOnly(_) => true,
ast::AssignedField::SpaceBefore(_, _) | ast::AssignedField::SpaceAfter(_, _) => false,
}),
ast::Expr::Tuple(fields) => fields
.iter()
.all(|loc_field| is_valid_interpolation(&loc_field.value)),
ast::Expr::MalformedSuffixed(loc_expr)
| ast::Expr::EmptyRecordBuilder(loc_expr)
| ast::Expr::SingleFieldRecordBuilder(loc_expr)
| ast::Expr::OptionalFieldInRecordBuilder(_, loc_expr)
| ast::Expr::PrecedenceConflict(PrecedenceConflict { expr: loc_expr, .. })
| ast::Expr::UnaryOp(loc_expr, _)
| ast::Expr::Closure(_, loc_expr) => is_valid_interpolation(&loc_expr.value),
ast::Expr::TupleAccess(sub_expr, _)
| ast::Expr::ParensAround(sub_expr)
| ast::Expr::RecordAccess(sub_expr, _)
| ast::Expr::TrySuffix { expr: sub_expr, .. } => is_valid_interpolation(sub_expr),
ast::Expr::Apply(loc_expr, args, _called_via) => {
is_valid_interpolation(&loc_expr.value)
&& args
.iter()
.all(|loc_arg| is_valid_interpolation(&loc_arg.value))
}
ast::Expr::BinOps(loc_exprs, loc_expr) => {
is_valid_interpolation(&loc_expr.value)
&& loc_exprs
.iter()
.all(|(loc_expr, _binop)| is_valid_interpolation(&loc_expr.value))
}
ast::Expr::If {
if_thens: branches,
final_else: final_branch,
..
} => {
is_valid_interpolation(&final_branch.value)
&& branches.iter().all(|(loc_before, loc_after)| {
is_valid_interpolation(&loc_before.value)
&& is_valid_interpolation(&loc_after.value)
})
}
ast::Expr::List(elems) => elems
.iter()
.all(|loc_expr| is_valid_interpolation(&loc_expr.value)),
ast::Expr::RecordUpdate { update, fields } => {
is_valid_interpolation(&update.value)
&& fields.iter().all(|loc_field| match loc_field.value {
ast::AssignedField::RequiredValue(_label, loc_comments, loc_val)
| ast::AssignedField::OptionalValue(_label, loc_comments, loc_val)
| ast::AssignedField::IgnoredValue(_label, loc_comments, loc_val) => {
loc_comments.is_empty() && is_valid_interpolation(&loc_val.value)
}
ast::AssignedField::Malformed(_) | ast::AssignedField::LabelOnly(_) => true,
ast::AssignedField::SpaceBefore(_, _)
| ast::AssignedField::SpaceAfter(_, _) => false,
})
}
ast::Expr::RecordBuilder { mapper, fields } => {
is_valid_interpolation(&mapper.value)
&& fields.iter().all(|loc_field| match loc_field.value {
ast::AssignedField::RequiredValue(_label, loc_comments, loc_val)
| ast::AssignedField::OptionalValue(_label, loc_comments, loc_val)
| ast::AssignedField::IgnoredValue(_label, loc_comments, loc_val) => {
loc_comments.is_empty() && is_valid_interpolation(&loc_val.value)
}
ast::AssignedField::Malformed(_) | ast::AssignedField::LabelOnly(_) => true,
ast::AssignedField::SpaceBefore(_, _)
| ast::AssignedField::SpaceAfter(_, _) => false,
})
}
}
}
enum StrSegment {
Interpolation(Loc<Expr>),
Plaintext(Box<str>),
}
fn flatten_str_lines<'a>(
env: &mut Env<'a>,
var_store: &mut VarStore,
scope: &mut Scope,
lines: &[&[ast::StrSegment<'a>]],
) -> (Expr, Output) {
use ast::StrSegment::*;
let mut buf = String::new();
let mut segments = Vec::new();
let mut output = Output::default();
for line in lines {
for segment in line.iter() {
match segment {
Plaintext(string) => {
buf.push_str(string);
}
Unicode(loc_hex_digits) => match u32::from_str_radix(loc_hex_digits.value, 16) {
Ok(code_pt) => match char::from_u32(code_pt) {
Some(ch) => {
buf.push(ch);
}
None => {
env.problem(Problem::InvalidUnicodeCodePt(loc_hex_digits.region));
return (
Expr::RuntimeError(RuntimeError::InvalidUnicodeCodePt(
loc_hex_digits.region,
)),
output,
);
}
},
Err(_) => {
env.problem(Problem::InvalidHexadecimal(loc_hex_digits.region));
return (
Expr::RuntimeError(RuntimeError::InvalidHexadecimal(
loc_hex_digits.region,
)),
output,
);
}
},
Interpolated(loc_expr) => {
if is_valid_interpolation(loc_expr.value) {
// Interpolations desugar to Str.concat calls
output.references.insert_call(Symbol::STR_CONCAT);
if !buf.is_empty() {
segments.push(StrSegment::Plaintext(buf.into()));
buf = String::new();
}
let (loc_expr, new_output) = canonicalize_expr(
env,
var_store,
scope,
loc_expr.region,
loc_expr.value,
);
output.union(new_output);
segments.push(StrSegment::Interpolation(loc_expr));
} else {
env.problem(Problem::InvalidInterpolation(loc_expr.region));
return (
Expr::RuntimeError(RuntimeError::InvalidInterpolation(loc_expr.region)),
output,
);
}
}
EscapedChar(escaped) => buf.push(escaped.unescape()),
}
}
}
if !buf.is_empty() {
segments.push(StrSegment::Plaintext(buf.into()));
}
(desugar_str_segments(var_store, segments), output)
}
/// Resolve string interpolations by desugaring a sequence of StrSegments
/// into nested calls to Str.concat
fn desugar_str_segments(var_store: &mut VarStore, segments: Vec<StrSegment>) -> Expr {
use StrSegment::*;
let n = segments.len();
let mut iter = segments.into_iter().rev();
let mut loc_expr = match iter.next() {
Some(Plaintext(string)) => Loc::at(Region::zero(), Expr::Str(string)),
Some(Interpolation(loc_expr)) => {
if n == 1 {
// We concat with the empty string to ensure a type error when loc_expr is not a string
let empty_string = Loc::at(Region::zero(), Expr::Str("".into()));
let fn_expr = Loc::at(
Region::zero(),
Expr::Var(Symbol::STR_CONCAT, var_store.fresh()),
);
let expr = Expr::Call(
Box::new((
var_store.fresh(),
fn_expr,
var_store.fresh(),
var_store.fresh(),
)),
vec![
(var_store.fresh(), empty_string),
(var_store.fresh(), loc_expr),
],
CalledVia::StringInterpolation,
);
Loc::at(Region::zero(), expr)
} else {
loc_expr
}
}
None => {
// No segments? Empty string!
Loc::at(Region::zero(), Expr::Str("".into()))
}
};
for seg in iter {
let loc_new_expr = match seg {
Plaintext(string) => Loc::at(Region::zero(), Expr::Str(string)),
Interpolation(loc_interpolated_expr) => loc_interpolated_expr,
};
let fn_expr = Loc::at(
Region::zero(),
Expr::Var(Symbol::STR_CONCAT, var_store.fresh()),
);
let expr = Expr::Call(
Box::new((
var_store.fresh(),
fn_expr,
var_store.fresh(),
var_store.fresh(),
)),
vec![
(var_store.fresh(), loc_new_expr),
(var_store.fresh(), loc_expr),
],
CalledVia::StringInterpolation,
);
loc_expr = Loc::at(Region::zero(), expr);
}
loc_expr.value
}
#[derive(Clone, Debug)]
pub struct Declarations {
pub declarations: Vec<DeclarationTag>,
/// same lengths as declarations; has a dummy value if not applicable
pub variables: Vec<Variable>,
pub symbols: Vec<Loc<Symbol>>,
pub annotations: Vec<Option<crate::def::Annotation>>,
// used for ability member specializatons.
pub specializes: VecMap<usize, Symbol>,
// used while lowering params.
arity_by_name: VecMap<IdentId, usize>,
pub host_exposed_annotations: VecMap<usize, (Variable, crate::def::Annotation)>,
pub function_bodies: Vec<Loc<FunctionDef>>,
pub expressions: Vec<Loc<Expr>>,
pub destructs: Vec<DestructureDef>,
}
impl Default for Declarations {
fn default() -> Self {
Self::new()
}
}
impl Declarations {
pub fn new() -> Self {
Self::with_capacity(0)
}
pub fn with_capacity(capacity: usize) -> Self {
Self {
declarations: Vec::with_capacity(capacity),
variables: Vec::with_capacity(capacity),
symbols: Vec::with_capacity(capacity),
annotations: Vec::with_capacity(capacity),
host_exposed_annotations: VecMap::new(),
function_bodies: Vec::with_capacity(capacity),
expressions: Vec::with_capacity(capacity),
specializes: VecMap::default(), // number of specializations is probably low
destructs: Vec::new(), // number of destructs is probably low
arity_by_name: VecMap::with_capacity(capacity),
}
}
/// To store a recursive group in the vectors without nesting, we first push a "header"
/// here, then push the definitions that are part of that recursive group
pub fn push_recursive_group(&mut self, length: u16, cycle_mark: IllegalCycleMark) -> usize {
let index = self.declarations.len();
let tag = DeclarationTag::MutualRecursion { length, cycle_mark };
self.declarations.push(tag);
// dummy values
self.variables.push(Variable::NULL);
self.symbols.push(Loc::at_zero(Symbol::ATTR_ATTR));
self.annotations.push(None);
self.expressions.push(Loc::at_zero(Expr::EmptyRecord));
index
}
pub fn push_recursive_def(
&mut self,
symbol: Loc<Symbol>,
loc_closure_data: Loc<ClosureData>,
expr_var: Variable,
annotation: Option<Annotation>,
host_annotation: Option<(Variable, Annotation)>,
specializes: Option<Symbol>,
) -> usize {
let index = self.declarations.len();
let function_def = FunctionDef {
closure_type: loc_closure_data.value.closure_type,
return_type: loc_closure_data.value.return_type,
captured_symbols: loc_closure_data.value.captured_symbols,
arguments: loc_closure_data.value.arguments,
};
self.arity_by_name
.insert(symbol.value.ident_id(), function_def.arguments.len());
let loc_function_def = Loc::at(loc_closure_data.region, function_def);
let function_def_index = Index::push_new(&mut self.function_bodies, loc_function_def);
let tag = match loc_closure_data.value.recursive {
Recursive::NotRecursive | Recursive::Recursive => {
DeclarationTag::Recursive(function_def_index)
}
Recursive::TailRecursive => DeclarationTag::TailRecursive(function_def_index),
};
if let Some(annotation) = host_annotation {
self.host_exposed_annotations
.insert(self.declarations.len(), annotation);
}
self.declarations.push(tag);
self.variables.push(expr_var);
self.symbols.push(symbol);
self.annotations.push(annotation);
self.expressions.push(*loc_closure_data.value.loc_body);
if let Some(specializes) = specializes {
self.specializes.insert(index, specializes);
}
index
}
pub fn push_function_def(
&mut self,
symbol: Loc<Symbol>,
loc_closure_data: Loc<ClosureData>,
expr_var: Variable,
annotation: Option<Annotation>,
host_annotation: Option<(Variable, Annotation)>,
specializes: Option<Symbol>,
) -> usize {
let index = self.declarations.len();
let function_def = FunctionDef {
closure_type: loc_closure_data.value.closure_type,
return_type: loc_closure_data.value.return_type,
captured_symbols: loc_closure_data.value.captured_symbols,
arguments: loc_closure_data.value.arguments,
};
self.arity_by_name
.insert(symbol.value.ident_id(), function_def.arguments.len());
let loc_function_def = Loc::at(loc_closure_data.region, function_def);
let function_def_index = Index::push_new(&mut self.function_bodies, loc_function_def);
if let Some(annotation) = host_annotation {
self.host_exposed_annotations
.insert(self.declarations.len(), annotation);
}
self.declarations
.push(DeclarationTag::Function(function_def_index));
self.variables.push(expr_var);
self.symbols.push(symbol);
self.annotations.push(annotation);
self.expressions.push(*loc_closure_data.value.loc_body);
if let Some(specializes) = specializes {
self.specializes.insert(index, specializes);
}
index
}
pub fn push_expect(
&mut self,
preceding_comment: Region,
name: Symbol,
loc_expr: Loc<Expr>,
) -> usize {
let index = self.declarations.len();
self.declarations.push(DeclarationTag::Expectation);
self.variables.push(Variable::BOOL);
self.symbols.push(Loc::at(preceding_comment, name));
self.annotations.push(None);
self.expressions.push(loc_expr);
index
}
pub fn push_expect_fx(
&mut self,
preceding_comment: Region,
name: Symbol,
loc_expr: Loc<Expr>,
) -> usize {
let index = self.declarations.len();
self.declarations.push(DeclarationTag::ExpectationFx);
self.variables.push(Variable::BOOL);
self.symbols.push(Loc::at(preceding_comment, name));
self.annotations.push(None);
self.expressions.push(loc_expr);
index
}
pub fn push_value_def(
&mut self,
symbol: Loc<Symbol>,
loc_expr: Loc<Expr>,
expr_var: Variable,
annotation: Option<Annotation>,
host_annotation: Option<(Variable, Annotation)>,
specializes: Option<Symbol>,
) -> usize {
let index = self.declarations.len();
if let Some(annotation) = host_annotation {
self.host_exposed_annotations
.insert(self.declarations.len(), annotation);
}
self.arity_by_name.insert(symbol.value.ident_id(), 0);
self.declarations.push(DeclarationTag::Value);
self.variables.push(expr_var);
self.symbols.push(symbol);
self.annotations.push(annotation);
self.expressions.push(loc_expr);
if let Some(specializes) = specializes {
self.specializes.insert(index, specializes);
}
index
}
/// Any def with a weird pattern
pub fn push_destructure_def(
&mut self,
loc_pattern: Loc<Pattern>,
loc_expr: Loc<Expr>,
expr_var: Variable,
annotation: Option<Annotation>,
pattern_vars: VecMap<Symbol, Variable>,
) -> usize {
let index = self.declarations.len();
let destruct_def = DestructureDef {
loc_pattern,
pattern_vars,
};
let destructure_def_index = Index::push_new(&mut self.destructs, destruct_def);
self.declarations
.push(DeclarationTag::Destructure(destructure_def_index));
self.variables.push(expr_var);
self.symbols.push(Loc::at_zero(Symbol::ATTR_ATTR));
self.annotations.push(annotation);
self.expressions.push(loc_expr);
index
}
pub fn push_def(&mut self, def: Def) {
match def.loc_pattern.value {
Pattern::Identifier(symbol) => match def.loc_expr.value {
Expr::Closure(closure_data) => match closure_data.recursive {
Recursive::NotRecursive => {
self.push_function_def(
Loc::at(def.loc_pattern.region, symbol),
Loc::at(def.loc_expr.region, closure_data),
def.expr_var,
def.annotation,
None,
None,
);
}
Recursive::Recursive | Recursive::TailRecursive => {
self.push_recursive_def(
Loc::at(def.loc_pattern.region, symbol),
Loc::at(def.loc_expr.region, closure_data),
def.expr_var,
def.annotation,
None,
None,
);
}
},
_ => {
self.push_value_def(
Loc::at(def.loc_pattern.region, symbol),
def.loc_expr,
def.expr_var,
def.annotation,
None,
None,
);
}
},
_ => todo!(),
}
}
pub fn update_builtin_def(&mut self, index: usize, def: Def) {
match def.loc_pattern.value {
Pattern::Identifier(s) => assert_eq!(s, self.symbols[index].value),
p => internal_error!("a builtin definition has a non-identifier pattern: {:?}", p),
}
match def.loc_expr.value {
Expr::Closure(closure_data) => {
let function_def = FunctionDef {
closure_type: closure_data.closure_type,
return_type: closure_data.return_type,
captured_symbols: closure_data.captured_symbols,
arguments: closure_data.arguments,
};
let loc_function_def = Loc::at(def.loc_expr.region, function_def);
let function_def_index =
Index::push_new(&mut self.function_bodies, loc_function_def);
self.declarations[index] = DeclarationTag::Function(function_def_index);
self.expressions[index] = *closure_data.loc_body;
self.variables[index] = def.expr_var;
}
_ => {
self.declarations[index] = DeclarationTag::Value;
self.expressions[index] = def.loc_expr;
self.variables[index] = def.expr_var;
}
}
}
/// Convert a value def to a function def with the given arguments
/// Currently used in lower_params
pub fn convert_value_to_function(
&mut self,
index: usize,
new_arguments: Vec<(Variable, AnnotatedMark, Loc<Pattern>)>,
var_store: &mut VarStore,
) {
match self.declarations[index] {
DeclarationTag::Value => {
let new_args_len = new_arguments.len();
let loc_body = self.expressions[index].clone();
let region = loc_body.region;
let closure_data = ClosureData {
function_type: var_store.fresh(),
closure_type: var_store.fresh(),
return_type: var_store.fresh(),
name: self.symbols[index].value,
captured_symbols: vec![],
recursive: Recursive::NotRecursive,
arguments: new_arguments,
loc_body: Box::new(loc_body),
};
let loc_closure_data = Loc::at(region, closure_data);
let function_def = FunctionDef {
closure_type: loc_closure_data.value.closure_type,
return_type: loc_closure_data.value.return_type,
captured_symbols: loc_closure_data.value.captured_symbols,
arguments: loc_closure_data.value.arguments,
};
let loc_function_def = Loc::at(region, function_def);
let function_def_index =
Index::push_new(&mut self.function_bodies, loc_function_def);
if let Some(annotation) = &mut self.annotations[index] {
annotation.convert_to_fn(new_args_len, var_store);
}
if let Some((_var, annotation)) = self.host_exposed_annotations.get_mut(&index) {
annotation.convert_to_fn(new_args_len, var_store);
}
self.declarations[index] = DeclarationTag::Function(function_def_index);
}
_ => internal_error!("Expected value declaration"),
};
}
pub fn len(&self) -> usize {
self.declarations.len()
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
pub fn iter_top_down(&self) -> impl Iterator<Item = (usize, DeclarationTag)> + '_ {
self.declarations.iter().scan(0, |state, e| {
let length_so_far = *state;
*state += e.len();
Some((length_so_far, *e))
})
}
pub fn iter_bottom_up(&self) -> impl Iterator<Item = (usize, DeclarationTag)> + '_ {
self.declarations
.iter()
.rev()
.scan(self.declarations.len() - 1, |state, e| {
let length_so_far = *state;
*state = length_so_far.saturating_sub(e.len());
Some((length_so_far, *e))
})
}
pub fn expects(&self) -> ExpectCollector {
let mut collector = ExpectCollector {
expects: VecMap::default(),
dbgs: VecMap::default(),
};
let var = Variable::EMPTY_RECORD;
for index in 0..self.len() {
use crate::expr::DeclarationTag::*;
match self.declarations[index] {
Value | Function(_) | Recursive(_) | TailRecursive(_) | Destructure(_) => {
// def pattern has no default expressions, so skip
let loc_expr = &self.expressions[index];
collector.visit_expr(&loc_expr.value, loc_expr.region, var);
}
MutualRecursion { .. } => {
// the self of this group will be treaded individually by later iterations
}
Expectation => {
let loc_expr =
toplevel_expect_to_inline_expect_pure(self.expressions[index].clone());
collector.visit_expr(&loc_expr.value, loc_expr.region, var);
}
ExpectationFx => {
let loc_expr =
toplevel_expect_to_inline_expect_fx(self.expressions[index].clone());
collector.visit_expr(&loc_expr.value, loc_expr.region, var);
}
}
}
collector
}
pub(crate) fn take_arity_by_name(&mut self) -> VecMap<IdentId, usize> {
// `arity_by_name` is only needed for lowering module params
std::mem::take(&mut self.arity_by_name)
}
}
roc_error_macros::assert_sizeof_default!(DeclarationTag, 8);
#[derive(Clone, Copy, Debug)]
pub enum DeclarationTag {
Value,
Expectation,
ExpectationFx,
Function(Index<Loc<FunctionDef>>),
Recursive(Index<Loc<FunctionDef>>),
TailRecursive(Index<Loc<FunctionDef>>),
Destructure(Index<DestructureDef>),
MutualRecursion {
length: u16,
cycle_mark: IllegalCycleMark,
},
}
impl DeclarationTag {
fn len(self) -> usize {
use DeclarationTag::*;
match self {
Function(_) | Recursive(_) | TailRecursive(_) => 1,
Value => 1,
Expectation | ExpectationFx => 1,
Destructure(_) => 1,
MutualRecursion { length, .. } => length as usize + 1,
}
}
}
#[derive(Clone, Debug)]
pub struct FunctionDef {
pub closure_type: Variable,
pub return_type: Variable,
pub captured_symbols: Vec<(Symbol, Variable)>,
pub arguments: Vec<(Variable, AnnotatedMark, Loc<Pattern>)>,
}
#[derive(Clone, Debug)]
pub struct DestructureDef {
pub loc_pattern: Loc<Pattern>,
pub pattern_vars: VecMap<Symbol, Variable>,
}
pub(crate) fn get_lookup_symbols(expr: &Expr) -> Vec<ExpectLookup> {
let mut stack: Vec<&Expr> = vec![expr];
let mut lookups: Vec<ExpectLookup> = Vec::new();
while let Some(expr) = stack.pop() {
match expr {
Expr::Var(symbol, var)
| Expr::ParamsVar {
symbol,
var,
params_symbol: _,
params_var: _,
}
| Expr::RecordUpdate {
symbol,
record_var: var,
..
} => {
// Don't introduce duplicates, or make unused variables
if !lookups.iter().any(|l| l.symbol == *symbol) {
lookups.push(ExpectLookup {
symbol: *symbol,
var: *var,
ability_info: None,
});
}
}
Expr::AbilityMember(symbol, spec_id, var) => {
if !lookups.iter().any(|l| l.symbol == *symbol) {
lookups.push(ExpectLookup {
symbol: *symbol,
var: *var,
ability_info: *spec_id,
});
}
}
Expr::List { loc_elems, .. } => {
stack.extend(loc_elems.iter().map(|loc_elem| &loc_elem.value));
}
Expr::When {
loc_cond, branches, ..
} => {
stack.push(&loc_cond.value);
stack.reserve(branches.len());
for branch in branches {
stack.push(&branch.value.value);
if let Some(guard) = &branch.guard {
stack.push(&guard.value);
}
}
}
Expr::If {
branches,
final_else,
..
} => {
stack.reserve(1 + branches.len() * 2);
for (loc_cond, loc_body) in branches {
stack.push(&loc_cond.value);
stack.push(&loc_body.value);
}
stack.push(&final_else.value);
}
Expr::LetRec(defs, expr, _illegal_cycle_mark) => {
for def in defs {
stack.push(&def.loc_expr.value);
}
stack.push(&expr.value);
}
Expr::LetNonRec(def, expr) => {
stack.push(&def.loc_expr.value);
stack.push(&expr.value);
}
Expr::Call(boxed_expr, args, _called_via) => {
stack.reserve(1 + args.len());
match &boxed_expr.1.value {
Expr::Var(_, _) => {
// do nothing
}
function_expr => {
// add the expr being called
stack.push(function_expr);
}
}
for (_var, loc_arg) in args {
stack.push(&loc_arg.value);
}
}
Expr::Tag { arguments, .. } => {
stack.extend(arguments.iter().map(|(_var, loc_expr)| &loc_expr.value));
}
Expr::RunLowLevel { args, .. } | Expr::ForeignCall { args, .. } => {
stack.extend(args.iter().map(|(_var, arg)| arg));
}
Expr::OpaqueRef { argument, .. } => {
stack.push(&argument.1.value);
}
Expr::RecordAccess { loc_expr, .. }
| Expr::TupleAccess { loc_expr, .. }
| Expr::Closure(ClosureData {
loc_body: loc_expr, ..
}) => {
stack.push(&loc_expr.value);
}
Expr::Record { fields, .. } => {
stack.extend(fields.iter().map(|(_, field)| &field.loc_expr.value));
}
Expr::Tuple { elems, .. } => {
stack.extend(elems.iter().map(|(_, elem)| &elem.value));
}
Expr::ImportParams(_, _, Some((_, expr))) => {
stack.push(expr);
}
Expr::Expect {
loc_continuation, ..
}
| Expr::ExpectFx {
loc_continuation, ..
}
| Expr::Dbg {
loc_continuation, ..
} => {
stack.push(&loc_continuation.value);
// Intentionally ignore the lookups in the nested `expect` condition itself,
// because they couldn't possibly influence the outcome of this `expect`!
}
Expr::Crash { msg, .. } => stack.push(&msg.value),
Expr::Num(_, _, _, _)
| Expr::Float(_, _, _, _, _)
| Expr::Int(_, _, _, _, _)
| Expr::Str(_)
| Expr::IngestedFile(..)
| Expr::ZeroArgumentTag { .. }
| Expr::RecordAccessor(_)
| Expr::SingleQuote(..)
| Expr::EmptyRecord
| Expr::TypedHole(_)
| Expr::RuntimeError(_)
| Expr::ImportParams(_, _, None)
| Expr::OpaqueWrapFunction(_) => {}
}
}
lookups
}
/// Here we transform
///
/// ```ignore
/// expect
/// a = 1
/// b = 2
///
/// a == b
/// ```
///
/// into
///
/// ```ignore
/// a = 1
/// b = 2
///
/// expect a == b
///
/// {}
/// ```
///
/// This is supposed to happen just before monomorphization:
/// all type errors and such are generated from the user source,
/// but this transformation means that we don't need special codegen for toplevel expects
pub fn toplevel_expect_to_inline_expect_pure(loc_expr: Loc<Expr>) -> Loc<Expr> {
toplevel_expect_to_inline_expect_help(loc_expr, false)
}
pub fn toplevel_expect_to_inline_expect_fx(loc_expr: Loc<Expr>) -> Loc<Expr> {
toplevel_expect_to_inline_expect_help(loc_expr, true)
}
fn toplevel_expect_to_inline_expect_help(mut loc_expr: Loc<Expr>, has_effects: bool) -> Loc<Expr> {
enum StoredDef {
NonRecursive(Region, Box<Def>),
Recursive(Region, Vec<Def>, IllegalCycleMark),
}
let mut stack = vec![];
let mut lookups_in_cond = vec![];
loop {
match loc_expr.value {
Expr::LetNonRec(boxed_def, remainder) => {
lookups_in_cond.extend(boxed_def.pattern_vars.iter().map(|(a, b)| ExpectLookup {
symbol: *a,
var: *b,
ability_info: None,
}));
stack.push(StoredDef::NonRecursive(loc_expr.region, boxed_def));
loc_expr = *remainder;
}
Expr::LetRec(defs, remainder, mark) => {
for def in &defs {
lookups_in_cond.extend(def.pattern_vars.iter().map(|(a, b)| ExpectLookup {
symbol: *a,
var: *b,
ability_info: None,
}));
}
stack.push(StoredDef::Recursive(loc_expr.region, defs, mark));
loc_expr = *remainder;
}
_ => break,
}
}
let expect_region = loc_expr.region;
let expect = if has_effects {
Expr::ExpectFx {
loc_condition: Box::new(loc_expr),
loc_continuation: Box::new(Loc::at_zero(Expr::EmptyRecord)),
lookups_in_cond,
}
} else {
Expr::Expect {
loc_condition: Box::new(loc_expr),
loc_continuation: Box::new(Loc::at_zero(Expr::EmptyRecord)),
lookups_in_cond,
}
};
let mut loc_expr = Loc::at(expect_region, expect);
for stored in stack.into_iter().rev() {
match stored {
StoredDef::NonRecursive(region, boxed_def) => {
loc_expr = Loc::at(region, Expr::LetNonRec(boxed_def, Box::new(loc_expr)));
}
StoredDef::Recursive(region, defs, illegal_cycle_mark) => {
let let_rec = Expr::LetRec(defs, Box::new(loc_expr), illegal_cycle_mark);
loc_expr = Loc::at(region, let_rec);
}
}
}
loc_expr
}
pub struct ExpectCollector {
pub expects: VecMap<Region, Vec<ExpectLookup>>,
pub dbgs: VecMap<Symbol, DbgLookup>,
}
impl crate::traverse::Visitor for ExpectCollector {
fn visit_expr(&mut self, expr: &Expr, _region: Region, var: Variable) {
match expr {
Expr::Expect {
lookups_in_cond,
loc_condition,
..
}
| Expr::ExpectFx {
lookups_in_cond,
loc_condition,
..
} => {
self.expects
.insert(loc_condition.region, lookups_in_cond.to_vec());
}
Expr::Dbg {
loc_message,
variable,
symbol,
..
} => {
let lookup = DbgLookup {
symbol: *symbol,
var: *variable,
region: loc_message.region,
ability_info: None,
};
self.dbgs.insert(*symbol, lookup);
}
_ => (),
}
walk_expr(self, expr, var)
}
}