roc/tests/test_uniqueness_infer.rs
2020-01-18 03:48:03 -05:00

1271 lines
27 KiB
Rust

#[macro_use]
extern crate pretty_assertions;
#[macro_use]
extern crate indoc;
extern crate bumpalo;
extern crate roc;
mod helpers;
#[cfg(test)]
mod test_infer_uniq {
use crate::helpers::{assert_correct_variable_usage, uniq_expr};
use roc::infer::infer_expr;
use roc::pretty_print_types::{content_to_string, name_all_type_vars};
// HELPERS
fn infer_eq_help(src: &str) -> (Vec<roc::types::Problem>, String) {
let (_output, _problems, subs, variable, constraint) = uniq_expr(src);
assert_correct_variable_usage(&constraint);
let mut unify_problems = Vec::new();
let (content, solved) = infer_expr(subs, &mut unify_problems, &constraint, variable);
let mut subs = solved.into_inner();
name_all_type_vars(variable, &mut subs);
let actual_str = content_to_string(content, &mut subs);
(unify_problems, actual_str)
}
fn infer_eq(src: &str, expected: &str) {
let (_, actual) = infer_eq_help(src);
assert_eq!(actual, expected.to_string());
}
fn infer_eq_without_problem(src: &str, expected: &str) {
let (problems, actual) = infer_eq_help(src);
if !problems.is_empty() {
// fail with an assert, but print the problems normally so rust doesn't try to diff
// an empty vec with the problems.
println!("expected:\n{:?}\ninfered:\n{:?}", expected, actual);
assert_eq!(0, 1);
}
assert_eq!(actual, expected.to_string());
}
#[test]
fn empty_record() {
infer_eq("{}", "Attr.Attr * {}");
}
#[test]
fn int_literal() {
infer_eq("5", "Attr.Attr * Int");
}
#[test]
fn float_literal() {
infer_eq("0.5", "Attr.Attr * Float");
}
#[test]
fn string_literal() {
infer_eq(
indoc!(
r#"
"type inference!"
"#
),
"Attr.Attr * Str",
);
}
#[test]
fn empty_string() {
infer_eq(
indoc!(
r#"
""
"#
),
"Attr.Attr * Str",
);
}
// #[test]
// fn block_string_literal() {
// infer_eq(
// indoc!(
// r#"
// """type
// inference!"""
// "#
// ),
// "Str",
// );
// }
// LIST
#[test]
fn empty_list_literal() {
infer_eq(
indoc!(
r#"
[]
"#
),
"Attr.Attr * (List *)",
);
}
#[test]
fn list_of_lists() {
infer_eq(
indoc!(
r#"
[[]]
"#
),
"Attr.Attr * (List (Attr.Attr * (List *)))",
);
}
#[test]
fn triple_nested_list() {
infer_eq(
indoc!(
r#"
[[[]]]
"#
),
"Attr.Attr * (List (Attr.Attr * (List (Attr.Attr * (List *)))))",
);
}
#[test]
fn nested_empty_list() {
infer_eq(
indoc!(
r#"
[ [], [ [] ] ]
"#
),
"Attr.Attr * (List (Attr.Attr * (List (Attr.Attr * (List *)))))",
);
}
// #[test]
// fn concat_different_types() {
// infer_eq(
// indoc!(
// r#"
// empty = []
// one = List.concat [ 1 ] empty
// str = List.concat [ "blah" ] empty
// empty
// "#
// ),
// "List *",
// );
// }
#[test]
fn list_of_one_int() {
infer_eq(
indoc!(
r#"
[42]
"#
),
"Attr.Attr * (List (Attr.Attr * Int))",
);
}
#[test]
fn triple_nested_int_list() {
infer_eq(
indoc!(
r#"
[[[ 5 ]]]
"#
),
"Attr.Attr * (List (Attr.Attr * (List (Attr.Attr * (List (Attr.Attr * Int))))))",
);
}
#[test]
fn list_of_ints() {
infer_eq(
indoc!(
r#"
[ 1, 2, 3 ]
"#
),
"Attr.Attr * (List (Attr.Attr * Int))",
);
}
#[test]
fn nested_list_of_ints() {
infer_eq(
indoc!(
r#"
[ [ 1 ], [ 2, 3 ] ]
"#
),
"Attr.Attr * (List (Attr.Attr * (List (Attr.Attr * Int))))",
);
}
#[test]
fn list_of_one_string() {
infer_eq(
indoc!(
r#"
[ "cowabunga" ]
"#
),
"Attr.Attr * (List (Attr.Attr * Str))",
);
}
#[test]
fn triple_nested_string_list() {
infer_eq(
indoc!(
r#"
[[[ "foo" ]]]
"#
),
"Attr.Attr * (List (Attr.Attr * (List (Attr.Attr * (List (Attr.Attr * Str))))))",
);
}
#[test]
fn list_of_strings() {
infer_eq(
indoc!(
r#"
[ "foo", "bar" ]
"#
),
"Attr.Attr * (List (Attr.Attr * Str))",
);
}
// // INTERPOLATED STRING
// #[test]
// fn infer_interpolated_string() {
// infer_eq(
// indoc!(
// r#"
// whatItIs = "great"
// "type inference is \(whatItIs)!"
// "#
// ),
// "Str",
// );
// }
// LIST MISMATCH
#[test]
fn mismatch_heterogeneous_list() {
infer_eq(
indoc!(
r#"
[ "foo", 5 ]
"#
),
"Attr.Attr * (List <type mismatch>)",
);
}
#[test]
fn mismatch_heterogeneous_nested_list() {
infer_eq(
indoc!(
r#"
[ [ "foo", 5 ] ]
"#
),
"Attr.Attr * (List (Attr.Attr * (List <type mismatch>)))",
);
}
#[test]
fn mismatch_heterogeneous_nested_empty_list() {
infer_eq(
indoc!(
r#"
[ [ 1 ], [ [] ] ]
"#
),
"Attr.Attr * (List <type mismatch>)",
);
}
// CLOSURE
#[test]
fn always_return_empty_record() {
infer_eq(
indoc!(
r#"
\_ -> {}
"#
),
"Attr.Attr * (* -> Attr.Attr * {})",
);
}
#[test]
fn two_arg_return_int() {
infer_eq(
indoc!(
r#"
\_, _ -> 42
"#
),
"Attr.Attr * (*, * -> Attr.Attr * Int)",
);
}
#[test]
fn three_arg_return_string() {
infer_eq(
indoc!(
r#"
\_, _, _ -> "test!"
"#
),
"Attr.Attr * (*, *, * -> Attr.Attr * Str)",
);
}
// DEF
#[test]
fn def_empty_record() {
infer_eq(
indoc!(
r#"
foo = {}
foo
"#
),
"Attr.Attr * {}",
);
}
#[test]
fn def_string() {
infer_eq(
indoc!(
r#"
str = "thing"
str
"#
),
"Attr.Attr * Str",
);
}
#[test]
fn def_1_arg_closure() {
infer_eq(
indoc!(
r#"
fn = \_ -> {}
fn
"#
),
"Attr.Attr * (* -> Attr.Attr * {})",
);
}
#[test]
fn def_2_arg_closure() {
infer_eq(
indoc!(
r#"
func = \_, _ -> 42
func
"#
),
"Attr.Attr * (*, * -> Attr.Attr * Int)",
);
}
#[test]
fn def_3_arg_closure() {
infer_eq(
indoc!(
r#"
f = \_, _, _ -> "test!"
f
"#
),
"Attr.Attr * (*, *, * -> Attr.Attr * Str)",
);
}
#[test]
fn def_multiple_functions() {
infer_eq(
indoc!(
r#"
a = \_, _, _ -> "test!"
b = a
b
"#
),
"Attr.Attr * (*, *, * -> Attr.Attr * Str)",
);
}
#[test]
fn def_multiple_strings() {
infer_eq(
indoc!(
r#"
a = "test!"
b = a
b
"#
),
"Attr.Attr * Str",
);
}
#[test]
fn def_multiple_ints() {
infer_eq(
indoc!(
r#"
c = b
b = a
a = 42
c
"#
),
"Attr.Attr * Int",
);
}
// #[test]
// fn def_returning_closure() {
// infer_eq(
// indoc!(
// r#"
// f = \z -> z
// g = \z -> z
//
// (\x ->
// a = f x
// b = g x
// x
// )
// "#
// ),
// // x is used 3 times, so must be shared
// "Attr.Attr * (Attr.Attr Attr.Shared a -> Attr.Attr Attr.Shared a)",
// );
// }
// CALLING FUNCTIONS
#[test]
fn call_returns_int() {
infer_eq(
indoc!(
r#"
alwaysFive = \_ -> 5
alwaysFive "stuff"
"#
),
"Attr.Attr * Int",
);
}
#[test]
fn identity_returns_given_type() {
infer_eq(
indoc!(
r#"
identity = \a -> a
identity "hi"
"#
),
"Attr.Attr * Str",
);
}
#[test]
fn identity_infers_principal_type() {
infer_eq(
indoc!(
r#"
identity = \a -> a
x = identity 5
identity
"#
),
// TODO investigate why not shared?
"Attr.Attr * (a -> a)",
);
}
#[test]
fn identity_works_on_incompatible_types() {
infer_eq(
indoc!(
r#"
identity = \a -> a
x = identity 5
y = identity "hi"
x
"#
),
// TODO investigate why is this not shared?
// maybe because y is not used it is dropped?
"Attr.Attr * Int",
);
}
#[test]
fn call_returns_list() {
infer_eq(
indoc!(
r#"
enlist = \val -> [ val ]
enlist 5
"#
),
"Attr.Attr * (List (Attr.Attr * Int))",
);
}
#[test]
fn indirect_always() {
infer_eq(
indoc!(
r#"
always = \val -> (\_ -> val)
alwaysFoo = always "foo"
alwaysFoo 42
"#
),
"Attr.Attr * Str",
);
}
#[test]
fn pizza_desugar() {
infer_eq(
indoc!(
r#"
1 |> (\a -> a)
"#
),
"Attr.Attr * Int",
);
}
#[test]
fn pizza_desugared() {
infer_eq(
indoc!(
r#"
(\a -> a) 1
"#
),
"Attr.Attr * Int",
);
}
#[test]
fn pizza_desugar_two_arguments() {
infer_eq(
indoc!(
r#"
always = \a, b -> a
1 |> always "foo"
"#
),
"Attr.Attr * Int",
);
}
#[test]
fn anonymous_identity() {
infer_eq(
indoc!(
r#"
(\a -> a) 3.14
"#
),
"Attr.Attr * Float",
);
}
#[test]
fn identity_of_identity() {
infer_eq(
indoc!(
r#"
(\val -> val) (\val -> val)
"#
),
"Attr.Attr * (a -> a)",
);
}
#[test]
fn recursive_identity() {
infer_eq(
indoc!(
r#"
identity = \val -> val
identity identity
"#
),
"Attr.Attr Attr.Shared (a -> a)",
);
}
#[test]
fn identity_function() {
infer_eq(
indoc!(
r#"
\val -> val
"#
),
"Attr.Attr * (a -> a)",
);
}
#[test]
fn use_apply() {
infer_eq(
indoc!(
r#"
apply = \f, x -> f x
identity = \a -> a
apply identity 5
"#
),
"Attr.Attr * Int",
);
}
#[test]
fn apply_function() {
infer_eq(
indoc!(
r#"
\f, x -> f x
"#
),
"Attr.Attr * (Attr.Attr * (a -> b), a -> b)",
);
}
// #[test]
// TODO FIXME this should pass, but instead fails to canonicalize
// fn use_flip() {
// infer_eq(
// indoc!(
// r#"
// flip = \f -> (\a b -> f b a)
// neverendingInt = \f int -> f int
// x = neverendingInt (\a -> a) 5
// flip neverendingInt
// "#
// ),
// "(Int, (a -> a)) -> Int",
// );
// }
#[test]
fn flip_function() {
infer_eq(
indoc!(
r#"
\f -> (\a, b -> f b a),
"#
),
"Attr.Attr * (Attr.Attr * (a, b -> c) -> Attr.Attr * (b, a -> c))",
);
}
#[test]
fn always_function() {
infer_eq(
indoc!(
r#"
\val -> \_ -> val
"#
),
"Attr.Attr * (a -> Attr.Attr * (* -> a))",
);
}
#[test]
fn pass_a_function() {
infer_eq(
indoc!(
r#"
\f -> f {}
"#
),
"Attr.Attr * (Attr.Attr * (Attr.Attr * {} -> a) -> a)",
);
}
// OPERATORS
// #[test]
// fn div_operator() {
// infer_eq(
// indoc!(
// r#"
// \l r -> l / r
// "#
// ),
// "Float, Float -> Float",
// );
// }
// #[test]
// fn basic_float_division() {
// infer_eq(
// indoc!(
// r#"
// 1 / 2
// "#
// ),
// "Float",
// );
// }
// #[test]
// fn basic_int_division() {
// infer_eq(
// indoc!(
// r#"
// 1 // 2
// "#
// ),
// "Int",
// );
// }
// #[test]
// fn basic_addition() {
// infer_eq(
// indoc!(
// r#"
// 1 + 2
// "#
// ),
// "Int",
// );
// }
// #[test]
// fn basic_circular_type() {
// infer_eq(
// indoc!(
// r#"
// \x -> x x
// "#
// ),
// "<Type Mismatch: Circular Type>",
// );
// }
// #[test]
// fn y_combinator_has_circular_type() {
// assert_eq!(
// infer(indoc!(r#"
// \f -> (\x -> f x x) (\x -> f x x)
// "#)),
// Erroneous(Problem::CircularType)
// );
// }
// #[test]
// fn no_higher_ranked_types() {
// // This should error because it can't type of alwaysFive
// infer_eq(
// indoc!(
// r#"
// \always -> [ always [], always "" ]
// "#
// ),
// "<type mismatch>",
// );
// }
#[test]
fn always_with_list() {
infer_eq(
indoc!(
r#"
alwaysFive = \_ -> 5
[ alwaysFive "foo", alwaysFive [] ]
"#
),
"Attr.Attr * (List (Attr.Attr * Int))",
);
}
#[test]
fn if_with_int_literals() {
infer_eq(
indoc!(
r#"
if True then
42
else
24
"#
),
"Attr.Attr * Int",
);
}
#[test]
fn when_with_int_literals() {
infer_eq(
indoc!(
r#"
when 1 is
1 -> 2
3 -> 4
"#
),
"Attr.Attr * Int",
);
}
#[test]
fn record() {
infer_eq("{ foo: 42 }", "Attr.Attr * { foo : (Attr.Attr * Int) }");
}
#[test]
fn record_access() {
infer_eq("{ foo: 42 }.foo", "Attr.Attr * Int");
}
#[test]
fn empty_record_pattern() {
infer_eq(
indoc!(
r#"
# technically, an empty record can be destructured
{} = {}
bar = \{} -> 42
when foo is
{ x: {} } -> x
"#
),
"Attr.Attr * {}*",
);
}
#[test]
fn record_update() {
infer_eq(
indoc!(
r#"
user = { year: "foo", name: "Sam" }
{ user & year: "foo" }
"#
),
"Attr.Attr * { name : (Attr.Attr * Str), year : (Attr.Attr * Str) }",
);
}
#[test]
fn bare_tag() {
infer_eq(
indoc!(
r#"Foo
"#
),
"Attr.Attr * [ Foo ]*",
);
}
#[test]
fn single_tag_pattern() {
infer_eq(
indoc!(
r#"\Foo -> 42
"#
),
"Attr.Attr * (Attr.Attr * [ Foo ]* -> Attr.Attr * Int)",
);
}
#[test]
fn single_private_tag_pattern() {
infer_eq(
indoc!(
r#"\@Foo -> 42
"#
),
"Attr.Attr * (Attr.Attr * [ Test.@Foo ]* -> Attr.Attr * Int)",
);
}
#[test]
fn two_tag_pattern() {
infer_eq(
indoc!(
r#"\x ->
when x is
True -> 1
False -> 0
"#
),
"Attr.Attr * (Attr.Attr * [ False, True ]* -> Attr.Attr * Int)",
);
}
#[test]
fn tag_application() {
infer_eq(
indoc!(
r#"Foo "happy" 2020
"#
),
"Attr.Attr * [ Foo (Attr.Attr * Str) (Attr.Attr * Int) ]*",
);
}
#[test]
fn private_tag_application() {
infer_eq(
indoc!(
r#"@Foo "happy" 2020
"#
),
"Attr.Attr * [ Test.@Foo (Attr.Attr * Str) (Attr.Attr * Int) ]*",
);
}
#[test]
fn record_field_accessor_function() {
infer_eq(
indoc!(
r#"
.left
"#
),
"Attr.Attr * (Attr.Attr (a | *) { left : (Attr.Attr a b) }* -> Attr.Attr a b)",
);
}
#[test]
fn record_field_access() {
infer_eq(
indoc!(
r#"
\rec -> rec.left
"#
),
"Attr.Attr * (Attr.Attr (* | a) { left : (Attr.Attr a b) }* -> Attr.Attr a b)",
);
}
#[test]
fn record_field_pattern_match_two() {
infer_eq(
indoc!(
r#"
\{ left, right } -> { left, right }
"#
),
"Attr.Attr * (Attr.Attr (b | a) { left : (Attr.Attr a c), right : (Attr.Attr b d) }* -> Attr.Attr * { left : (Attr.Attr a c), right : (Attr.Attr b d) })",
);
}
#[test]
fn record_field_pattern_match_with_guard() {
infer_eq(
indoc!(
r#"
when foo is
{ x: 4 } -> x
"#
),
"Attr.Attr * Int",
);
}
#[test]
fn tag_union_pattern_match() {
infer_eq(
indoc!(
r#"
\Foo x -> Foo x
"#
),
// NOTE: Foo loses the relation to the uniqueness attribute `a`
// That is fine. Whenever we try to extract from it, the relation will be enforced
"Attr.Attr * (Attr.Attr a [ Foo (Attr.Attr a b) ]* -> Attr.Attr * [ Foo (Attr.Attr a b) ]*)",
);
}
#[test]
fn tag_union_pattern_match_ignored_field() {
infer_eq(
indoc!(
r#"
\Foo x _ -> Foo x "y"
"#
),
// TODO: is it safe to ignore uniqueness constraints from patterns that bind no identifiers?
// i.e. the `b` could be ignored in this example, is that true in general?
// seems like it because we don't really extract anything.
"Attr.Attr * (Attr.Attr (b | a) [ Foo (Attr.Attr a c) (Attr.Attr b *) ]* -> Attr.Attr * [ Foo (Attr.Attr a c) (Attr.Attr * Str) ]*)"
);
}
#[test]
fn global_tag_with_field() {
infer_eq(
indoc!(
r#"
when Foo 4 is
Foo x -> x
"#
),
"Attr.Attr * Int",
);
}
#[test]
fn private_tag_with_field() {
infer_eq(
indoc!(
r#"
when @Foo 4 is
@Foo x -> x
"#
),
"Attr.Attr * Int",
);
}
#[test]
fn type_annotation() {
infer_eq(
indoc!(
r#"
x : Int
x = 4
x
"#
),
"Attr.Attr a Int",
);
}
#[test]
fn record_field_pattern_match() {
infer_eq(
indoc!(
r#"
\{ left } -> left
"#
),
"Attr.Attr * (Attr.Attr a { left : (Attr.Attr a b) }* -> Attr.Attr a b)",
);
}
#[test]
fn sharing_analysis_record_one_field_pattern() {
infer_eq(
indoc!(
r#"
\{ x } -> x
"#
),
"Attr.Attr * (Attr.Attr a { x : (Attr.Attr a b) }* -> Attr.Attr a b)",
);
}
#[test]
fn num_identity_def() {
infer_eq_without_problem(
indoc!(
r#"
numIdentity : Num.Num a -> Num.Num a
numIdentity = \x -> x
numIdentity
"#
),
"Attr.Attr * (Attr.Attr a (Num b) -> Attr.Attr a (Num b))",
);
}
#[test]
fn record_field_access_binding() {
infer_eq(
indoc!(
r#"
\r ->
x = r.x
x
"#
),
"Attr.Attr * (Attr.Attr (a | *) { x : (Attr.Attr a b) }* -> Attr.Attr a b)",
);
}
#[test]
fn sharing_analysis_record_one_field_access() {
infer_eq(
indoc!(
r#"
\r ->
x = r.x
x
"#
),
"Attr.Attr * (Attr.Attr (a | *) { x : (Attr.Attr a b) }* -> Attr.Attr a b)",
);
}
#[test]
fn num_identity_applied() {
infer_eq_without_problem(
indoc!(
r#"
numIdentity : Num.Num b -> Num.Num b
numIdentity = \foo -> foo
p = numIdentity 42
q = numIdentity 3.14
{ numIdentity, p, q }
"#
), "Attr.Attr * { numIdentity : (Attr.Attr * (Attr.Attr a (Num b) -> Attr.Attr a (Num b))), p : (Attr.Attr * Int), q : (Attr.Attr * Float) }"
);
}
#[test]
fn sharing_analysis_record_update_use_twice_access() {
infer_eq(
indoc!(
r#"
\r -> { r & x: r.x, y: r.y }
"#
),
"Attr.Attr * (Attr.Attr Attr.Shared { x : (Attr.Attr Attr.Shared a), y : (Attr.Attr Attr.Shared b) }c -> Attr.Attr Attr.Shared { x : (Attr.Attr Attr.Shared a), y : (Attr.Attr Attr.Shared b) }c)" ,
);
}
#[test]
fn sharing_analysis_record_update_duplicate_field() {
infer_eq(
indoc!(
r#"
\r -> { r & x: r.x, y: r.x }
"#
),
"Attr.Attr * (Attr.Attr Attr.Shared { x : (Attr.Attr Attr.Shared a), y : (Attr.Attr Attr.Shared a) }b -> Attr.Attr Attr.Shared { x : (Attr.Attr Attr.Shared a), y : (Attr.Attr Attr.Shared a) }b)"
);
}
#[test]
fn when_with_annotation() {
infer_eq_without_problem(
indoc!(
r#"
x : Num.Num Int.Integer
x =
when 2 is
3 -> 4
_ -> 5
x
"#
),
"Attr.Attr * Int",
);
}
// TODO add more realistic recursive example when able
#[test]
fn factorial_is_shared() {
infer_eq_without_problem(
indoc!(
r#"
factorial = \n ->
when n is
0 -> 1
1 -> 1
m -> factorial m
factorial
"#
),
"Attr.Attr Attr.Shared (Attr.Attr * Int -> Attr.Attr * Int)",
);
}
// TODO add more realistic recursive example when able
#[test]
fn factorial_without_recursive_case_can_be_unique() {
infer_eq_without_problem(
indoc!(
r#"
factorial = \n ->
when n is
0 -> 1
_ -> 1
factorial
"#
),
"Attr.Attr * (Attr.Attr * Int -> Attr.Attr * Int)",
);
}
}