roc/crates/compiler/mono/src/layout.rs
2023-07-12 14:17:57 -05:00

4782 lines
168 KiB
Rust

use crate::ir::Parens;
use crate::layout::intern::NeedsRecursionPointerFixup;
use bitvec::vec::BitVec;
use bumpalo::collections::Vec;
use bumpalo::Bump;
use roc_builtins::bitcode::{FloatWidth, IntWidth};
use roc_collections::all::{default_hasher, FnvMap, MutMap};
use roc_collections::{SmallVec, VecSet};
use roc_error_macros::{internal_error, todo_abilities};
use roc_module::ident::{Lowercase, TagName};
use roc_module::symbol::{Interns, Symbol};
use roc_problem::can::RuntimeError;
use roc_target::{PtrWidth, TargetInfo};
use roc_types::num::NumericRange;
use roc_types::subs::{
self, Content, FlatType, GetSubsSlice, OptVariable, RecordFields, Subs, TagExt, TupleElems,
UnsortedUnionLabels, Variable, VariableSubsSlice,
};
use roc_types::types::{
gather_fields_unsorted_iter, gather_tuple_elems_unsorted_iter, RecordField, RecordFieldsError,
TupleElemsError,
};
use std::cmp::Ordering;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::hash::Hash;
use ven_pretty::{DocAllocator, DocBuilder};
mod intern;
mod semantic;
pub use intern::{
GlobalLayoutInterner, InLayout, LayoutInterner, STLayoutInterner, TLLayoutInterner,
};
pub use semantic::SemanticRepr;
// if your changes cause this number to go down, great!
// please change it to the lower number.
// if it went up, maybe check that the change is really required
roc_error_macros::assert_sizeof_aarch64!(Builtin, 2 * 8);
roc_error_macros::assert_sizeof_aarch64!(Layout, 9 * 8);
roc_error_macros::assert_sizeof_aarch64!(UnionLayout, 3 * 8);
roc_error_macros::assert_sizeof_aarch64!(LambdaSet, 5 * 8);
roc_error_macros::assert_sizeof_wasm!(Builtin, 2 * 4);
roc_error_macros::assert_sizeof_wasm!(Layout, 9 * 4);
roc_error_macros::assert_sizeof_wasm!(UnionLayout, 3 * 4);
roc_error_macros::assert_sizeof_wasm!(LambdaSet, 5 * 4);
roc_error_macros::assert_sizeof_default!(Builtin, 2 * 8);
roc_error_macros::assert_sizeof_default!(Layout, 9 * 8);
roc_error_macros::assert_sizeof_default!(UnionLayout, 3 * 8);
roc_error_macros::assert_sizeof_default!(LambdaSet, 5 * 8);
type LayoutResult<'a> = Result<InLayout<'a>, LayoutProblem>;
type RawFunctionLayoutResult<'a> = Result<RawFunctionLayout<'a>, LayoutProblem>;
#[derive(Debug, Clone)]
struct CacheMeta {
/// Does this cache entry include a recursive structure? If so, what's the recursion variable
/// of that structure?
recursive_structures: SmallVec<Variable, 2>,
}
impl CacheMeta {
#[inline(always)]
fn into_criteria(self) -> CacheCriteria {
let CacheMeta {
recursive_structures,
} = self;
CacheCriteria {
has_naked_recursion_pointer: false,
recursive_structures,
}
}
}
/// A single layer of the layout cache.
/// Snapshots are implemented by operating on new layers, and rollbacks by dropping the latest
/// layer.
#[derive(Debug)]
struct CacheLayer<Result>(FnvMap<Variable, (Result, CacheMeta)>);
impl<Result> Default for CacheLayer<Result> {
fn default() -> Self {
Self(Default::default())
}
}
#[cfg(debug_assertions)]
#[derive(Debug, Default, Clone, Copy)]
pub struct CacheStatistics {
pub hits: u64,
pub misses: u64,
/// How many times we could not cache a calculated layout
pub non_insertable: u64,
/// How many time we could not reuse a cached layout
pub non_reusable: u64,
/// How many times an entry was added to the cache
pub insertions: u64,
}
macro_rules! inc_stat {
($stats:expr, $field:ident) => {
#[cfg(debug_assertions)]
{
$stats.$field += 1;
}
};
}
/// Layout cache to avoid recomputing [Layout] from a [Variable] multiple times.
#[derive(Debug)]
pub struct LayoutCache<'a> {
pub target_info: TargetInfo,
cache: std::vec::Vec<CacheLayer<LayoutResult<'a>>>,
raw_function_cache: std::vec::Vec<CacheLayer<RawFunctionLayoutResult<'a>>>,
pub interner: TLLayoutInterner<'a>,
/// Statistics on the usage of the layout cache.
#[cfg(debug_assertions)]
stats: CacheStatistics,
#[cfg(debug_assertions)]
raw_function_stats: CacheStatistics,
}
impl<'a> LayoutCache<'a> {
pub fn new(interner: TLLayoutInterner<'a>, target_info: TargetInfo) -> Self {
let mut cache = std::vec::Vec::with_capacity(4);
cache.push(Default::default());
let mut raw_cache = std::vec::Vec::with_capacity(4);
raw_cache.push(Default::default());
Self {
target_info,
cache,
raw_function_cache: raw_cache,
interner,
#[cfg(debug_assertions)]
stats: CacheStatistics::default(),
#[cfg(debug_assertions)]
raw_function_stats: CacheStatistics::default(),
}
}
pub fn from_var(
&mut self,
arena: &'a Bump,
var: Variable,
subs: &Subs,
) -> Result<InLayout<'a>, LayoutProblem> {
// Store things according to the root Variable, to avoid duplicate work.
let var = subs.get_root_key_without_compacting(var);
let mut env = Env {
arena,
subs,
seen: Vec::new_in(arena),
target_info: self.target_info,
cache: self,
};
// [Layout::from_var] should query the cache!
let Cacheable(value, criteria) = Layout::from_var(&mut env, var);
debug_assert!(
criteria.is_cacheable(),
"{value:?} not cacheable as top-level"
);
value
}
pub fn raw_from_var(
&mut self,
arena: &'a Bump,
var: Variable,
subs: &Subs,
) -> Result<RawFunctionLayout<'a>, LayoutProblem> {
// Store things according to the root Variable, to avoid duplicate work.
let var = subs.get_root_key_without_compacting(var);
let mut env = Env {
arena,
subs,
seen: Vec::new_in(arena),
target_info: self.target_info,
cache: self,
};
// [Layout::from_var] should query the cache!
let Cacheable(value, criteria) = RawFunctionLayout::from_var(&mut env, var);
debug_assert!(
criteria.is_cacheable(),
"{value:?} not cacheable as top-level"
);
value
}
#[inline(always)]
fn get_help<Result: Copy>(
cache: &[CacheLayer<Result>],
subs: &Subs,
var: Variable,
) -> Option<(Result, CacheMeta)> {
let root = subs.get_root_key_without_compacting(var);
for layer in cache.iter().rev() {
// TODO: it's possible that after unification, roots in earlier cache layers changed...
// how often does that happen?
if let Some(result) = layer.0.get(&root) {
return Some(result.clone());
}
}
None
}
#[inline(always)]
fn insert_help<Result: std::fmt::Debug + Copy>(
cache: &mut [CacheLayer<Result>],
subs: &Subs,
var: Variable,
result: Result,
cache_metadata: CacheMeta,
) {
let root = subs.get_root_key_without_compacting(var);
let layer = cache
.last_mut()
.expect("cache must have at least one layer");
let opt_old_result = layer.0.insert(root, (result, cache_metadata));
if let Some(old_result) = opt_old_result {
// Can happen when we need to re-calculate a recursive layout
roc_tracing::debug!(
?old_result,
new_result=?result,
?var,
"overwritting layout cache"
);
}
}
#[inline(always)]
fn get(&self, subs: &Subs, var: Variable) -> Option<(LayoutResult<'a>, CacheMeta)> {
Self::get_help(&self.cache, subs, var)
}
#[inline(always)]
fn get_raw_function(
&self,
subs: &Subs,
var: Variable,
) -> Option<(RawFunctionLayoutResult<'a>, CacheMeta)> {
Self::get_help(&self.raw_function_cache, subs, var)
}
#[inline(always)]
fn insert(
&mut self,
subs: &Subs,
var: Variable,
result: LayoutResult<'a>,
cache_metadata: CacheMeta,
) {
Self::insert_help(&mut self.cache, subs, var, result, cache_metadata)
}
#[inline(always)]
fn insert_raw_function(
&mut self,
subs: &Subs,
var: Variable,
result: RawFunctionLayoutResult<'a>,
cache_metadata: CacheMeta,
) {
Self::insert_help(
&mut self.raw_function_cache,
subs,
var,
result,
cache_metadata,
)
}
#[inline(always)]
pub fn snapshot(&mut self) -> CacheSnapshot {
debug_assert_eq!(self.raw_function_cache.len(), self.cache.len());
self.cache.push(Default::default());
self.raw_function_cache.push(Default::default());
CacheSnapshot {
layer: self.cache.len(),
}
}
#[inline(always)]
pub fn rollback_to(&mut self, snapshot: CacheSnapshot) {
let CacheSnapshot { layer } = snapshot;
debug_assert_eq!(self.cache.len(), layer);
debug_assert_eq!(self.raw_function_cache.len(), layer);
self.cache.pop();
self.raw_function_cache.pop();
}
/// Invalidates the list of given root variables.
/// Usually called after unification, when merged variables with changed contents need to be
/// invalidated.
pub fn invalidate(&mut self, subs: &Subs, vars: impl IntoIterator<Item = Variable>) {
// TODO(layout-cache): optimize me somehow
for var in vars.into_iter() {
let var = subs.get_root_key_without_compacting(var);
for layer in self.cache.iter_mut().rev() {
layer
.0
.retain(|k, _| !subs.equivalent_without_compacting(var, *k));
roc_tracing::debug!(?var, "invalidating cached layout");
}
for layer in self.raw_function_cache.iter_mut().rev() {
layer
.0
.retain(|k, _| !subs.equivalent_without_compacting(var, *k));
roc_tracing::debug!(?var, "invalidating cached layout");
}
}
}
pub fn get_in(&self, interned: InLayout<'a>) -> Layout<'a> {
self.interner.get(interned)
}
pub fn get_repr(&self, interned: InLayout<'a>) -> LayoutRepr<'a> {
self.interner.get_repr(interned)
}
pub fn put_in(&mut self, layout: Layout<'a>) -> InLayout<'a> {
self.interner.insert(layout)
}
pub(crate) fn put_in_direct_no_semantic(&mut self, repr: LayoutRepr<'a>) -> InLayout<'a> {
self.interner.insert_direct_no_semantic(repr)
}
#[cfg(debug_assertions)]
pub fn statistics(&self) -> (CacheStatistics, CacheStatistics) {
(self.stats, self.raw_function_stats)
}
}
pub struct CacheSnapshot {
/// Index of the pushed layer
layer: usize,
}
#[derive(Clone, Debug)]
struct CacheCriteria {
/// Whether there is a naked recursion pointer in this layout, that doesn't pass through a
/// recursive structure.
has_naked_recursion_pointer: bool,
/// Recursive structures this layout contains, if any.
// Typically at most 1 recursive structure is contained, but there may be more.
recursive_structures: SmallVec<Variable, 2>,
}
const CACHEABLE: CacheCriteria = CacheCriteria {
has_naked_recursion_pointer: false,
recursive_structures: SmallVec::new(),
};
const NAKED_RECURSION_PTR: CacheCriteria = CacheCriteria {
has_naked_recursion_pointer: true,
recursive_structures: SmallVec::new(),
};
impl CacheCriteria {
#[inline(always)]
fn is_cacheable(&self) -> bool {
// Can't cache if there a naked recursion pointer that isn't covered by a recursive layout.
!self.has_naked_recursion_pointer
}
/// Makes `self` cacheable iff self and other are cacheable.
#[inline(always)]
fn and(&mut self, other: Self, subs: &Subs) {
self.has_naked_recursion_pointer =
self.has_naked_recursion_pointer || other.has_naked_recursion_pointer;
for &other_rec in other.recursive_structures.iter() {
if self
.recursive_structures
.iter()
.any(|rec| subs.equivalent_without_compacting(*rec, other_rec))
{
continue;
}
self.recursive_structures.push(other_rec);
}
}
#[inline(always)]
fn pass_through_recursive_union(&mut self, recursion_var: Variable) {
self.has_naked_recursion_pointer = false;
self.recursive_structures.push(recursion_var);
}
#[inline(always)]
fn cache_metadata(&self) -> CacheMeta {
CacheMeta {
recursive_structures: self.recursive_structures.clone(),
}
}
}
#[derive(Debug)]
pub(crate) struct Cacheable<T>(T, CacheCriteria);
impl<T> Cacheable<T> {
#[inline(always)]
fn map<U>(self, f: impl FnOnce(T) -> U) -> Cacheable<U> {
Cacheable(f(self.0), self.1)
}
#[inline(always)]
fn decompose(self, and_with: &mut CacheCriteria, subs: &Subs) -> T {
let Self(value, criteria) = self;
and_with.and(criteria, subs);
value
}
#[inline(always)]
pub fn value(self) -> T {
self.0
}
}
impl<T, E> Cacheable<Result<T, E>> {
#[inline(always)]
fn then<U>(self, f: impl FnOnce(T) -> U) -> Cacheable<Result<U, E>> {
let Cacheable(result, criteria) = self;
match result {
Ok(t) => Cacheable(Ok(f(t)), criteria),
Err(e) => Cacheable(Err(e), criteria),
}
}
}
#[inline(always)]
fn cacheable<T>(v: T) -> Cacheable<T> {
Cacheable(v, CACHEABLE)
}
/// Decomposes a cached layout.
/// If the layout is an error, the problem is immediately returned with the cache policy (this is
/// like `?`).
/// If the layout is not an error, the cache policy is `and`ed with `total_criteria`, and the layout
/// is passed back.
macro_rules! cached {
($expr:expr, $total_criteria:expr, $subs:expr) => {
match $expr {
Cacheable(Ok(v), criteria) => {
$total_criteria.and(criteria, $subs);
v
}
Cacheable(Err(v), criteria) => return Cacheable(Err(v), criteria),
}
};
}
pub type TagIdIntType = u16;
pub const MAX_ENUM_SIZE: usize = std::mem::size_of::<TagIdIntType>() * 8;
const GENERATE_NULLABLE: bool = true;
#[derive(Debug, Clone, Copy)]
pub enum LayoutProblem {
UnresolvedTypeVar(Variable),
Erroneous,
}
impl From<LayoutProblem> for RuntimeError {
fn from(lp: LayoutProblem) -> Self {
match lp {
LayoutProblem::UnresolvedTypeVar(_) => RuntimeError::UnresolvedTypeVar,
LayoutProblem::Erroneous => RuntimeError::ErroneousType,
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum RawFunctionLayout<'a> {
Function(&'a [InLayout<'a>], LambdaSet<'a>, InLayout<'a>),
ErasedFunction(&'a [InLayout<'a>], InLayout<'a>),
ZeroArgumentThunk(InLayout<'a>),
}
impl<'a> RawFunctionLayout<'a> {
pub fn is_zero_argument_thunk(&self) -> bool {
matches!(self, RawFunctionLayout::ZeroArgumentThunk(_))
}
fn new_help<'b>(
env: &mut Env<'a, 'b>,
var: Variable,
content: Content,
) -> Cacheable<RawFunctionLayoutResult<'a>> {
use roc_types::subs::Content::*;
match content {
FlexVar(_) | RigidVar(_) => cacheable(Err(LayoutProblem::UnresolvedTypeVar(var))),
FlexAbleVar(_, _) | RigidAbleVar(_, _) => todo_abilities!("Not reachable yet"),
RecursionVar { structure, .. } => {
let structure_content = env.subs.get_content_without_compacting(structure);
Self::new_help(env, structure, *structure_content)
}
LambdaSet(_) => {
internal_error!("lambda set should only appear under a function, where it's handled independently.");
}
ErasedLambda => internal_error!("erased lambda type should only appear under a function, where it's handled independently"),
Structure(flat_type) => Self::layout_from_flat_type(env, flat_type),
RangedNumber(..) => Layout::new_help(env, var, content).then(Self::ZeroArgumentThunk),
// Ints
Alias(Symbol::NUM_I128, args, _, _) => {
debug_assert!(args.is_empty());
cacheable(Ok(Self::ZeroArgumentThunk(Layout::I128)))
}
Alias(Symbol::NUM_I64, args, _, _) => {
debug_assert!(args.is_empty());
cacheable(Ok(Self::ZeroArgumentThunk(Layout::I64)))
}
Alias(Symbol::NUM_I32, args, _, _) => {
debug_assert!(args.is_empty());
cacheable(Ok(Self::ZeroArgumentThunk(Layout::I32)))
}
Alias(Symbol::NUM_I16, args, _, _) => {
debug_assert!(args.is_empty());
cacheable(Ok(Self::ZeroArgumentThunk(Layout::I16)))
}
Alias(Symbol::NUM_I8, args, _, _) => {
debug_assert!(args.is_empty());
cacheable(Ok(Self::ZeroArgumentThunk(Layout::I8)))
}
// I think unsigned and signed use the same layout
Alias(Symbol::NUM_U128, args, _, _) => {
debug_assert!(args.is_empty());
cacheable(Ok(Self::ZeroArgumentThunk(Layout::U128)))
}
Alias(Symbol::NUM_U64, args, _, _) => {
debug_assert!(args.is_empty());
cacheable(Ok(Self::ZeroArgumentThunk(Layout::U64)))
}
Alias(Symbol::NUM_U32, args, _, _) => {
debug_assert!(args.is_empty());
cacheable(Ok(Self::ZeroArgumentThunk(Layout::U32)))
}
Alias(Symbol::NUM_U16, args, _, _) => {
debug_assert!(args.is_empty());
cacheable(Ok(Self::ZeroArgumentThunk(Layout::U16)))
}
Alias(Symbol::NUM_U8, args, _, _) => {
debug_assert!(args.is_empty());
cacheable(Ok(Self::ZeroArgumentThunk(Layout::U8)))
}
// Floats
Alias(Symbol::NUM_F64, args, _, _) => {
debug_assert!(args.is_empty());
cacheable(Ok(Self::ZeroArgumentThunk(Layout::F64)))
}
Alias(Symbol::NUM_F32, args, _, _) => {
debug_assert!(args.is_empty());
cacheable(Ok(Self::ZeroArgumentThunk(Layout::F32)))
}
// Nat
Alias(Symbol::NUM_NAT, args, _, _) => {
debug_assert!(args.is_empty());
cacheable(Ok(Self::ZeroArgumentThunk(Layout::usize(env.target_info))))
}
Alias(symbol, _, _, _) if symbol.is_builtin() => {
Layout::new_help(env, var, content).then(Self::ZeroArgumentThunk)
}
Alias(_, _, var, _) => Self::from_var(env, var),
Error => cacheable(Err(LayoutProblem::Erroneous)),
}
}
fn layout_from_flat_type(
env: &mut Env<'a, '_>,
flat_type: FlatType,
) -> Cacheable<RawFunctionLayoutResult<'a>> {
use roc_types::subs::FlatType::*;
let arena = env.arena;
match flat_type {
Func(args, closure_var, ret_var) => {
let mut fn_args = Vec::with_capacity_in(args.len(), arena);
let mut cache_criteria = CACHEABLE;
for index in args.into_iter() {
let arg_var = env.subs[index];
let layout = cached!(Layout::from_var(env, arg_var), cache_criteria, env.subs);
fn_args.push(layout);
}
let ret = cached!(Layout::from_var(env, ret_var), cache_criteria, env.subs);
let fn_args = fn_args.into_bump_slice();
let closure_data = build_function_closure_data(env, args, closure_var, ret_var);
let closure_data = cached!(closure_data, cache_criteria, env.subs);
let function_layout = match closure_data {
ClosureDataKind::LambdaSet(lambda_set) => {
Self::Function(fn_args, lambda_set, ret)
}
ClosureDataKind::Erased => Self::ErasedFunction(fn_args, ret),
};
Cacheable(Ok(function_layout), cache_criteria)
}
TagUnion(tags, ext) if tags.is_newtype_wrapper(env.subs) => {
debug_assert!(ext_var_is_empty_tag_union(env.subs, ext));
let slice_index = tags.variables().into_iter().next().unwrap();
let slice = env.subs[slice_index];
let var_index = slice.into_iter().next().unwrap();
let var = env.subs[var_index];
Self::from_var(env, var)
}
Record(fields, ext) if fields.len() == 1 => {
debug_assert!(ext_var_is_empty_record(env.subs, ext));
let var_index = fields.iter_variables().next().unwrap();
let var = env.subs[var_index];
Self::from_var(env, var)
}
_ => {
let mut criteria = CACHEABLE;
let layout = cached!(layout_from_flat_type(env, flat_type), criteria, env.subs);
Cacheable(Ok(Self::ZeroArgumentThunk(layout)), criteria)
}
}
}
/// Returns Err(()) if given an error, or Ok(Layout) if given a non-erroneous Structure.
/// Panics if given a FlexVar or RigidVar, since those should have been
/// monomorphized away already!
pub(crate) fn from_var(
env: &mut Env<'a, '_>,
var: Variable,
) -> Cacheable<RawFunctionLayoutResult<'a>> {
env.cached_raw_function_or(var, |env| {
if env.is_seen(var) {
unreachable!("The initial variable of a signature cannot be seen already")
} else {
let content = env.subs.get_content_without_compacting(var);
Self::new_help(env, var, *content)
}
})
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Layout<'a> {
repr: LayoutWrapper<'a>,
semantic: SemanticRepr<'a>,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub(crate) enum LayoutWrapper<'a> {
Direct(LayoutRepr<'a>),
Newtype(InLayout<'a>),
}
/// Types for code gen must be monomorphic. No type variables allowed!
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum LayoutRepr<'a> {
Builtin(Builtin<'a>),
Struct(&'a [InLayout<'a>]),
// A pointer (heap or stack) without any reference counting
// Ptr is not user-facing. The compiler author must make sure that invariants are upheld
Ptr(InLayout<'a>),
Union(UnionLayout<'a>),
LambdaSet(LambdaSet<'a>),
RecursivePointer(InLayout<'a>),
/// Only used for erased functions.
FunctionPointer(FunctionPointer<'a>),
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct FunctionPointer<'a> {
pub args: &'a [InLayout<'a>],
pub ret: InLayout<'a>,
}
impl<'a> FunctionPointer<'a> {
pub fn to_doc<'b, D, A, I>(
self,
alloc: &'b D,
interner: &I,
seen_rec: &mut SeenRecPtrs<'a>,
parens: Parens,
) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
I: LayoutInterner<'a>,
{
let Self { args, ret } = self;
let args = args
.iter()
.map(|arg| interner.to_doc(*arg, alloc, seen_rec, parens));
let args = alloc.intersperse(args, alloc.text(", "));
let ret = interner.to_doc(ret, alloc, seen_rec, parens);
alloc
.text("FunPtr(")
.append(args)
.append(alloc.text(" -> "))
.append(ret)
.append(")")
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum UnionLayout<'a> {
/// A non-recursive tag union
/// e.g. `Result a e : [Ok a, Err e]`
NonRecursive(&'a [&'a [InLayout<'a>]]),
/// A recursive tag union (general case)
/// e.g. `Expr : [Sym Str, Add Expr Expr]`
Recursive(&'a [&'a [InLayout<'a>]]),
/// A recursive tag union with just one constructor
/// Optimization: No need to store a tag ID (the payload is "unwrapped")
/// e.g. `RoseTree a : [Tree a (List (RoseTree a))]`
NonNullableUnwrapped(&'a [InLayout<'a>]),
/// A recursive tag union that has an empty variant
/// Optimization: Represent the empty variant as null pointer => no memory usage & fast comparison
/// It has more than one other variant, so they need tag IDs (payloads are "wrapped")
/// e.g. `FingerTree a : [Empty, Single a, More (Some a) (FingerTree (Tuple a)) (Some a)]`
/// see also: https://youtu.be/ip92VMpf_-A?t=164
///
/// nullable_id refers to the index of the tag that is represented at runtime as NULL.
/// For example, in `FingerTree a : [Empty, Single a, More (Some a) (FingerTree (Tuple a)) (Some a)]`,
/// the ids would be Empty = 0, More = 1, Single = 2, because that's how those tags are
/// ordered alphabetically. Since the Empty tag will be represented at runtime as NULL,
/// and since Empty's tag id is 0, here nullable_id would be 0.
NullableWrapped {
nullable_id: u16,
other_tags: &'a [&'a [InLayout<'a>]],
},
/// A recursive tag union with only two variants, where one is empty.
/// Optimizations: Use null for the empty variant AND don't store a tag ID for the other variant.
/// e.g. `ConsList a : [Nil, Cons a (ConsList a)]`
///
/// nullable_id is a bool because it's only ever 0 or 1, but (as with the NullableWrapped
/// variant), it reprsents the index of the tag that will be represented at runtime as NULL.
///
/// So for example, in `ConsList a : [Nil, Cons a (ConsList a)]`, Nil is tag id 1 and
/// Cons is tag id 0 because Nil comes alphabetically after Cons. Here, Nil will be
/// represented as NULL at runtime, so nullable_id is 1 - which is to say, `true`, because
/// `(1 as bool)` is `true`.
NullableUnwrapped {
nullable_id: bool,
other_fields: &'a [InLayout<'a>],
},
}
impl<'a> UnionLayout<'a> {
pub fn to_doc<'b, D, A, I>(
self,
alloc: &'b D,
interner: &I,
seen_rec: &mut SeenRecPtrs<'a>,
_parens: Parens,
) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
I: LayoutInterner<'a>,
{
use UnionLayout::*;
match self {
NonRecursive(tags) => {
let tags_doc = tags.iter().map(|fields| {
alloc.text("C ").append(
alloc.intersperse(
fields
.iter()
.map(|x| interner.to_doc(*x, alloc, seen_rec, Parens::InTypeParam)),
" ",
),
)
});
alloc
.text("[")
.append(alloc.intersperse(tags_doc, ", "))
.append(alloc.text("]"))
}
Recursive(tags) => {
let tags_doc = tags.iter().map(|fields| {
alloc.text("C ").append(
alloc.intersperse(
fields
.iter()
.map(|x| interner.to_doc(*x, alloc, seen_rec, Parens::InTypeParam)),
" ",
),
)
});
alloc
.text("[<r>")
.append(alloc.intersperse(tags_doc, ", "))
.append(alloc.text("]"))
}
NonNullableUnwrapped(fields) => {
let fields_doc = alloc.text("C ").append(
alloc.intersperse(
fields
.iter()
.map(|x| interner.to_doc(*x, alloc, seen_rec, Parens::InTypeParam)),
" ",
),
);
alloc
.text("[<rnnu>")
.append(fields_doc)
.append(alloc.text("]"))
}
NullableUnwrapped {
nullable_id,
other_fields,
} => {
let fields_doc = alloc.text("C ").append(
alloc.intersperse(
other_fields
.iter()
.map(|x| interner.to_doc(*x, alloc, seen_rec, Parens::InTypeParam)),
" ",
),
);
let tags_doc = if nullable_id {
alloc.concat(vec![alloc.text("<null>, "), fields_doc])
} else {
alloc.concat(vec![fields_doc, alloc.text(", <null>")])
};
alloc
.text("[<rnu>")
.append(tags_doc)
.append(alloc.text("]"))
}
NullableWrapped {
nullable_id,
other_tags,
} => {
let nullable_id = nullable_id as usize;
let tags_docs =
(0..(other_tags.len() + 1)).map(|i| {
if i == nullable_id {
alloc.text("<null>")
} else {
let idx = if i > nullable_id { i - 1 } else { i };
alloc.text("C ").append(alloc.intersperse(
other_tags[idx].iter().map(|x| {
interner.to_doc(*x, alloc, seen_rec, Parens::InTypeParam)
}),
" ",
))
}
});
let tags_docs = alloc.intersperse(tags_docs, alloc.text(", "));
alloc
.text("[<rnw>")
.append(tags_docs)
.append(alloc.text("]"))
}
}
}
pub fn layout_at<I>(self, interner: &mut I, tag_id: TagIdIntType, index: usize) -> InLayout<'a>
where
I: LayoutInterner<'a>,
{
let result = match self {
UnionLayout::NonRecursive(tag_layouts) => {
let field_layouts = tag_layouts[tag_id as usize];
// this cannot be recursive; return immediately
return field_layouts[index];
}
UnionLayout::Recursive(tag_layouts) => {
let field_layouts = tag_layouts[tag_id as usize];
field_layouts[index]
}
UnionLayout::NonNullableUnwrapped(field_layouts) => field_layouts[index],
UnionLayout::NullableWrapped {
nullable_id,
other_tags,
} => {
debug_assert_ne!(nullable_id, tag_id);
let tag_index = if tag_id < nullable_id {
tag_id
} else {
tag_id - 1
};
let field_layouts = other_tags[tag_index as usize];
field_layouts[index]
}
UnionLayout::NullableUnwrapped {
nullable_id,
other_fields,
} => {
debug_assert_ne!(nullable_id, tag_id != 0);
other_fields[index]
}
};
// TODO(recursive-layouts): simplify after we have disjoint recursive pointers
if let LayoutRepr::RecursivePointer(_) = interner.get_repr(result) {
interner.insert_direct_no_semantic(LayoutRepr::Union(self))
} else {
result
}
}
pub fn number_of_tags(&'a self) -> usize {
match self {
UnionLayout::NonRecursive(tags) | UnionLayout::Recursive(tags) => tags.len(),
UnionLayout::NullableWrapped { other_tags, .. } => other_tags.len() + 1,
UnionLayout::NonNullableUnwrapped(_) => 1,
UnionLayout::NullableUnwrapped { .. } => 2,
}
}
pub fn discriminant(&self) -> Discriminant {
match self {
UnionLayout::NonRecursive(tags) => Discriminant::from_number_of_tags(tags.len()),
UnionLayout::Recursive(tags) => Discriminant::from_number_of_tags(tags.len()),
UnionLayout::NullableWrapped { other_tags, .. } => {
Discriminant::from_number_of_tags(other_tags.len() + 1)
}
UnionLayout::NonNullableUnwrapped(_) => Discriminant::from_number_of_tags(2),
UnionLayout::NullableUnwrapped { .. } => Discriminant::from_number_of_tags(1),
}
}
pub fn tag_id_layout(&self) -> InLayout<'static> {
self.discriminant().layout()
}
fn stores_tag_id_in_pointer_bits(tags: &[&[InLayout<'a>]], target_info: TargetInfo) -> bool {
tags.len() < target_info.ptr_width() as usize
}
pub const POINTER_MASK_32BIT: usize = 0b0000_0111;
pub const POINTER_MASK_64BIT: usize = 0b0000_0011;
pub fn tag_id_pointer_bits_and_mask(target_info: TargetInfo) -> (usize, usize) {
match target_info.ptr_width() {
PtrWidth::Bytes8 => (3, Self::POINTER_MASK_64BIT),
PtrWidth::Bytes4 => (2, Self::POINTER_MASK_32BIT),
}
}
// i.e. it is not implicit and not stored in the pointer bits
pub fn stores_tag_id_as_data(&self, target_info: TargetInfo) -> bool {
match self {
UnionLayout::NonRecursive(_) => true,
UnionLayout::Recursive(tags)
| UnionLayout::NullableWrapped {
other_tags: tags, ..
} => !Self::stores_tag_id_in_pointer_bits(tags, target_info),
UnionLayout::NonNullableUnwrapped(_) | UnionLayout::NullableUnwrapped { .. } => false,
}
}
pub fn stores_tag_id_in_pointer(&self, target_info: TargetInfo) -> bool {
match self {
UnionLayout::NonRecursive(_) => false,
UnionLayout::Recursive(tags)
| UnionLayout::NullableWrapped {
other_tags: tags, ..
} => Self::stores_tag_id_in_pointer_bits(tags, target_info),
UnionLayout::NonNullableUnwrapped(_) | UnionLayout::NullableUnwrapped { .. } => false,
}
}
pub fn tag_is_null(&self, tag_id: TagIdIntType) -> bool {
match self {
UnionLayout::NonRecursive(_)
| UnionLayout::NonNullableUnwrapped(_)
| UnionLayout::Recursive(_) => false,
UnionLayout::NullableWrapped { nullable_id, .. } => *nullable_id == tag_id,
UnionLayout::NullableUnwrapped { nullable_id, .. } => *nullable_id == (tag_id != 0),
}
}
pub fn is_nullable(&self) -> bool {
match self {
UnionLayout::NonRecursive(_)
| UnionLayout::Recursive(_)
| UnionLayout::NonNullableUnwrapped { .. } => false,
UnionLayout::NullableWrapped { .. } | UnionLayout::NullableUnwrapped { .. } => true,
}
}
fn tags_alignment_bytes<I>(interner: &I, tags: &[&'a [InLayout<'a>]]) -> u32
where
I: LayoutInterner<'a>,
{
tags.iter()
.map(|field_layouts| LayoutRepr::struct_(field_layouts).alignment_bytes(interner))
.max()
.unwrap_or(0)
}
pub fn allocation_alignment_bytes<I>(&self, interner: &I) -> u32
where
I: LayoutInterner<'a>,
{
let allocation = match self {
UnionLayout::NonRecursive(tags) => Self::tags_alignment_bytes(interner, tags),
UnionLayout::Recursive(tags) => Self::tags_alignment_bytes(interner, tags),
UnionLayout::NonNullableUnwrapped(field_layouts) => {
LayoutRepr::struct_(field_layouts).alignment_bytes(interner)
}
UnionLayout::NullableWrapped { other_tags, .. } => {
Self::tags_alignment_bytes(interner, other_tags)
}
UnionLayout::NullableUnwrapped { other_fields, .. } => {
LayoutRepr::struct_(other_fields).alignment_bytes(interner)
}
};
// because we store a refcount, the alignment must be at least the size of a pointer
allocation.max(interner.target_info().ptr_width() as u32)
}
/// Size of the data in memory, whether it's stack or heap (for non-null tag ids)
pub fn data_size_and_alignment<I>(&self, interner: &I) -> (u32, u32)
where
I: LayoutInterner<'a>,
{
let (data_width, data_align) = self.data_size_and_alignment_help_match(interner);
if self.stores_tag_id_as_data(interner.target_info()) {
use Discriminant::*;
match self.discriminant() {
U0 => (round_up_to_alignment(data_width, data_align), data_align),
U1 | U8 => (
round_up_to_alignment(data_width + 1, data_align),
data_align,
),
U16 => {
// first, round up the data so the tag id is well-aligned;
// then add the tag id width, and make sure the whole extends
// to the next alignment multiple
let tag_align = data_align.max(2);
let tag_width =
round_up_to_alignment(round_up_to_alignment(data_width, 2) + 2, tag_align);
(tag_width, tag_align)
}
}
} else {
(data_width, data_align)
}
}
/// Size of the data before the tag_id, if it exists.
/// Returns None if the tag_id is not stored as data in the layout.
pub fn data_size_without_tag_id<I>(&self, interner: &I) -> Option<u32>
where
I: LayoutInterner<'a>,
{
if !self.stores_tag_id_as_data(interner.target_info()) {
return None;
};
Some(self.data_size_and_alignment_help_match(interner).0)
}
fn data_size_and_alignment_help_match<I>(&self, interner: &I) -> (u32, u32)
where
I: LayoutInterner<'a>,
{
match self {
Self::NonRecursive(tags) => Layout::stack_size_and_alignment_slices(interner, tags),
Self::Recursive(tags) => Layout::stack_size_and_alignment_slices(interner, tags),
Self::NonNullableUnwrapped(fields) => {
Layout::stack_size_and_alignment_slices(interner, &[fields])
}
Self::NullableWrapped { other_tags, .. } => {
Layout::stack_size_and_alignment_slices(interner, other_tags)
}
Self::NullableUnwrapped { other_fields, .. } => {
Layout::stack_size_and_alignment_slices(interner, &[other_fields])
}
}
}
pub fn tag_id_offset<I>(&self, interner: &I) -> Option<u32>
where
I: LayoutInterner<'a>,
{
match self {
UnionLayout::NonRecursive(tags)
| UnionLayout::Recursive(tags)
| UnionLayout::NullableWrapped {
other_tags: tags, ..
} => Some(Self::tag_id_offset_help(interner, tags)),
UnionLayout::NonNullableUnwrapped(_) | UnionLayout::NullableUnwrapped { .. } => None,
}
}
fn tag_id_offset_help<I>(interner: &I, layouts: &[&[InLayout<'a>]]) -> u32
where
I: LayoutInterner<'a>,
{
let (data_width, data_align) = Layout::stack_size_and_alignment_slices(interner, layouts);
round_up_to_alignment(data_width, data_align)
}
/// Very important to use this when doing a memcpy!
fn stack_size_without_alignment<I>(&self, interner: &I) -> u32
where
I: LayoutInterner<'a>,
{
match self {
UnionLayout::NonRecursive(_) => {
let (width, align) = self.data_size_and_alignment(interner);
round_up_to_alignment(width, align)
}
UnionLayout::Recursive(_)
| UnionLayout::NonNullableUnwrapped(_)
| UnionLayout::NullableWrapped { .. }
| UnionLayout::NullableUnwrapped { .. } => interner.target_info().ptr_width() as u32,
}
}
pub fn is_recursive(&self) -> bool {
use UnionLayout::*;
match self {
NonRecursive(_) => false,
Recursive(_)
| NonNullableUnwrapped(_)
| NullableWrapped { .. }
| NullableUnwrapped { .. } => true,
}
}
}
pub enum Discriminant {
U0,
U1,
U8,
U16,
}
impl Discriminant {
pub const fn from_number_of_tags(tags: usize) -> Self {
match tags {
0 => Discriminant::U0,
1 => Discriminant::U0,
2 => Discriminant::U1,
3..=255 => Discriminant::U8,
256..=65_535 => Discriminant::U16,
_ => panic!("discriminant too large"),
}
}
pub const fn stack_size(&self) -> u32 {
match self {
Discriminant::U0 => 0,
Discriminant::U1 => 1,
Discriminant::U8 => 1,
Discriminant::U16 => 2,
}
}
pub const fn alignment_bytes(&self) -> u32 {
self.stack_size()
}
pub const fn layout(&self) -> InLayout<'static> {
// TODO is it beneficial to return a more specific layout?
// e.g. Layout::bool() and Layout::VOID
match self {
Discriminant::U0 => Layout::U8,
Discriminant::U1 => Layout::U8,
Discriminant::U8 => Layout::U8,
Discriminant::U16 => Layout::U16,
}
}
}
/// Custom type so we can get the numeric representation of a symbol in tests (so `#UserApp.3`
/// instead of `UserApp.foo`). The pretty name is not reliable when running many tests
/// concurrently. The number does not change and will give a reliable output.
struct SetElement<'a> {
symbol: Symbol,
layout: &'a [InLayout<'a>],
}
impl std::fmt::Debug for SetElement<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let symbol_string = crate::ir::symbol_to_doc_string(self.symbol, false);
write!(f, "( {}, {:?})", symbol_string, self.layout)
}
}
impl std::fmt::Debug for LambdaSet<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
struct Helper<'a> {
set: &'a [(Symbol, &'a [InLayout<'a>])],
}
impl std::fmt::Debug for Helper<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let entries = self.set.iter().map(|x| SetElement {
symbol: x.0,
layout: x.1,
});
f.debug_list().entries(entries).finish()
}
}
f.debug_struct("LambdaSet")
.field("set", &Helper { set: self.set })
.field("args", &self.args)
.field("ret", &self.ret)
.field("representation", &self.representation)
.field("full_layout", &self.full_layout)
.finish()
}
}
/// See [Niche].
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
enum NichePriv<'a> {
/// Distinguishes captures this proc takes, when it is a part of a lambda set that has multiple
/// lambdas of the same name, but different captures.
Captures(&'a [InLayout<'a>]),
}
/// Niches identify lambdas (including thunks) in ways that are not distinguishable solely by their
/// [runtime function layout][RawFunctionLayout].
///
/// Currently, there are two kinds of niches.
///
/// # Captures niches
///
/// Captures niches identify a procedure's set of captured symbols. This is relevant when a
/// procedure is part of a lambda set that has multiple lambdas of the procedure's name, but each
/// has a different set of captures.
///
/// The capture set is identified only in the body of a procedure and not in its runtime layout.
/// Any capturing lambda takes the whole lambda set as an argument, rather than just its captures.
/// A captures niche can be attached to a [lambda name][LambdaName] to uniquely identify lambdas
/// in these scenarios.
///
/// Procedure names with captures niches are typically produced by [find_lambda_name][LambdaSet::find_lambda_name].
/// Captures niches are irrelevant for thunks.
///
/// ## Example
///
/// `fun` has lambda set `[[forcer U64, forcer U8]]` in the following program:
///
/// ```roc
/// capture : _ -> ({} -> Str)
/// capture = \val ->
/// forcer = \{} -> Num.toStr val
/// forcer
///
/// fun = \x ->
/// when x is
/// True -> capture 123u64
/// False -> capture 18u8
/// ```
///
/// By recording the captures layouts each `forcer` expects, we can distinguish
/// between such differences when constructing the closure capture data that is
/// return value of `fun`.
///
/// See also https://github.com/roc-lang/roc/issues/3336.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct Niche<'a>(NichePriv<'a>);
impl<'a> Niche<'a> {
pub const NONE: Niche<'a> = Niche(NichePriv::Captures(&[]));
pub fn to_doc<'b, D, A, I>(
self,
alloc: &'b D,
interner: &I,
seen_rec: &mut SeenRecPtrs<'a>,
) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
I: LayoutInterner<'a>,
{
match self.0 {
NichePriv::Captures(captures) => alloc.concat([
alloc.reflow("(niche {"),
alloc.intersperse(
captures
.iter()
.map(|c| interner.to_doc(*c, alloc, seen_rec, Parens::NotNeeded)),
alloc.reflow(", "),
),
alloc.reflow("})"),
]),
}
}
pub fn dbg_deep<'r, I: LayoutInterner<'a>>(
&'r self,
interner: &'r I,
) -> crate::layout::intern::dbg_deep::DbgFields<'a, 'r, I> {
let NichePriv::Captures(caps) = &self.0;
interner.dbg_deep_iter(caps)
}
pub fn dbg_stable<'r, I: LayoutInterner<'a>>(
&'r self,
interner: &'r I,
) -> crate::layout::intern::dbg_stable::DbgFields<'a, 'r, I> {
let NichePriv::Captures(caps) = &self.0;
interner.dbg_stable_iter(caps)
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub struct LambdaName<'a> {
name: Symbol,
niche: Niche<'a>,
}
impl<'a> LambdaName<'a> {
#[inline(always)]
pub fn name(&self) -> Symbol {
self.name
}
#[inline(always)]
pub fn niche(&self) -> Niche<'a> {
self.niche
}
#[inline(always)]
pub(crate) fn no_captures(&self) -> bool {
match self.niche.0 {
NichePriv::Captures(captures) => captures.is_empty(),
}
}
#[inline(always)]
pub fn no_niche(name: Symbol) -> Self {
Self {
name,
niche: Niche::NONE,
}
}
#[inline(always)]
pub(crate) fn replace_name(&self, name: Symbol) -> Self {
Self { name, ..*self }
}
}
/// Closure data for a function
enum ClosureDataKind<'a> {
/// The function is compiled with lambda sets.
LambdaSet(LambdaSet<'a>),
/// The function is compiled as type-erased.
Erased,
}
fn build_function_closure_data<'a>(
env: &mut Env<'a, '_>,
args: VariableSubsSlice,
closure_var: Variable,
ret_var: Variable,
) -> Cacheable<Result<ClosureDataKind<'a>, LayoutProblem>> {
match env.subs.get_content_without_compacting(closure_var) {
Content::ErasedLambda => cacheable(Ok(ClosureDataKind::Erased)),
_ => LambdaSet::from_var(env, args, closure_var, ret_var)
.map(|result| result.map(ClosureDataKind::LambdaSet)),
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct LambdaSet<'a> {
pub(crate) args: &'a &'a [InLayout<'a>],
pub(crate) ret: InLayout<'a>,
/// collection of function names and their closure arguments
// Double reference to cut from fat slice (16 bytes) to 8 bytes
pub(crate) set: &'a &'a [(Symbol, &'a [InLayout<'a>])],
/// how the closure will be represented at runtime
pub(crate) representation: InLayout<'a>,
/// The interned [Layout] representation of the lambda set, as `Layout::LambdaSet(self)`.
pub(crate) full_layout: InLayout<'a>,
}
#[derive(Debug)]
pub enum EnumDispatch {
Bool,
U8,
}
/// representation of the closure *for a particular function*
#[derive(Debug)]
pub enum ClosureRepresentation<'a> {
/// The closure is represented as a union. Includes the tag ID!
/// Each variant is a different function, and its payloads are the captures.
Union {
alphabetic_order_fields: &'a [InLayout<'a>],
closure_name: Symbol,
tag_id: TagIdIntType,
union_layout: UnionLayout<'a>,
},
/// The closure is one function, whose captures are represented as a struct.
/// The layouts are sorted alphabetically by the identifier that is captured.
///
/// We MUST sort these according to their stack size before code gen!
AlphabeticOrderStruct(&'a [InLayout<'a>]),
/// The closure is one function that captures a single identifier, whose value is unwrapped.
UnwrappedCapture(InLayout<'a>),
/// The closure dispatches to multiple functions, but none of them capture anything, so this is
/// a boolean or integer flag.
EnumDispatch(EnumDispatch),
}
/// How the closure should be seen when determining a call-by-name.
#[derive(Debug)]
pub enum ClosureCallOptions<'a> {
/// This is an empty lambda set, dispatching is an error
Void,
/// One of a few capturing functions can be called to
Union(UnionLayout<'a>),
/// The closure is one function, whose captures are represented as a struct.
Struct(&'a [InLayout<'a>]),
/// The closure is one function that captures a single identifier, whose value is unwrapped.
UnwrappedCapture(InLayout<'a>),
/// The closure dispatches to multiple possible functions, none of which capture.
EnumDispatch(EnumDispatch),
}
impl<'a> LambdaSet<'a> {
pub fn runtime_representation(&self) -> InLayout<'a> {
self.representation
}
/// Does the lambda set contain the given symbol?
pub fn contains(&self, symbol: Symbol) -> bool {
self.set.iter().any(|(s, _)| *s == symbol)
}
pub fn is_represented<I>(&self, interner: &I) -> Option<InLayout<'a>>
where
I: LayoutInterner<'a>,
{
if self.has_unwrapped_capture_repr() {
let repr = self.representation;
Some(repr)
} else if self.has_enum_dispatch_repr() {
None
} else {
let repr = self.representation;
match interner.get_repr(repr) {
LayoutRepr::Struct(&[]) => None,
_ => Some(repr),
}
}
}
pub fn iter_set(&self) -> impl ExactSizeIterator<Item = LambdaName<'a>> {
self.set.iter().map(|(name, captures_layouts)| {
let niche = match captures_layouts {
[] => Niche::NONE,
_ => Niche(NichePriv::Captures(captures_layouts)),
};
LambdaName { name: *name, niche }
})
}
#[inline(always)]
pub fn len(&self) -> usize {
self.set.len()
}
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.set.is_empty()
}
pub fn layout_for_member_with_lambda_name<I>(
&self,
interner: &I,
lambda_name: LambdaName,
) -> ClosureRepresentation<'a>
where
I: LayoutInterner<'a>,
{
debug_assert!(self.contains(lambda_name.name));
let NichePriv::Captures(captures) = lambda_name.niche.0;
let comparator = |other_name: Symbol, other_captures_layouts: &[InLayout]| {
other_name == lambda_name.name
// Make sure all captures are equal
&& other_captures_layouts
.iter()
.eq(captures)
};
self.layout_for_member(interner, comparator)
}
/// Finds an alias name for a possible-multimorphic lambda variant in the lambda set.
pub fn find_lambda_name<I>(
&self,
interner: &I,
function_symbol: Symbol,
captures_layouts: &[InLayout<'a>],
) -> LambdaName<'a>
where
I: LayoutInterner<'a>,
{
debug_assert!(
self.contains(function_symbol),
"function symbol {function_symbol:?} not in set {self:?}"
);
let comparator = |other_name: Symbol, other_captures_layouts: &[InLayout<'a>]| {
other_name == function_symbol
&& other_captures_layouts.iter().zip(captures_layouts).all(
|(other_layout, layout)| {
self.capture_layouts_eq(interner, other_layout, layout)
},
)
};
let (name, layouts) = self
.set
.iter()
.find(|(name, layouts)| comparator(*name, layouts))
.unwrap_or_else(|| {
internal_error!(
"no lambda set found for ({:?}, {:#?}): {:#?}",
function_symbol,
captures_layouts,
self
)
});
LambdaName {
name: *name,
niche: Niche(NichePriv::Captures(layouts)),
}
}
/// Checks if two captured layouts are equivalent under the current lambda set.
/// Resolves recursive pointers to the layout of the lambda set.
fn capture_layouts_eq<I>(&self, interner: &I, left: &InLayout<'a>, right: &InLayout<'a>) -> bool
where
I: LayoutInterner<'a>,
{
interner.equiv(*left, *right)
}
fn layout_for_member<I, F>(&self, interner: &I, comparator: F) -> ClosureRepresentation<'a>
where
I: LayoutInterner<'a>,
F: Fn(Symbol, &[InLayout]) -> bool,
{
if self.has_unwrapped_capture_repr() {
// Only one function, that captures one identifier.
return ClosureRepresentation::UnwrappedCapture(self.representation);
}
let repr_layout = interner.chase_recursive(self.representation);
match repr_layout {
LayoutRepr::Union(union) => {
// here we rely on the fact that a union in a closure would be stored in a one-element record.
// a closure representation that is itself union must be a of the shape `Closure1 ... | Closure2 ...`
match union {
UnionLayout::NonRecursive(_) => {
// get the fields from the set, where they are sorted in alphabetic order
// (and not yet sorted by their alignment)
let (index, (name, fields)) = self
.set
.iter()
.enumerate()
.find(|(_, (s, layouts))| comparator(*s, layouts))
.unwrap();
let closure_name = *name;
ClosureRepresentation::Union {
tag_id: index as TagIdIntType,
alphabetic_order_fields: fields,
closure_name,
union_layout: union,
}
}
UnionLayout::Recursive(_) => {
let (index, (name, fields)) = self
.set
.iter()
.enumerate()
.find(|(_, (s, layouts))| comparator(*s, layouts))
.unwrap();
let closure_name = *name;
ClosureRepresentation::Union {
tag_id: index as TagIdIntType,
alphabetic_order_fields: fields,
closure_name,
union_layout: union,
}
}
UnionLayout::NullableUnwrapped {
nullable_id: _,
other_fields: _,
} => {
let (index, (name, fields)) = self
.set
.iter()
.enumerate()
.find(|(_, (s, layouts))| comparator(*s, layouts))
.unwrap();
let closure_name = *name;
ClosureRepresentation::Union {
tag_id: index as TagIdIntType,
alphabetic_order_fields: fields,
closure_name,
union_layout: union,
}
}
UnionLayout::NullableWrapped {
nullable_id: _,
other_tags: _,
} => {
let (index, (name, fields)) = self
.set
.iter()
.enumerate()
.find(|(_, (s, layouts))| comparator(*s, layouts))
.unwrap();
let closure_name = *name;
ClosureRepresentation::Union {
tag_id: index as TagIdIntType,
alphabetic_order_fields: fields,
closure_name,
union_layout: union,
}
}
UnionLayout::NonNullableUnwrapped(_) => internal_error!("I thought a non-nullable-unwrapped variant for a lambda set was impossible: how could such a lambda set be created without a base case?"),
}
}
LayoutRepr::Struct { .. } => {
debug_assert_eq!(self.set.len(), 1);
// get the fields from the set, where they are sorted in alphabetic order
// (and not yet sorted by their alignment)
let (_, fields) = self
.set
.iter()
.find(|(s, layouts)| comparator(*s, layouts))
.unwrap();
ClosureRepresentation::AlphabeticOrderStruct(fields)
}
layout => {
debug_assert!(self.has_enum_dispatch_repr());
let enum_repr = match layout {
LayoutRepr::Builtin(Builtin::Bool) => EnumDispatch::Bool,
LayoutRepr::Builtin(Builtin::Int(IntWidth::U8)) => EnumDispatch::U8,
other => internal_error!("Invalid layout for enum dispatch: {:?}", other),
};
ClosureRepresentation::EnumDispatch(enum_repr)
}
}
}
fn has_unwrapped_capture_repr(&self) -> bool {
self.set.len() == 1 && self.set[0].1.len() == 1
}
fn has_enum_dispatch_repr(&self) -> bool {
self.set.len() > 1 && self.set.iter().all(|(_, captures)| captures.is_empty())
}
pub fn call_by_name_options<I>(&self, interner: &I) -> ClosureCallOptions<'a>
where
I: LayoutInterner<'a>,
{
if self.has_unwrapped_capture_repr() {
return ClosureCallOptions::UnwrappedCapture(self.representation);
}
let repr_layout = interner.chase_recursive(self.representation);
match repr_layout {
LayoutRepr::Union(union_layout) => {
if repr_layout == Layout::VOID_NAKED.repr(interner) {
debug_assert!(self.set.is_empty());
return ClosureCallOptions::Void;
}
ClosureCallOptions::Union(union_layout)
}
LayoutRepr::Struct(field_layouts) => {
debug_assert_eq!(self.set.len(), 1);
ClosureCallOptions::Struct(field_layouts)
}
layout => {
debug_assert!(self.has_enum_dispatch_repr());
let enum_repr = match layout {
LayoutRepr::Builtin(Builtin::Bool) => EnumDispatch::Bool,
LayoutRepr::Builtin(Builtin::Int(IntWidth::U8)) => EnumDispatch::U8,
other => internal_error!("Invalid layout for enum dispatch: {:?}", other),
};
ClosureCallOptions::EnumDispatch(enum_repr)
}
}
}
/// If `lambda_name` captures, extend the arguments to the lambda with the lambda set, from
/// which the lambda should extract its captures from.
///
/// If `lambda_name` doesn't capture, the arguments are unaffected.
pub(crate) fn extend_argument_list_for_named(
&self,
arena: &'a Bump,
lambda_name: LambdaName<'a>,
argument_layouts: &'a [InLayout<'a>],
) -> &'a [InLayout<'a>] {
let Niche(NichePriv::Captures(captures)) = lambda_name.niche;
// TODO(https://github.com/roc-lang/roc/issues/4831): we should turn on this debug-assert;
// however, currently it causes false-positives, because host-exposed functions that are
// function pointers to platform-exposed functions are compiled as if they are proper
// functions, despite not appearing in the lambda set.
// We don't want to compile them as thunks, so we need to figure out a special-casing for
// them.
// To reproduce: test cli_run
//
// debug_assert!(
// self.set
// .contains(&(lambda_name.name, lambda_name.captures_niche.0)),
// "{:?}",
// (self, lambda_name)
// );
// If we don't capture, there is nothing to extend.
if captures.is_empty() {
argument_layouts
} else {
let mut arguments = Vec::with_capacity_in(argument_layouts.len() + 1, arena);
arguments.extend(argument_layouts);
arguments.push(self.full_layout);
arguments.into_bump_slice()
}
}
pub fn from_var_pub(
cache: &mut LayoutCache<'a>,
arena: &'a Bump,
subs: &Subs,
args: VariableSubsSlice,
closure_var: Variable,
ret_var: Variable,
target_info: TargetInfo,
) -> Result<Self, LayoutProblem> {
let mut env = Env::from_components(cache, subs, arena, target_info);
Self::from_var(&mut env, args, closure_var, ret_var).value()
}
fn from_var(
env: &mut Env<'a, '_>,
args: VariableSubsSlice,
closure_var: Variable,
ret_var: Variable,
) -> Cacheable<Result<Self, LayoutProblem>> {
let Cacheable(result, criteria) = env.cached_or(closure_var, |env| {
let Cacheable(result, criteria) = Self::from_var_help(env, args, closure_var, ret_var);
let result = result.map(|l| l.full_layout);
Cacheable(result, criteria)
});
match result.map(|l| env.cache.interner.chase_recursive(l)) {
Ok(LayoutRepr::LambdaSet(lambda_set)) => Cacheable(Ok(lambda_set), criteria),
Err(err) => Cacheable(Err(err), criteria),
Ok(layout) => internal_error!("other layout found for lambda set: {:?}", layout),
}
}
fn from_var_help(
env: &mut Env<'a, '_>,
args: VariableSubsSlice,
closure_var: Variable,
ret_var: Variable,
) -> Cacheable<Result<Self, LayoutProblem>> {
roc_tracing::debug!(var = ?closure_var, size = ?lambda_set_size(env.subs, closure_var), "building lambda set layout");
let lambda_set = resolve_lambda_set(env.subs, closure_var);
let mut cache_criteria = CACHEABLE;
let mut fn_args = Vec::with_capacity_in(args.len(), env.arena);
for index in args.into_iter() {
let arg_var = env.subs[index];
let layout = cached!(Layout::from_var(env, arg_var), cache_criteria, env.subs);
fn_args.push(layout);
}
let ret = cached!(Layout::from_var(env, ret_var), cache_criteria, env.subs);
let fn_args = env.arena.alloc(fn_args.into_bump_slice());
match lambda_set {
ResolvedLambdaSet::Set(mut lambdas, opt_recursion_var) => {
// sort the tags; make sure ordering stays intact!
lambdas.sort_by_key(|(sym, _)| *sym);
let mut set: Vec<(Symbol, &[InLayout])> =
Vec::with_capacity_in(lambdas.len(), env.arena);
let mut set_with_variables: std::vec::Vec<(&Symbol, &[Variable])> =
std::vec::Vec::with_capacity(lambdas.len());
let mut set_captures_have_naked_rec_ptr = false;
let mut last_function_symbol = None;
let mut lambdas_it = lambdas.iter().peekable();
let mut has_duplicate_lambda_names = false;
while let Some((function_symbol, variables)) = lambdas_it.next() {
let mut arguments = Vec::with_capacity_in(variables.len(), env.arena);
if let Some(rec_var) = opt_recursion_var.into_variable() {
env.insert_seen(rec_var);
}
for var in variables {
// We determine cacheability of the lambda set based on the runtime
// representation, so here the criteria doesn't matter.
let mut criteria = CACHEABLE;
let arg = cached!(Layout::from_var(env, *var), criteria, env.subs);
arguments.push(arg);
set_captures_have_naked_rec_ptr =
set_captures_have_naked_rec_ptr || criteria.has_naked_recursion_pointer;
}
let arguments = arguments.into_bump_slice();
let is_multimorphic = match (last_function_symbol, lambdas_it.peek()) {
(None, None) => false,
(Some(sym), None) | (None, Some((sym, _))) => function_symbol == sym,
(Some(sym1), Some((sym2, _))) => {
function_symbol == sym1 || function_symbol == sym2
}
};
has_duplicate_lambda_names = has_duplicate_lambda_names || is_multimorphic;
set.push((*function_symbol, arguments));
set_with_variables.push((function_symbol, variables.as_slice()));
last_function_symbol = Some(function_symbol);
if let Some(rec_var) = opt_recursion_var.into_variable() {
env.remove_seen(rec_var);
}
}
let (set, set_with_variables) = if has_duplicate_lambda_names {
// If we have a lambda set with duplicate names, then we sort first by name,
// and break ties by sorting on the layout. We need to do this again since the
// first sort would not have sorted on the layout.
// TODO: be more efficient, we can compute the permutation once and then apply
// it to both vectors.
let mut joined = set
.into_iter()
.zip(set_with_variables.into_iter())
.collect::<std::vec::Vec<_>>();
joined.sort_by(|(lam_and_captures1, _), (lam_and_captures2, _)| {
lam_and_captures1.cmp(lam_and_captures2)
});
// Remove duplicate lambda captures layouts unification can't see as
// duplicates, for example [[Thunk {a: Str}, Thunk [A Str]]], each of which are
// newtypes over the lambda layout `Thunk Str`.
joined.dedup_by_key(|((name, captures), _)| (*name, *captures));
let (set, set_with_variables): (std::vec::Vec<_>, std::vec::Vec<_>) =
joined.into_iter().unzip();
let set = Vec::from_iter_in(set, env.arena);
(set, set_with_variables)
} else {
(set, set_with_variables)
};
let Cacheable(representation, criteria) = Self::make_representation(
env,
set_with_variables,
opt_recursion_var.into_variable(),
);
cache_criteria.and(criteria, env.subs);
let needs_recursive_fixup = NeedsRecursionPointerFixup(
opt_recursion_var.is_some() && set_captures_have_naked_rec_ptr,
);
let lambda_set = env.cache.interner.insert_lambda_set(
env.arena,
fn_args,
ret,
env.arena.alloc(set.into_bump_slice()),
needs_recursive_fixup,
representation,
);
Cacheable(Ok(lambda_set), cache_criteria)
}
ResolvedLambdaSet::Unbound => {
// The lambda set is unbound which means it must be unused. Just give it the empty lambda set.
// See also https://github.com/roc-lang/roc/issues/3163.
let lambda_set = env.cache.interner.insert_lambda_set(
env.arena,
fn_args,
ret,
&(&[] as &[(Symbol, &[InLayout])]),
NeedsRecursionPointerFixup(false),
Layout::UNIT,
);
Cacheable(Ok(lambda_set), cache_criteria)
}
}
}
fn make_representation(
env: &mut Env<'a, '_>,
set: std::vec::Vec<(&Symbol, &[Variable])>,
opt_rec_var: Option<Variable>,
) -> Cacheable<InLayout<'a>> {
let union_labels = UnsortedUnionLabels { tags: set };
// Even if a variant in the lambda set has uninhabitable captures (and is hence
// unreachable as a function), we want to keep it in the representation. Failing to do so
// risks dropping relevant specializations needed during monomorphization.
let drop_uninhabited_variants = DropUninhabitedVariants(false);
match opt_rec_var {
Some(rec_var) => {
let Cacheable(result, criteria) =
layout_from_recursive_union(env, rec_var, &union_labels);
let result = result.expect("unable to create lambda set representation");
Cacheable(result, criteria)
}
None => layout_from_non_recursive_union(env, &union_labels, drop_uninhabited_variants),
}
}
pub fn stack_size<I>(&self, interner: &I) -> u32
where
I: LayoutInterner<'a>,
{
interner.get_repr(self.representation).stack_size(interner)
}
pub fn contains_refcounted<I>(&self, interner: &I) -> bool
where
I: LayoutInterner<'a>,
{
interner
.get_repr(self.representation)
.contains_refcounted(interner)
}
pub fn safe_to_memcpy<I>(&self, interner: &I) -> bool
where
I: LayoutInterner<'a>,
{
interner
.get_repr(self.representation)
.safe_to_memcpy(interner)
}
pub fn alignment_bytes<I>(&self, interner: &I) -> u32
where
I: LayoutInterner<'a>,
{
interner
.get_repr(self.representation)
.alignment_bytes(interner)
}
}
enum ResolvedLambdaSet {
Set(
std::vec::Vec<(Symbol, std::vec::Vec<Variable>)>,
OptVariable,
),
/// The lambda set is empty, that means this function is never called.
Unbound,
}
fn resolve_lambda_set(subs: &Subs, mut var: Variable) -> ResolvedLambdaSet {
let mut set = vec![];
loop {
match subs.get_content_without_compacting(var) {
Content::LambdaSet(subs::LambdaSet {
solved,
recursion_var,
unspecialized,
ambient_function: _,
}) => {
debug_assert!(
unspecialized.is_empty(),
"unspecialized lambda sets left over during resolution: {:?}, {:?}",
roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(var), subs),
subs.uls_of_var
);
roc_types::pretty_print::push_union(subs, solved, &mut set);
return ResolvedLambdaSet::Set(set, *recursion_var);
}
Content::RecursionVar { structure, .. } => {
var = *structure;
}
Content::FlexVar(_) => return ResolvedLambdaSet::Unbound,
c => internal_error!("called with a non-lambda set {:?}", c),
}
}
}
/// Determines the "size" of a lambda set. Size roughly calculates how many nested lambda sets are
/// captured in a lambda set.
/// Size is calculated in three dimensions:
/// - the depth of the longest chain of nested lambda sets, including type constructors besides
/// lambda sets.
/// - the depth of the longest chain of nested lambda sets, excluding type constructors besides
/// lambda sets.
/// - the total number of lambda sets
/// The returned tuple consists of these statistics in order. A lambda set with no nested lambda
/// set captures, but perhaps with other captures, would have a size of (1, 1, 1).
///
/// Follows recursion variables until they are seen twice.
/// Returns (0, 0, 0) if the provided variable is not a lambda set.
fn lambda_set_size(subs: &Subs, var: Variable) -> (usize, usize, usize) {
// NOTE: we must be very careful not to recurse on the stack.
let mut max_depth_any_ctor = 0;
let mut max_depth_only_lset = 0;
let mut total = 0;
let mut seen_rec_vars = roc_collections::VecSet::default();
// Run a DFS. I think in general deeply nested lambda sets wind up looking like multi-leaf
// trees, so I think running the depth first saves space.
let mut stack = std::vec::Vec::with_capacity(4);
stack.push((var, 0, 0));
while let Some((var, depth_any, depth_lset)) = stack.pop() {
match subs.get_content_without_compacting(var) {
// The interesting case
Content::LambdaSet(roc_types::subs::LambdaSet {
solved,
recursion_var,
unspecialized: _,
ambient_function: _,
}) => {
total += 1;
let new_depth_any = depth_any + 1;
let new_depth_lset = depth_lset + 1;
max_depth_any_ctor = std::cmp::max(max_depth_any_ctor, new_depth_any);
max_depth_only_lset = std::cmp::max(max_depth_only_lset, new_depth_lset);
if let Some(rec_var) = recursion_var.into_variable() {
seen_rec_vars.insert(rec_var);
}
for (_, captures) in solved.iter_from_subs(subs) {
for capture in captures {
stack.push((*capture, new_depth_any, new_depth_lset));
}
}
}
// The boring ones
Content::RecursionVar {
structure,
opt_name: _,
} => {
if !seen_rec_vars.contains(&var) {
stack.push((*structure, depth_any + 1, depth_lset))
}
}
Content::Alias(_, _, real_var, _) => {
// For layout purposes, only the real_var matters.
stack.push((*real_var, depth_any + 1, depth_lset));
}
Content::Structure(flat_type) => match flat_type {
FlatType::Apply(_, args) => {
for var in subs.get_subs_slice(*args) {
stack.push((*var, depth_any + 1, depth_lset));
}
}
FlatType::Func(args, lset, ret) => {
for var in subs.get_subs_slice(*args) {
stack.push((*var, depth_any + 1, depth_lset));
}
stack.push((*lset, depth_any + 1, depth_lset));
stack.push((*ret, depth_any + 1, depth_lset));
}
FlatType::Record(fields, ext) => {
for var_index in fields.iter_variables() {
let var = subs[var_index];
stack.push((var, depth_any + 1, depth_lset));
}
stack.push((*ext, depth_any + 1, depth_lset));
}
FlatType::Tuple(elems, ext) => {
for var_index in elems.iter_variables() {
let var = subs[var_index];
stack.push((var, depth_any + 1, depth_lset));
}
stack.push((*ext, depth_any + 1, depth_lset));
}
FlatType::FunctionOrTagUnion(_, _, ext) => {
stack.push((ext.var(), depth_any + 1, depth_lset));
}
FlatType::TagUnion(tags, ext) => {
for (_, payloads) in tags.iter_from_subs(subs) {
for payload in payloads {
stack.push((*payload, depth_any + 1, depth_lset));
}
}
stack.push((ext.var(), depth_any + 1, depth_lset));
}
FlatType::RecursiveTagUnion(rec_var, tags, ext) => {
seen_rec_vars.insert(*rec_var);
for (_, payloads) in tags.iter_from_subs(subs) {
for payload in payloads {
stack.push((*payload, depth_any + 1, depth_lset));
}
}
stack.push((ext.var(), depth_any + 1, depth_lset));
}
FlatType::EmptyRecord | FlatType::EmptyTuple | FlatType::EmptyTagUnion => {}
},
Content::FlexVar(_)
| Content::RigidVar(_)
| Content::FlexAbleVar(_, _)
| Content::RigidAbleVar(_, _)
| Content::RangedNumber(_)
| Content::Error
| Content::ErasedLambda => {}
}
}
(max_depth_any_ctor, max_depth_only_lset, total)
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum Builtin<'a> {
Int(IntWidth),
Float(FloatWidth),
Bool,
Decimal,
Str,
List(InLayout<'a>),
}
#[macro_export]
macro_rules! list_element_layout {
($interner:expr, $list_layout:expr) => {
match $interner.get_repr($list_layout) {
LayoutRepr::Builtin(Builtin::List(list_layout)) => list_layout,
_ => internal_error!("invalid list layout"),
}
};
}
pub struct Env<'a, 'b> {
target_info: TargetInfo,
pub(crate) arena: &'a Bump,
seen: Vec<'a, Variable>,
pub(crate) subs: &'b Subs,
cache: &'b mut LayoutCache<'a>,
}
impl<'a, 'b> Env<'a, 'b> {
pub fn from_components(
cache: &'b mut LayoutCache<'a>,
subs: &'b Subs,
arena: &'a Bump,
target_info: TargetInfo,
) -> Self {
Self {
cache,
subs,
seen: Vec::new_in(arena),
arena,
target_info,
}
}
fn is_seen(&self, var: Variable) -> bool {
let var = self.subs.get_root_key_without_compacting(var);
self.seen.iter().rev().any(|x| x == &var)
}
fn insert_seen(&mut self, var: Variable) {
let var = self.subs.get_root_key_without_compacting(var);
self.seen.push(var);
}
fn remove_seen(&mut self, var: Variable) -> bool {
let var = self.subs.get_root_key_without_compacting(var);
if let Some(index) = self.seen.iter().rposition(|x| x == &var) {
self.seen.remove(index);
true
} else {
false
}
}
#[inline(always)]
fn can_reuse_cached(&self, var: Variable, cache_metadata: &CacheMeta) -> bool {
let CacheMeta {
recursive_structures,
} = cache_metadata;
for &recursive_structure in recursive_structures.iter() {
if self.is_seen(recursive_structure) {
// If the cached entry references a recursive structure that we're in the process
// of visiting currently, we can't use the cached entry, and instead must
// recalculate the nested layout, because the nested recursive structure will
// likely turn into a recursive pointer now.
//
// For example, suppose we are constructing the layout of
//
// [A, B (List r)] as r
//
// and we have already constructed and cached the layout of `List r`, which would
// be
//
// List (Recursive [Unit, List RecursivePointer])
//
// If we use the cached entry of `List r`, we would end up with the layout
//
// Recursive [Unit, (List (Recursive [Unit, List RecursivePointer]))]
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ cached layout for `List r`
//
// but this is not correct; the canonical layout of `[A, B (List r)] as r` is
//
// Recursive [Unit, (List RecursivePointer)]
roc_tracing::debug!(?var, "not reusing cached recursive structure");
return false;
}
}
true
}
}
macro_rules! cached_or_impl {
($self:ident, $var:ident, $compute_layout:ident, $get:ident, $insert:ident, $stats:ident) => {{
if let Some((result, metadata)) = $self.cache.$get($self.subs, $var) {
// cache HIT
inc_stat!($self.cache.$stats, hits);
if $self.can_reuse_cached($var, &metadata) {
// Happy path - the cached layout can be reused, return it immediately.
return Cacheable(result, metadata.into_criteria());
} else {
// Although we have a cached layout, we cannot readily reuse it at this time. We'll
// need to recompute the layout, as done below.
inc_stat!($self.cache.$stats, non_reusable);
}
} else {
// cache MISS - compute the layout
inc_stat!($self.cache.$stats, misses);
}
let Cacheable(result, criteria) = $compute_layout($self);
if criteria.is_cacheable() {
// The computed layout is cacheable; insert it.
$self
.cache
.$insert($self.subs, $var, result, criteria.cache_metadata());
inc_stat!($self.cache.$stats, insertions);
} else {
// The computed layout is not cacheable. We'll return it with the criteria that made it
// non-cacheable.
inc_stat!($self.cache.$stats, non_insertable);
roc_tracing::debug!(?result, ?$var, "not caching");
}
Cacheable(result, criteria)
}};
}
impl<'a, 'b> Env<'a, 'b> {
#[inline(always)]
fn cached_or(
&mut self,
var: Variable,
compute_layout: impl FnOnce(&mut Env<'a, 'b>) -> Cacheable<LayoutResult<'a>>,
) -> Cacheable<LayoutResult<'a>> {
if self.is_seen(var) {
// Always return recursion pointers directly, NEVER cache them as naked!
// When this recursion pointer gets used in a recursive union, it will be filled to
// looop back to the correct layout.
// TODO(recursive-layouts): after the naked pointer is updated, we can cache `var` to
// point to the updated layout.
let rec_ptr = Layout::NAKED_RECURSIVE_PTR;
return Cacheable(Ok(rec_ptr), NAKED_RECURSION_PTR);
}
cached_or_impl!(self, var, compute_layout, get, insert, stats)
}
#[inline(always)]
fn cached_raw_function_or(
&mut self,
var: Variable,
compute_layout: impl FnOnce(&mut Env<'a, 'b>) -> Cacheable<RawFunctionLayoutResult<'a>>,
) -> Cacheable<RawFunctionLayoutResult<'a>> {
cached_or_impl!(
self,
var,
compute_layout,
get_raw_function,
insert_raw_function,
raw_function_stats
)
}
}
pub const fn round_up_to_alignment(width: u32, alignment: u32) -> u32 {
match alignment {
0 => width,
1 => width,
_ => {
if width % alignment > 0 {
width + alignment - (width % alignment)
} else {
width
}
}
}
}
#[inline(always)]
pub fn is_unresolved_var(subs: &Subs, var: Variable) -> bool {
use Content::*;
let content = subs.get_content_without_compacting(var);
matches!(
content,
FlexVar(..) | RigidVar(..) | FlexAbleVar(..) | RigidAbleVar(..),
)
}
#[inline(always)]
pub fn is_any_float_range(subs: &Subs, var: Variable) -> bool {
use {Content::*, NumericRange::*};
let content = subs.get_content_without_compacting(var);
matches!(
content,
RangedNumber(NumAtLeastEitherSign(..) | NumAtLeastSigned(..)),
)
}
impl<'a> Layout<'a> {
pub(crate) const fn new(repr: LayoutWrapper<'a>, semantic: SemanticRepr<'a>) -> Self {
Self { repr, semantic }
}
pub(crate) const fn no_semantic(repr: LayoutWrapper<'a>) -> Self {
Self {
repr,
semantic: SemanticRepr::NONE,
}
}
pub(crate) fn repr<I>(&self, interner: &I) -> LayoutRepr<'a>
where
I: LayoutInterner<'a>,
{
let mut lay = *self;
loop {
match lay.repr {
LayoutWrapper::Direct(repr) => return repr,
LayoutWrapper::Newtype(real) => {
lay = interner.get(real);
}
}
}
}
fn new_help<'b>(
env: &mut Env<'a, 'b>,
_var: Variable,
content: Content,
) -> Cacheable<LayoutResult<'a>> {
use roc_types::subs::Content::*;
match content {
FlexVar(_) | RigidVar(_) => {
roc_debug_flags::dbg_do!(roc_debug_flags::ROC_NO_UNBOUND_LAYOUT, {
return cacheable(Err(LayoutProblem::UnresolvedTypeVar(_var)));
});
// If we encounter an unbound type var (e.g. `*` or `a`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty tag union
cacheable(Ok(Layout::VOID))
}
FlexAbleVar(_, _) | RigidAbleVar(_, _) => {
roc_debug_flags::dbg_do!(roc_debug_flags::ROC_NO_UNBOUND_LAYOUT, {
todo_abilities!("Able var is unbound!");
});
// If we encounter an unbound type var (e.g. `*` or `a`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty tag union
cacheable(Ok(Layout::VOID))
}
RecursionVar { structure, .. } => {
let structure_content = env.subs.get_content_without_compacting(structure);
Self::new_help(env, structure, *structure_content)
}
LambdaSet(_) => {
internal_error!("lambda set should only appear under a function, where it's handled independently.");
}
ErasedLambda => {
internal_error!("erased lambda type should only appear under a function, where it's handled independently.");
}
Structure(flat_type) => layout_from_flat_type(env, flat_type),
Alias(symbol, _args, actual_var, _) => {
if let Some(int_width) = IntWidth::try_from_symbol(symbol) {
return cacheable(Ok(Layout::int_width(int_width)));
}
if let Some(float_width) = FloatWidth::try_from_symbol(symbol) {
return cacheable(Ok(Layout::float_width(float_width)));
}
match symbol {
Symbol::NUM_DECIMAL => cacheable(Ok(Layout::DEC)),
Symbol::NUM_NAT | Symbol::NUM_NATURAL => {
cacheable(Ok(Layout::usize(env.target_info)))
}
Symbol::NUM_NUM | Symbol::NUM_INT | Symbol::NUM_INTEGER
if is_unresolved_var(env.subs, actual_var) =>
{
// default to i64
cacheable(Ok(Layout::default_integer()))
}
Symbol::NUM_FRAC | Symbol::NUM_FLOATINGPOINT
if is_unresolved_var(env.subs, actual_var)
|| is_any_float_range(env.subs, actual_var) =>
{
// default to f64
cacheable(Ok(Layout::default_float()))
}
_ => Self::from_var(env, actual_var),
}
}
RangedNumber(range) => Self::layout_from_ranged_number(env, range),
Error => cacheable(Err(LayoutProblem::Erroneous)),
}
}
fn layout_from_ranged_number(
env: &mut Env<'a, '_>,
range: NumericRange,
) -> Cacheable<LayoutResult<'a>> {
// We don't pass the range down because `RangedNumber`s are somewhat rare, they only
// appear due to number literals, so no need to increase parameter list sizes.
let num_layout = range.default_compilation_width();
cacheable(Ok(Layout::int_literal_width_to_int(
num_layout,
env.target_info,
)))
}
/// Returns Err(()) if given an error, or Ok(Layout) if given a non-erroneous Structure.
/// Panics if given a FlexVar or RigidVar, since those should have been
/// monomorphized away already!
fn from_var(env: &mut Env<'a, '_>, var: Variable) -> Cacheable<LayoutResult<'a>> {
env.cached_or(var, |env| {
let content = env.subs.get_content_without_compacting(var);
Self::new_help(env, var, *content)
})
}
pub fn stack_size_and_alignment_slices<I>(
interner: &I,
slices: &[&[InLayout<'a>]],
) -> (u32, u32)
where
I: LayoutInterner<'a>,
{
let mut data_align = 1;
let mut data_width = 0;
for tag in slices {
let mut total = 0;
for layout in tag.iter() {
let (stack_size, alignment) = interner
.get_repr(*layout)
.stack_size_and_alignment(interner);
total += stack_size;
data_align = data_align.max(alignment);
}
data_width = data_width.max(total);
}
data_width = round_up_to_alignment(data_width, data_align);
(data_width, data_align)
}
pub fn runtime_representation<I>(&self, interner: &I) -> Self
where
I: LayoutInterner<'a>,
{
use LayoutRepr::*;
match self.repr(interner) {
LambdaSet(lambda_set) => interner.get(lambda_set.runtime_representation()),
_ => *self,
}
}
pub fn runtime_representation_in<I>(layout: InLayout<'a>, interner: &I) -> InLayout<'a>
where
I: LayoutInterner<'a>,
{
use LayoutRepr::*;
match interner.get_repr(layout) {
LambdaSet(lambda_set) => lambda_set.runtime_representation(),
_ => layout,
}
}
}
/// Index into an [Erased layout][Layout::ERASED].
#[repr(u8)]
pub(crate) enum ErasedIndex {
Value = 0,
Callee = 1,
RefCounter = 2,
}
impl<'a> LayoutRepr<'a> {
pub const UNIT: Self = LayoutRepr::struct_(&[]);
pub const BOOL: Self = LayoutRepr::Builtin(Builtin::Bool);
pub const U8: Self = LayoutRepr::Builtin(Builtin::Int(IntWidth::U8));
pub const U16: Self = LayoutRepr::Builtin(Builtin::Int(IntWidth::U16));
pub const U32: Self = LayoutRepr::Builtin(Builtin::Int(IntWidth::U32));
pub const U64: Self = LayoutRepr::Builtin(Builtin::Int(IntWidth::U64));
pub const U128: Self = LayoutRepr::Builtin(Builtin::Int(IntWidth::U128));
pub const I8: Self = LayoutRepr::Builtin(Builtin::Int(IntWidth::I8));
pub const I16: Self = LayoutRepr::Builtin(Builtin::Int(IntWidth::I16));
pub const I32: Self = LayoutRepr::Builtin(Builtin::Int(IntWidth::I32));
pub const I64: Self = LayoutRepr::Builtin(Builtin::Int(IntWidth::I64));
pub const I128: Self = LayoutRepr::Builtin(Builtin::Int(IntWidth::I128));
pub const F32: Self = LayoutRepr::Builtin(Builtin::Float(FloatWidth::F32));
pub const F64: Self = LayoutRepr::Builtin(Builtin::Float(FloatWidth::F64));
pub const DEC: Self = LayoutRepr::Builtin(Builtin::Decimal);
pub const STR: Self = LayoutRepr::Builtin(Builtin::Str);
pub const OPAQUE_PTR: Self = LayoutRepr::Ptr(Layout::VOID);
pub const ERASED: Self = Self::struct_(&[
// .value
Layout::OPAQUE_PTR,
// .callee
Layout::OPAQUE_PTR,
// .refcounter
Layout::OPAQUE_PTR,
]);
pub const fn struct_(field_layouts: &'a [InLayout<'a>]) -> Self {
Self::Struct(field_layouts)
}
pub(crate) const fn direct(self) -> LayoutWrapper<'a> {
LayoutWrapper::Direct(self)
}
pub fn safe_to_memcpy<I>(&self, interner: &I) -> bool
where
I: LayoutInterner<'a>,
{
use LayoutRepr::*;
match self {
Builtin(builtin) => builtin.safe_to_memcpy(),
Struct(field_layouts) => field_layouts
.iter()
.all(|field_layout| interner.get_repr(*field_layout).safe_to_memcpy(interner)),
Union(variant) => {
use UnionLayout::*;
match variant {
NonRecursive(tags) => tags.iter().all(|tag_layout| {
tag_layout
.iter()
.all(|field| interner.get_repr(*field).safe_to_memcpy(interner))
}),
Recursive(_)
| NullableWrapped { .. }
| NullableUnwrapped { .. }
| NonNullableUnwrapped(_) => {
// a recursive union will always contain a pointer, and is thus not safe to memcpy
false
}
}
}
LambdaSet(lambda_set) => interner
.get_repr(lambda_set.runtime_representation())
.safe_to_memcpy(interner),
Ptr(_) | RecursivePointer(_) => {
// We cannot memcpy pointers, because then we would have the same pointer in multiple places!
false
}
FunctionPointer(..) => true,
}
}
pub fn is_dropped_because_empty(&self) -> bool {
// For this calculation, we don't need an accurate
// stack size, we just need to know whether it's zero,
// so it's fine to use a pointer size of 1.
false // TODO this should use is_zero_sized once doing so doesn't break things!
}
pub fn is_passed_by_reference<I>(&self, interner: &I) -> bool
where
I: LayoutInterner<'a>,
{
match self {
LayoutRepr::Builtin(builtin) => {
use Builtin::*;
match interner.target_info().ptr_width() {
PtrWidth::Bytes4 => {
// more things fit into a register
false
}
PtrWidth::Bytes8 => {
// currently, only Str is passed by-reference internally
matches!(builtin, Str)
}
}
}
LayoutRepr::Union(UnionLayout::NonRecursive(_)) => true,
LayoutRepr::Struct(_) => {
// TODO: write tests for this!
self.stack_size(interner) as usize > interner.target_info().max_by_value_size()
}
LayoutRepr::LambdaSet(lambda_set) => interner
.get_repr(lambda_set.runtime_representation())
.is_passed_by_reference(interner),
_ => false,
}
}
pub fn stack_size<I>(&self, interner: &I) -> u32
where
I: LayoutInterner<'a>,
{
let width = self.stack_size_without_alignment(interner);
let alignment = self.alignment_bytes(interner);
round_up_to_alignment(width, alignment)
}
pub fn stack_size_and_alignment<I>(&self, interner: &I) -> (u32, u32)
where
I: LayoutInterner<'a>,
{
let width = self.stack_size_without_alignment(interner);
let alignment = self.alignment_bytes(interner);
let size = round_up_to_alignment(width, alignment);
(size, alignment)
}
/// Very important to use this when doing a memcpy!
pub fn stack_size_without_alignment<I>(&self, interner: &I) -> u32
where
I: LayoutInterner<'a>,
{
use LayoutRepr::*;
match self {
Builtin(builtin) => builtin.stack_size(interner.target_info()),
Struct(field_layouts) => {
let mut sum = 0;
for field_layout in *field_layouts {
sum += interner.get_repr(*field_layout).stack_size(interner);
}
sum
}
Union(variant) => variant.stack_size_without_alignment(interner),
LambdaSet(lambda_set) => interner
.get_repr(lambda_set.runtime_representation())
.stack_size_without_alignment(interner),
RecursivePointer(_) | Ptr(_) | FunctionPointer(_) => {
interner.target_info().ptr_width() as u32
}
}
}
pub fn alignment_bytes<I>(&self, interner: &I) -> u32
where
I: LayoutInterner<'a>,
{
use LayoutRepr::*;
match self {
Struct(field_layouts) => field_layouts
.iter()
.map(|x| interner.get_repr(*x).alignment_bytes(interner))
.max()
.unwrap_or(0),
Union(variant) => {
use UnionLayout::*;
match variant {
NonRecursive(tags) => {
let max_alignment = tags
.iter()
.flat_map(|layouts| {
layouts.iter().map(|layout| {
interner.get_repr(*layout).alignment_bytes(interner)
})
})
.max();
let discriminant = variant.discriminant();
match max_alignment {
Some(align) => round_up_to_alignment(
align.max(discriminant.alignment_bytes()),
discriminant.alignment_bytes(),
),
None => {
// none of the tags had any payload, but the tag id still contains information
discriminant.alignment_bytes()
}
}
}
Recursive(_)
| NullableWrapped { .. }
| NullableUnwrapped { .. }
| NonNullableUnwrapped(_) => interner.target_info().ptr_width() as u32,
}
}
LambdaSet(lambda_set) => interner
.get_repr(lambda_set.runtime_representation())
.alignment_bytes(interner),
Builtin(builtin) => builtin.alignment_bytes(interner.target_info()),
RecursivePointer(_) | Ptr(_) | FunctionPointer(_) => {
interner.target_info().ptr_width() as u32
}
}
}
pub fn allocation_alignment_bytes<I>(&self, interner: &I) -> u32
where
I: LayoutInterner<'a>,
{
let ptr_width = interner.target_info().ptr_width() as u32;
use LayoutRepr::*;
match self {
Builtin(builtin) => builtin.allocation_alignment_bytes(interner),
Struct { .. } => self.alignment_bytes(interner).max(ptr_width),
Union(union_layout) => union_layout.allocation_alignment_bytes(interner),
LambdaSet(lambda_set) => interner
.get_repr(lambda_set.runtime_representation())
.allocation_alignment_bytes(interner),
RecursivePointer(_) => {
unreachable!("should be looked up to get an actual layout")
}
Ptr(inner) => interner.get_repr(*inner).alignment_bytes(interner),
FunctionPointer(_) => ptr_width,
}
}
pub fn is_refcounted(&self) -> bool {
use self::Builtin::*;
use LayoutRepr::*;
match self {
Union(UnionLayout::NonRecursive(_)) => false,
Union(_) => true,
RecursivePointer(_) => true,
Builtin(List(_)) | Builtin(Str) => true,
_ => false,
}
}
pub fn is_nullable(&self) -> bool {
use LayoutRepr::*;
match self {
Union(union_layout) => match union_layout {
UnionLayout::NonRecursive(_) => false,
UnionLayout::Recursive(_) => false,
UnionLayout::NonNullableUnwrapped(_) => false,
UnionLayout::NullableWrapped { .. } => true,
UnionLayout::NullableUnwrapped { .. } => true,
},
_ => false,
}
}
/// Even if a value (say, a record) is not itself reference counted,
/// it may contains values/fields that are. Therefore when this record
/// goes out of scope, the refcount on those values/fields must be decremented.
pub fn contains_refcounted<I>(&self, interner: &I) -> bool
where
I: LayoutInterner<'a>,
{
use LayoutRepr::*;
match self {
Builtin(builtin) => builtin.is_refcounted(),
Struct(field_layouts) => field_layouts
.iter()
.any(|f| interner.get_repr(*f).contains_refcounted(interner)),
Union(variant) => {
use UnionLayout::*;
match variant {
NonRecursive(fields) => fields
.iter()
.flat_map(|ls| ls.iter())
.any(|f| interner.get_repr(*f).contains_refcounted(interner)),
Recursive(_)
| NullableWrapped { .. }
| NullableUnwrapped { .. }
| NonNullableUnwrapped(_) => true,
}
}
LambdaSet(lambda_set) => interner
.get_repr(lambda_set.runtime_representation())
.contains_refcounted(interner),
RecursivePointer(_) => true,
Ptr(_) => {
// we never consider pointers for refcounting. Ptr is not user-facing. The compiler
// author must make sure that invariants are upheld
false
}
FunctionPointer(_) => false,
}
}
pub fn has_varying_stack_size<I>(self, interner: &I, arena: &bumpalo::Bump) -> bool
where
I: LayoutInterner<'a>,
{
let mut stack: Vec<LayoutRepr> = bumpalo::collections::Vec::new_in(arena);
stack.push(self);
use LayoutRepr::*;
while let Some(layout) = stack.pop() {
match layout {
Builtin(builtin) => {
use self::Builtin::*;
match builtin {
Int(_)
| Float(_)
| Bool
| Decimal
| Str
// If there's any layer of indirection (behind a pointer), then it doesn't vary!
| List(_) => { /* do nothing */ }
}
}
// If there's any layer of indirection (behind a pointer), then it doesn't vary!
Struct(field_layouts) => stack.extend(
field_layouts
.iter()
.map(|interned| interner.get_repr(*interned)),
),
Union(tag_union) => match tag_union {
UnionLayout::NonRecursive(tags) | UnionLayout::Recursive(tags) => {
for tag in tags {
stack.extend(tag.iter().map(|interned| interner.get_repr(*interned)));
}
}
UnionLayout::NonNullableUnwrapped(fields) => {
stack.extend(fields.iter().map(|interned| interner.get_repr(*interned)));
}
UnionLayout::NullableWrapped { other_tags, .. } => {
for tag in other_tags {
stack.extend(tag.iter().map(|interned| interner.get_repr(*interned)));
}
}
UnionLayout::NullableUnwrapped { other_fields, .. } => {
stack.extend(
other_fields
.iter()
.map(|interned| interner.get_repr(*interned)),
);
}
},
LambdaSet(_) => return true,
Ptr(_) => {
// If there's any layer of indirection (behind a pointer), then it doesn't vary!
}
RecursivePointer(_) => {
/* do nothing, we've already generated for this type through the Union(_) */
}
FunctionPointer(_) => {
// drop through
}
}
}
false
}
}
pub type SeenRecPtrs<'a> = VecSet<InLayout<'a>>;
impl<'a> Layout<'a> {
pub fn usize(target_info: TargetInfo) -> InLayout<'a> {
match target_info.ptr_width() {
roc_target::PtrWidth::Bytes4 => Layout::U32,
roc_target::PtrWidth::Bytes8 => Layout::U64,
}
}
pub fn isize(target_info: TargetInfo) -> InLayout<'a> {
match target_info.ptr_width() {
roc_target::PtrWidth::Bytes4 => Layout::I32,
roc_target::PtrWidth::Bytes8 => Layout::I64,
}
}
pub fn default_integer() -> InLayout<'a> {
Layout::I64
}
pub fn default_float() -> InLayout<'a> {
Layout::F64
}
pub fn int_literal_width_to_int(
width: roc_types::num::IntLitWidth,
target_info: TargetInfo,
) -> InLayout<'a> {
use roc_types::num::IntLitWidth::*;
match width {
U8 => Layout::U8,
U16 => Layout::U16,
U32 => Layout::U32,
U64 => Layout::U64,
U128 => Layout::U128,
I8 => Layout::I8,
I16 => Layout::I16,
I32 => Layout::I32,
I64 => Layout::I64,
I128 => Layout::I128,
Nat => Layout::usize(target_info),
// f32 int literal bounded by +/- 2^24, so fit it into an i32
F32 => Layout::F32,
// f64 int literal bounded by +/- 2^53, so fit it into an i32
F64 => Layout::F64,
// dec int literal bounded by i128, so fit it into an i128
Dec => Layout::DEC,
}
}
pub fn is_recursive_tag_union<I>(self, interner: &I) -> bool
where
I: LayoutInterner<'a>,
{
matches!(
self.repr(interner),
LayoutRepr::Union(
UnionLayout::NullableUnwrapped { .. }
| UnionLayout::Recursive(_)
| UnionLayout::NullableWrapped { .. }
| UnionLayout::NonNullableUnwrapped { .. },
)
)
}
}
impl<'a> Builtin<'a> {
const I1_SIZE: u32 = std::mem::size_of::<bool>() as u32;
const DECIMAL_SIZE: u32 = std::mem::size_of::<i128>() as u32;
/// Number of machine words in an empty one of these
pub const STR_WORDS: u32 = 3;
pub const LIST_WORDS: u32 = 3;
/// Layout of collection wrapper for List, Str, Dict, and Set - a struct of (pointer, length, capacity).
pub const WRAPPER_PTR: u32 = 0;
pub const WRAPPER_LEN: u32 = 1;
pub const WRAPPER_CAPACITY: u32 = 2;
pub fn stack_size(&self, target_info: TargetInfo) -> u32 {
use Builtin::*;
let ptr_width = target_info.ptr_width() as u32;
match self {
Int(int) => int.stack_size(),
Float(float) => float.stack_size(),
Bool => Builtin::I1_SIZE,
Decimal => Builtin::DECIMAL_SIZE,
Str => Builtin::STR_WORDS * ptr_width,
List(_) => Builtin::LIST_WORDS * ptr_width,
}
}
pub fn alignment_bytes(&self, target_info: TargetInfo) -> u32 {
use std::mem::align_of;
use Builtin::*;
let ptr_width = target_info.ptr_width() as u32;
// for our data structures, what counts is the alignment of the `( ptr, len )` tuple, and
// since both of those are one pointer size, the alignment of that structure is a pointer
// size
match self {
Int(int_width) => int_width.alignment_bytes(target_info),
Float(float_width) => float_width.alignment_bytes(target_info),
Bool => align_of::<bool>() as u32,
Decimal => IntWidth::I128.alignment_bytes(target_info),
// we often treat these as i128 (64-bit systems)
// or i64 (32-bit systems).
//
// In webassembly, For that to be safe
// they must be aligned to allow such access
List(_) => ptr_width,
Str => ptr_width,
}
}
pub fn safe_to_memcpy(&self) -> bool {
use Builtin::*;
match self {
Int(_) | Float(_) | Bool | Decimal => true,
Str | List(_) => false,
}
}
// Question: does is_refcounted exactly correspond with the "safe to memcpy" property?
pub fn is_refcounted(&self) -> bool {
use Builtin::*;
match self {
Int(_) | Float(_) | Bool | Decimal => false,
List(_) => true,
Str => true,
}
}
pub fn to_doc<'b, D, A, I>(
self,
alloc: &'b D,
interner: &I,
seen_rec: &mut SeenRecPtrs<'a>,
_parens: Parens,
) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
I: LayoutInterner<'a>,
{
use Builtin::*;
match self {
Int(int_width) => {
use IntWidth::*;
match int_width {
I128 => alloc.text("I128"),
I64 => alloc.text("I64"),
I32 => alloc.text("I32"),
I16 => alloc.text("I16"),
I8 => alloc.text("I8"),
U128 => alloc.text("U128"),
U64 => alloc.text("U64"),
U32 => alloc.text("U32"),
U16 => alloc.text("U16"),
U8 => alloc.text("U8"),
}
}
Float(float_width) => {
use FloatWidth::*;
match float_width {
F64 => alloc.text("Float64"),
F32 => alloc.text("Float32"),
}
}
Bool => alloc.text("Int1"),
Decimal => alloc.text("Decimal"),
Str => alloc.text("Str"),
List(layout) => alloc.text("List ").append(interner.to_doc(
layout,
alloc,
seen_rec,
Parens::InTypeParam,
)),
}
}
pub fn allocation_alignment_bytes<I>(&self, interner: &I) -> u32
where
I: LayoutInterner<'a>,
{
let target_info = interner.target_info();
let ptr_width = target_info.ptr_width() as u32;
let allocation = match self {
Builtin::Str => ptr_width,
Builtin::List(e) => {
let e = interner.get_repr(*e);
e.alignment_bytes(interner).max(ptr_width)
}
// The following are usually not heap-allocated, but they might be when inside a Box.
Builtin::Int(int_width) => int_width.alignment_bytes(target_info).max(ptr_width),
Builtin::Float(float_width) => float_width.alignment_bytes(target_info).max(ptr_width),
Builtin::Bool => (core::mem::align_of::<bool>() as u32).max(ptr_width),
Builtin::Decimal => IntWidth::I128.alignment_bytes(target_info).max(ptr_width),
};
allocation.max(ptr_width)
}
}
fn layout_from_flat_type<'a>(
env: &mut Env<'a, '_>,
flat_type: FlatType,
) -> Cacheable<LayoutResult<'a>> {
use roc_types::subs::FlatType::*;
let arena = env.arena;
let subs = env.subs;
let target_info = env.target_info;
match flat_type {
Apply(symbol, args) => {
let args = Vec::from_iter_in(args.into_iter().map(|index| subs[index]), arena);
match symbol {
// Ints
Symbol::NUM_NAT => {
debug_assert_eq!(args.len(), 0);
cacheable(Ok(Layout::usize(env.target_info)))
}
Symbol::NUM_I128 => {
debug_assert_eq!(args.len(), 0);
cacheable(Ok(Layout::I128))
}
Symbol::NUM_I64 => {
debug_assert_eq!(args.len(), 0);
cacheable(Ok(Layout::I64))
}
Symbol::NUM_I32 => {
debug_assert_eq!(args.len(), 0);
cacheable(Ok(Layout::I32))
}
Symbol::NUM_I16 => {
debug_assert_eq!(args.len(), 0);
cacheable(Ok(Layout::I16))
}
Symbol::NUM_I8 => {
debug_assert_eq!(args.len(), 0);
cacheable(Ok(Layout::I8))
}
Symbol::NUM_U128 => {
debug_assert_eq!(args.len(), 0);
cacheable(Ok(Layout::U128))
}
Symbol::NUM_U64 => {
debug_assert_eq!(args.len(), 0);
cacheable(Ok(Layout::U64))
}
Symbol::NUM_U32 => {
debug_assert_eq!(args.len(), 0);
cacheable(Ok(Layout::U32))
}
Symbol::NUM_U16 => {
debug_assert_eq!(args.len(), 0);
cacheable(Ok(Layout::U16))
}
Symbol::NUM_U8 => {
debug_assert_eq!(args.len(), 0);
cacheable(Ok(Layout::U8))
}
// Floats
Symbol::NUM_DEC => {
debug_assert_eq!(args.len(), 0);
cacheable(Ok(Layout::DEC))
}
Symbol::NUM_F64 => {
debug_assert_eq!(args.len(), 0);
cacheable(Ok(Layout::F64))
}
Symbol::NUM_F32 => {
debug_assert_eq!(args.len(), 0);
cacheable(Ok(Layout::F32))
}
Symbol::NUM_NUM => {
// Num.Num should only ever have 1 argument, e.g. Num.Num Int.Integer
debug_assert_eq!(args.len(), 1);
let var = args[0];
let content = subs.get_content_without_compacting(var);
layout_from_num_content(content, target_info)
}
Symbol::STR_STR => cacheable(Ok(Layout::STR)),
Symbol::LIST_LIST => list_layout_from_elem(env, args[0]),
Symbol::BOX_BOX_TYPE => {
// Num.Num should only ever have 1 argument, e.g. Num.Num Int.Integer
debug_assert_eq!(args.len(), 1);
let mut criteria = CACHEABLE;
let inner_var = args[0];
let inner_layout =
cached!(Layout::from_var(env, inner_var), criteria, env.subs);
let repr = LayoutRepr::Union(UnionLayout::NonNullableUnwrapped(
arena.alloc([inner_layout]),
));
let boxed_layout = env.cache.put_in(Layout {
repr: repr.direct(),
semantic: SemanticRepr::NONE,
});
Cacheable(Ok(boxed_layout), criteria)
}
_ => {
panic!("TODO layout_from_flat_type for Apply({symbol:?}, {args:?})");
}
}
}
Func(args, closure_var, ret_var) => {
if env.is_seen(closure_var) {
// TODO(recursive-layouts): after the naked pointer is updated, we can cache `var` to
// point to the updated layout.
let rec_ptr = Layout::NAKED_RECURSIVE_PTR;
Cacheable(Ok(rec_ptr), NAKED_RECURSION_PTR)
} else {
let mut criteria = CACHEABLE;
let closure_data = build_function_closure_data(env, args, closure_var, ret_var);
let closure_data = cached!(closure_data, criteria, env.subs);
match closure_data {
ClosureDataKind::LambdaSet(lambda_set) => {
Cacheable(Ok(lambda_set.full_layout), criteria)
}
ClosureDataKind::Erased => Cacheable(Ok(Layout::ERASED), criteria),
}
}
}
Record(fields, ext_var) => {
let mut criteria = CACHEABLE;
// extract any values from the ext_var
let mut sortables = Vec::with_capacity_in(fields.len(), arena);
let it = match fields.unsorted_iterator(subs, ext_var) {
Ok(it) => it,
Err(RecordFieldsError) => {
return Cacheable(Err(LayoutProblem::Erroneous), criteria)
}
};
for (label, field) in it {
match field {
RecordField::Required(field_var)
| RecordField::Demanded(field_var)
| RecordField::RigidRequired(field_var) => {
let field_layout =
cached!(Layout::from_var(env, field_var), criteria, env.subs);
sortables.push((label, field_layout));
}
RecordField::Optional(_) | RecordField::RigidOptional(_) => {
// drop optional fields
}
}
}
sortables.sort_by(|(label1, layout1), (label2, layout2)| {
cmp_fields(&env.cache.interner, label1, *layout1, label2, *layout2)
});
let ordered_field_names = Vec::from_iter_in(
sortables
.iter()
.map(|(label, _)| &*arena.alloc_str(label.as_str())),
arena,
)
.into_bump_slice();
let semantic = SemanticRepr::record(ordered_field_names);
let repr = if sortables.len() == 1 {
// If the record has only one field that isn't zero-sized,
// unwrap it.
let inner_repr = sortables.pop().unwrap().1;
inner_repr.newtype()
} else {
let layouts = Vec::from_iter_in(sortables.into_iter().map(|t| t.1), arena);
LayoutRepr::Struct(layouts.into_bump_slice()).direct()
};
let result = Ok(env.cache.put_in(Layout { repr, semantic }));
Cacheable(result, criteria)
}
Tuple(elems, ext_var) => {
let mut criteria = CACHEABLE;
// extract any values from the ext_var
let mut sortables = Vec::with_capacity_in(elems.len(), arena);
let it = match elems.unsorted_iterator(subs, ext_var) {
Ok(it) => it,
Err(TupleElemsError) => return Cacheable(Err(LayoutProblem::Erroneous), criteria),
};
for (index, elem) in it {
let elem_layout = cached!(Layout::from_var(env, elem), criteria, env.subs);
sortables.push((index, elem_layout));
}
sortables.sort_by(|(index1, layout1), (index2, layout2)| {
cmp_fields(&env.cache.interner, index1, *layout1, index2, *layout2)
});
let result = if sortables.len() == 1 {
// If the tuple has only one field that isn't zero-sized,
// unwrap it.
Ok(sortables.pop().unwrap().1)
} else {
let field_layouts =
Vec::from_iter_in(sortables.into_iter().map(|t| t.1), arena).into_bump_slice();
let struct_layout = Layout {
repr: LayoutRepr::Struct(field_layouts).direct(),
semantic: SemanticRepr::tuple(field_layouts.len()),
};
Ok(env.cache.put_in(struct_layout))
};
Cacheable(result, criteria)
}
TagUnion(tags, ext_var) => {
let (tags, ext_var) = tags.unsorted_tags_and_ext(subs, ext_var);
debug_assert!(ext_var_is_empty_tag_union(subs, ext_var));
layout_from_non_recursive_union(env, &tags, DropUninhabitedVariants(true)).map(Ok)
}
FunctionOrTagUnion(tag_names, _, ext_var) => {
debug_assert!(
ext_var_is_empty_tag_union(subs, ext_var),
"If ext_var wasn't empty, this wouldn't be a FunctionOrTagUnion!"
);
let tag_names = subs.get_subs_slice(tag_names);
let unsorted_tags = UnsortedUnionLabels {
tags: tag_names.iter().map(|t| (t, &[] as &[Variable])).collect(),
};
layout_from_non_recursive_union(env, &unsorted_tags, DropUninhabitedVariants(true))
.map(Ok)
}
RecursiveTagUnion(rec_var, tags, ext_var) => {
let (tags, ext_var) = tags.unsorted_tags_and_ext(subs, ext_var);
debug_assert!(ext_var_is_empty_tag_union(subs, ext_var));
layout_from_recursive_union(env, rec_var, &tags)
}
EmptyTagUnion => cacheable(Ok(Layout::VOID)),
EmptyRecord => cacheable(Ok(Layout::UNIT)),
EmptyTuple => cacheable(Ok(Layout::UNIT)),
}
}
pub type SortedTupleElem<'a> = (usize, Variable, InLayout<'a>);
pub fn sort_tuple_elems<'a>(
env: &mut Env<'a, '_>,
var: Variable,
) -> Result<Vec<'a, SortedTupleElem<'a>>, LayoutProblem> {
let (it, _) = match gather_tuple_elems_unsorted_iter(env.subs, TupleElems::empty(), var) {
Ok(it) => it,
Err(_) => return Err(LayoutProblem::Erroneous),
};
sort_tuple_elems_help(env, it)
}
fn sort_tuple_elems_help<'a>(
env: &mut Env<'a, '_>,
elems_map: impl Iterator<Item = (usize, Variable)>,
) -> Result<Vec<'a, SortedTupleElem<'a>>, LayoutProblem> {
let mut sorted_elems = Vec::with_capacity_in(elems_map.size_hint().0, env.arena);
for (index, elem) in elems_map {
let Cacheable(layout, _) = Layout::from_var(env, elem);
let layout = layout?;
sorted_elems.push((index, elem, layout));
}
sorted_elems.sort_by(|(index1, _, res_layout1), (index2, _, res_layout2)| {
cmp_fields(
&env.cache.interner,
index1,
*res_layout1,
index2,
*res_layout2,
)
});
Ok(sorted_elems)
}
pub type SortedField<'a> = (Lowercase, Variable, Result<InLayout<'a>, InLayout<'a>>);
pub fn sort_record_fields<'a>(
env: &mut Env<'a, '_>,
var: Variable,
) -> Result<Vec<'a, SortedField<'a>>, LayoutProblem> {
let (it, _) = match gather_fields_unsorted_iter(env.subs, RecordFields::empty(), var) {
Ok(it) => it,
Err(_) => return Err(LayoutProblem::Erroneous),
};
let it = it
.into_iter()
.map(|(field, field_type)| (field.clone(), field_type));
sort_record_fields_help(env, it)
}
fn sort_record_fields_help<'a>(
env: &mut Env<'a, '_>,
fields_map: impl Iterator<Item = (Lowercase, RecordField<Variable>)>,
) -> Result<Vec<'a, SortedField<'a>>, LayoutProblem> {
// Sort the fields by label
let mut sorted_fields = Vec::with_capacity_in(fields_map.size_hint().0, env.arena);
for (label, field) in fields_map {
match field {
RecordField::Demanded(v) | RecordField::Required(v) | RecordField::RigidRequired(v) => {
let Cacheable(layout, _) = Layout::from_var(env, v);
let layout = layout?;
sorted_fields.push((label, v, Ok(layout)));
}
RecordField::Optional(v) | RecordField::RigidOptional(v) => {
let Cacheable(layout, _) = Layout::from_var(env, v);
let layout = layout?;
sorted_fields.push((label, v, Err(layout)));
}
};
}
sorted_fields.sort_by(
|(label1, _, res_layout1), (label2, _, res_layout2)| match res_layout1 {
Ok(layout1) | Err(layout1) => match res_layout2 {
Ok(layout2) | Err(layout2) => {
cmp_fields(&env.cache.interner, label1, *layout1, label2, *layout2)
}
},
},
);
Ok(sorted_fields)
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum TagOrClosure {
Tag(TagName),
Closure(Symbol),
}
impl TagOrClosure {
pub fn expect_tag(self) -> TagName {
match self {
Self::Tag(t) => t,
_ => internal_error!("not a tag"),
}
}
pub fn expect_tag_ref(&self) -> &TagName {
match self {
Self::Tag(t) => t,
_ => internal_error!("not a tag"),
}
}
}
impl From<TagName> for TagOrClosure {
fn from(t: TagName) -> Self {
Self::Tag(t)
}
}
impl From<Symbol> for TagOrClosure {
fn from(s: Symbol) -> Self {
Self::Closure(s)
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum UnionVariant<'a> {
Never,
Unit,
BoolUnion {
ttrue: TagOrClosure,
ffalse: TagOrClosure,
},
ByteUnion(Vec<'a, TagOrClosure>),
Newtype {
tag_name: TagOrClosure,
arguments: Vec<'a, InLayout<'a>>,
},
NewtypeByVoid {
data_tag_name: TagOrClosure,
data_tag_id: TagIdIntType,
data_tag_arguments: Vec<'a, InLayout<'a>>,
},
Wrapped(WrappedVariant<'a>),
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum WrappedVariant<'a> {
Recursive {
sorted_tag_layouts: Vec<'a, (TagOrClosure, &'a [InLayout<'a>])>,
},
NonRecursive {
sorted_tag_layouts: Vec<'a, (TagOrClosure, &'a [InLayout<'a>])>,
},
NullableWrapped {
nullable_id: TagIdIntType,
nullable_name: TagOrClosure,
sorted_tag_layouts: Vec<'a, (TagOrClosure, &'a [InLayout<'a>])>,
},
NonNullableUnwrapped {
tag_name: TagOrClosure,
fields: &'a [InLayout<'a>],
},
NullableUnwrapped {
nullable_id: bool,
nullable_name: TagOrClosure,
other_name: TagOrClosure,
other_fields: &'a [InLayout<'a>],
},
}
impl<'a> WrappedVariant<'a> {
pub fn tag_name_to_id(&self, tag_name: &TagName) -> (TagIdIntType, &'a [InLayout<'a>]) {
use WrappedVariant::*;
match self {
Recursive { sorted_tag_layouts } | NonRecursive { sorted_tag_layouts } => {
let (tag_id, (_, argument_layouts)) = sorted_tag_layouts
.iter()
.enumerate()
.find(|(_, (key, _))| key.expect_tag_ref() == tag_name)
.expect("tag name is not in its own type");
debug_assert!(tag_id < 256);
(tag_id as TagIdIntType, *argument_layouts)
}
NullableWrapped {
nullable_id,
nullable_name,
sorted_tag_layouts,
} => {
// assumption: the nullable_name is not included in sorted_tag_layouts
if tag_name == nullable_name.expect_tag_ref() {
(*nullable_id as TagIdIntType, &[] as &[_])
} else {
let (mut tag_id, (_, argument_layouts)) = sorted_tag_layouts
.iter()
.enumerate()
.find(|(_, (key, _))| key.expect_tag_ref() == tag_name)
.expect("tag name is not in its own type");
if tag_id >= *nullable_id as usize {
tag_id += 1;
}
debug_assert!(tag_id < 256);
(tag_id as TagIdIntType, *argument_layouts)
}
}
NullableUnwrapped {
nullable_id,
nullable_name,
other_name,
other_fields,
} => {
if tag_name == nullable_name.expect_tag_ref() {
(*nullable_id as TagIdIntType, &[] as &[_])
} else {
debug_assert_eq!(other_name.expect_tag_ref(), tag_name);
(!*nullable_id as TagIdIntType, *other_fields)
}
}
NonNullableUnwrapped { fields, .. } => (0, fields),
}
}
pub fn number_of_tags(&'a self) -> usize {
use WrappedVariant::*;
match self {
Recursive { sorted_tag_layouts } | NonRecursive { sorted_tag_layouts } => {
sorted_tag_layouts.len()
}
NullableWrapped {
sorted_tag_layouts, ..
} => {
// assumption: the nullable_name is not included in sorted_tag_layouts
sorted_tag_layouts.len() + 1
}
NullableUnwrapped { .. } => 2,
NonNullableUnwrapped { .. } => 1,
}
}
}
pub fn union_sorted_tags<'a>(
env: &mut Env<'a, '_>,
var: Variable,
) -> Result<UnionVariant<'a>, LayoutProblem> {
use roc_types::pretty_print::ChasedExt;
use Content::*;
let var = if let Content::RecursionVar { structure, .. } =
env.subs.get_content_without_compacting(var)
{
*structure
} else {
var
};
let drop_uninhabited_variants = DropUninhabitedVariants(true);
let mut tags_vec = std::vec::Vec::new();
let result = match roc_types::pretty_print::chase_ext_tag_union(env.subs, var, &mut tags_vec) {
ChasedExt::Empty => {
let opt_rec_var = get_recursion_var(env.subs, var);
let Cacheable(result, _) =
union_sorted_tags_help(env, tags_vec, opt_rec_var, drop_uninhabited_variants);
result
}
ChasedExt::NonEmpty { content, .. } => {
match content {
FlexVar(_) | FlexAbleVar(..) | RigidVar(_) | RigidAbleVar(..) => {
// Admit type variables in the extension for now. This may come from things that never got
// monomorphized, like in
// x : [A]*
// x = A
// x
// In such cases it's fine to drop the variable. We may be proven wrong in the future...
let opt_rec_var = get_recursion_var(env.subs, var);
let Cacheable(result, _) = union_sorted_tags_help(
env,
tags_vec,
opt_rec_var,
drop_uninhabited_variants,
);
result
}
RecursionVar { .. } => {
let opt_rec_var = get_recursion_var(env.subs, var);
let Cacheable(result, _) = union_sorted_tags_help(
env,
tags_vec,
opt_rec_var,
drop_uninhabited_variants,
);
result
}
Error => return Err(LayoutProblem::Erroneous),
other => panic!("invalid content in tag union variable: {other:?}"),
}
}
};
Ok(result)
}
fn get_recursion_var(subs: &Subs, var: Variable) -> Option<Variable> {
match subs.get_content_without_compacting(var) {
Content::Structure(FlatType::RecursiveTagUnion(rec_var, _, _)) => Some(*rec_var),
Content::Alias(_, _, actual, _) => get_recursion_var(subs, *actual),
_ => None,
}
}
trait Label: subs::Label + Ord + Clone + Into<TagOrClosure> {
fn semantic_repr<'a, 'r>(
arena: &'a Bump,
labels: impl ExactSizeIterator<Item = &'r Self>,
) -> SemanticRepr<'a>
where
Self: 'r;
}
impl Label for TagName {
fn semantic_repr<'a, 'r>(
arena: &'a Bump,
labels: impl ExactSizeIterator<Item = &'r Self>,
) -> SemanticRepr<'a> {
SemanticRepr::tag_union(
arena.alloc_slice_fill_iter(labels.map(|x| &*arena.alloc_str(x.0.as_str()))),
)
}
}
impl Label for Symbol {
fn semantic_repr<'a, 'r>(
arena: &'a Bump,
labels: impl ExactSizeIterator<Item = &'r Self>,
) -> SemanticRepr<'a> {
SemanticRepr::lambdas(arena.alloc_slice_fill_iter(labels.copied()))
}
}
struct DropUninhabitedVariants(bool);
fn union_sorted_non_recursive_tags_help<'a, L>(
env: &mut Env<'a, '_>,
tags_list: &mut Vec<'_, &'_ (&'_ L, &[Variable])>,
drop_uninhabited_variants: DropUninhabitedVariants,
) -> Cacheable<UnionVariant<'a>>
where
L: Label + Ord + Clone + Into<TagOrClosure>,
{
let mut cache_criteria = CACHEABLE;
// sort up front; make sure the ordering stays intact!
tags_list.sort_unstable_by(|(a, _), (b, _)| a.cmp(b));
match tags_list.len() {
0 => {
// trying to instantiate a type with no values
Cacheable(UnionVariant::Never, cache_criteria)
}
1 => {
let &&(tag_name, arguments) = &tags_list[0];
let tag_name = tag_name.clone().into();
// just one tag in the union (but with arguments) can be a struct
let mut layouts = Vec::with_capacity_in(tags_list.len(), env.arena);
for &var in arguments {
let Cacheable(result, criteria) = Layout::from_var(env, var);
cache_criteria.and(criteria, env.subs);
match result {
Ok(layout) => {
layouts.push(layout);
}
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// If we encounter an unbound type var (e.g. `Ok *`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty tag union
layouts.push(Layout::VOID)
}
Err(LayoutProblem::Erroneous) => {
// An erroneous type var will code gen to a runtime
// error, so we don't need to store any data for it.
}
}
}
layouts.sort_by(|layout1, layout2| {
let size1 = env
.cache
.get_repr(*layout1)
.alignment_bytes(&env.cache.interner);
let size2 = env
.cache
.get_repr(*layout2)
.alignment_bytes(&env.cache.interner);
size2.cmp(&size1)
});
if layouts.is_empty() {
Cacheable(UnionVariant::Unit, cache_criteria)
} else {
Cacheable(
UnionVariant::Newtype {
tag_name,
arguments: layouts,
},
cache_criteria,
)
}
}
num_tags => {
// default path
let mut answer: Vec<(TagOrClosure, &[InLayout])> =
Vec::with_capacity_in(tags_list.len(), env.arena);
let mut has_any_arguments = false;
let mut inhabited_tag_ids = BitVec::<usize>::repeat(true, num_tags);
for &&(tag_name, arguments) in tags_list.iter() {
let mut arg_layouts = Vec::with_capacity_in(arguments.len() + 1, env.arena);
for &var in arguments {
let Cacheable(result, criteria) = Layout::from_var(env, var);
cache_criteria.and(criteria, env.subs);
match result {
Ok(layout) => {
has_any_arguments = true;
arg_layouts.push(layout);
if layout == Layout::VOID {
inhabited_tag_ids.set(answer.len(), false);
}
}
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// If we encounter an unbound type var (e.g. `Ok *`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty tag union
arg_layouts.push(Layout::VOID)
}
Err(LayoutProblem::Erroneous) => {
// An erroneous type var will code gen to a runtime
// error, so we don't need to store any data for it.
}
}
}
arg_layouts.sort_by(|layout1, layout2| {
let size1 = env
.cache
.get_repr(*layout1)
.alignment_bytes(&env.cache.interner);
let size2 = env
.cache
.get_repr(*layout2)
.alignment_bytes(&env.cache.interner);
size2.cmp(&size1)
});
answer.push((tag_name.clone().into(), arg_layouts.into_bump_slice()));
}
if inhabited_tag_ids.count_ones() == 1 && drop_uninhabited_variants.0 {
let kept_tag_id = inhabited_tag_ids.first_one().unwrap();
let kept = answer.get(kept_tag_id).unwrap();
let variant = UnionVariant::NewtypeByVoid {
data_tag_name: kept.0.clone(),
data_tag_id: kept_tag_id as _,
data_tag_arguments: Vec::from_iter_in(kept.1.iter().copied(), env.arena),
};
return Cacheable(variant, cache_criteria);
}
match num_tags {
2 if !has_any_arguments => {
// type can be stored in a boolean
// tags_vec is sorted, and answer is sorted the same way
let ttrue = answer.remove(1).0;
let ffalse = answer.remove(0).0;
Cacheable(UnionVariant::BoolUnion { ffalse, ttrue }, cache_criteria)
}
3..=MAX_ENUM_SIZE if !has_any_arguments => {
// type can be stored in a byte
// needs the sorted tag names to determine the tag_id
let mut tag_names = Vec::with_capacity_in(answer.len(), env.arena);
for (tag_name, _) in answer {
tag_names.push(tag_name);
}
Cacheable(UnionVariant::ByteUnion(tag_names), cache_criteria)
}
_ => {
let variant = WrappedVariant::NonRecursive {
sorted_tag_layouts: answer,
};
Cacheable(UnionVariant::Wrapped(variant), cache_criteria)
}
}
}
}
}
pub fn union_sorted_tags_pub<'a, L>(
env: &mut Env<'a, '_>,
tags_vec: std::vec::Vec<(L, std::vec::Vec<Variable>)>,
opt_rec_var: Option<Variable>,
) -> UnionVariant<'a>
where
L: Into<TagOrClosure> + Ord + Clone,
{
union_sorted_tags_help(env, tags_vec, opt_rec_var, DropUninhabitedVariants(true)).value()
}
fn union_sorted_tags_help<'a, L>(
env: &mut Env<'a, '_>,
mut tags_vec: std::vec::Vec<(L, std::vec::Vec<Variable>)>,
opt_rec_var: Option<Variable>,
drop_uninhabited_variants: DropUninhabitedVariants,
) -> Cacheable<UnionVariant<'a>>
where
L: Into<TagOrClosure> + Ord + Clone,
{
// sort up front; make sure the ordering stays intact!
tags_vec.sort_unstable_by(|(a, _), (b, _)| a.cmp(b));
let mut cache_criteria = CACHEABLE;
match tags_vec.len() {
0 => {
// trying to instantiate a type with no values
Cacheable(UnionVariant::Never, cache_criteria)
}
1 => {
let (tag_name, arguments) = tags_vec.remove(0);
// just one tag in the union (but with arguments) can be a struct
let mut layouts = Vec::with_capacity_in(tags_vec.len(), env.arena);
for var in arguments {
let Cacheable(result, criteria) = Layout::from_var(env, var);
cache_criteria.and(criteria, env.subs);
match result {
Ok(layout) => {
layouts.push(layout);
}
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// If we encounter an unbound type var (e.g. `Ok *`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty tag union
layouts.push(Layout::VOID)
}
Err(LayoutProblem::Erroneous) => {
// An erroneous type var will code gen to a runtime
// error, so we don't need to store any data for it.
}
}
}
layouts.sort_by(|layout1, layout2| {
let size1 = env.cache.interner.alignment_bytes(*layout1);
let size2 = env.cache.interner.alignment_bytes(*layout2);
size2.cmp(&size1)
});
if layouts.is_empty() {
Cacheable(UnionVariant::Unit, cache_criteria)
} else if let Some(rec_var) = opt_rec_var {
let variant = UnionVariant::Wrapped(WrappedVariant::NonNullableUnwrapped {
tag_name: tag_name.into(),
fields: layouts.into_bump_slice(),
});
cache_criteria.pass_through_recursive_union(rec_var);
Cacheable(variant, cache_criteria)
} else {
Cacheable(
UnionVariant::Newtype {
tag_name: tag_name.into(),
arguments: layouts,
},
cache_criteria,
)
}
}
num_tags => {
// default path
let mut answer = Vec::with_capacity_in(tags_vec.len(), env.arena);
let mut has_any_arguments = false;
let mut nullable = None;
let mut inhabited_tag_ids = BitVec::<usize>::repeat(true, num_tags);
// only recursive tag unions can be nullable
let is_recursive = opt_rec_var.is_some();
if is_recursive && GENERATE_NULLABLE {
for (index, (name, variables)) in tags_vec.iter().enumerate() {
if variables.is_empty() {
nullable = Some((index as TagIdIntType, name.clone()));
break;
}
}
}
for (index, (tag_name, arguments)) in tags_vec.into_iter().enumerate() {
// reserve space for the tag discriminant
if matches!(nullable, Some((i, _)) if i as usize == index) {
debug_assert!(arguments.is_empty());
continue;
}
let mut arg_layouts = Vec::with_capacity_in(arguments.len() + 1, env.arena);
for var in arguments {
let Cacheable(result, criteria) = Layout::from_var(env, var);
cache_criteria.and(criteria, env.subs);
match result {
Ok(in_layout) => {
has_any_arguments = true;
let layout = env.cache.get_in(in_layout);
// make sure to not unroll recursive types!
let self_recursion = opt_rec_var.is_some()
&& env.subs.get_root_key_without_compacting(var)
== env
.subs
.get_root_key_without_compacting(opt_rec_var.unwrap())
&& layout.is_recursive_tag_union(&env.cache.interner);
let arg_layout = if self_recursion {
Layout::NAKED_RECURSIVE_PTR
} else {
in_layout
};
arg_layouts.push(arg_layout);
if layout == Layout::VOID_NAKED {
inhabited_tag_ids.set(answer.len(), false);
}
}
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// If we encounter an unbound type var (e.g. `Ok *`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty struct tag
// union
arg_layouts.push(Layout::VOID);
}
Err(LayoutProblem::Erroneous) => {
// An erroneous type var will code gen to a runtime
// error, so we don't need to store any data for it.
}
}
}
arg_layouts.sort_by(|layout1, layout2| {
let size1 = env
.cache
.get_repr(*layout1)
.alignment_bytes(&env.cache.interner);
let size2 = env
.cache
.get_repr(*layout2)
.alignment_bytes(&env.cache.interner);
size2.cmp(&size1)
});
answer.push((tag_name.into(), arg_layouts.into_bump_slice()));
}
if inhabited_tag_ids.count_ones() == 1 && !is_recursive && drop_uninhabited_variants.0 {
let kept_tag_id = inhabited_tag_ids.first_one().unwrap();
let kept = answer.get(kept_tag_id).unwrap();
let variant = UnionVariant::NewtypeByVoid {
data_tag_name: kept.0.clone(),
data_tag_id: kept_tag_id as _,
data_tag_arguments: Vec::from_iter_in(kept.1.iter().copied(), env.arena),
};
return Cacheable(variant, cache_criteria);
}
match num_tags {
2 if !has_any_arguments => {
// type can be stored in a boolean
// tags_vec is sorted, and answer is sorted the same way
let ttrue = answer.remove(1).0;
let ffalse = answer.remove(0).0;
Cacheable(UnionVariant::BoolUnion { ffalse, ttrue }, cache_criteria)
}
3..=MAX_ENUM_SIZE if !has_any_arguments => {
// type can be stored in a byte
// needs the sorted tag names to determine the tag_id
let mut tag_names = Vec::with_capacity_in(answer.len(), env.arena);
for (tag_name, _) in answer {
tag_names.push(tag_name);
}
Cacheable(UnionVariant::ByteUnion(tag_names), cache_criteria)
}
_ => {
let variant = if let Some((nullable_id, nullable_name)) = nullable {
if answer.len() == 1 {
let (other_name, other_arguments) = answer.drain(..).next().unwrap();
let nullable_id = nullable_id != 0;
WrappedVariant::NullableUnwrapped {
nullable_id,
nullable_name: nullable_name.into(),
other_name,
other_fields: other_arguments,
}
} else {
WrappedVariant::NullableWrapped {
nullable_id,
nullable_name: nullable_name.into(),
sorted_tag_layouts: answer,
}
}
} else if is_recursive {
debug_assert!(answer.len() > 1);
WrappedVariant::Recursive {
sorted_tag_layouts: answer,
}
} else {
WrappedVariant::NonRecursive {
sorted_tag_layouts: answer,
}
};
if let Some(rec_var) = opt_rec_var {
cache_criteria.pass_through_recursive_union(rec_var);
debug_assert!(!matches!(variant, WrappedVariant::NonRecursive { .. }));
}
Cacheable(UnionVariant::Wrapped(variant), cache_criteria)
}
}
}
}
}
fn layout_from_newtype<'a, L: Label>(
env: &mut Env<'a, '_>,
tags: &UnsortedUnionLabels<L>,
) -> Cacheable<InLayout<'a>> {
debug_assert!(tags.is_newtype_wrapper(env.subs));
let (_tag_name, var) = tags.get_newtype(env.subs);
let Cacheable(result, criteria) = Layout::from_var(env, var);
match result {
Ok(layout) => Cacheable(layout, criteria),
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// If we encounter an unbound type var (e.g. `Ok *`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty tag union
Cacheable(Layout::VOID, criteria)
}
Err(LayoutProblem::Erroneous) => {
// An erroneous type var will code gen to a runtime
// error, so we don't need to store any data for it.
todo!()
}
}
}
fn layout_from_non_recursive_union<'a, L>(
env: &mut Env<'a, '_>,
tags: &UnsortedUnionLabels<L>,
drop_uninhabited_variants: DropUninhabitedVariants,
) -> Cacheable<InLayout<'a>>
where
L: Label + Ord + Into<TagOrClosure>,
{
use UnionVariant::*;
if tags.is_newtype_wrapper(env.subs) {
return layout_from_newtype(env, tags);
}
let mut tags_vec = Vec::from_iter_in(tags.tags.iter(), env.arena);
let mut criteria = CACHEABLE;
let variant =
union_sorted_non_recursive_tags_help(env, &mut tags_vec, drop_uninhabited_variants)
.decompose(&mut criteria, env.subs);
let compute_semantic = || L::semantic_repr(env.arena, tags_vec.iter().map(|(l, _)| *l));
let result = match variant {
Never => Layout::VOID,
Unit => env
.cache
.put_in(Layout::new(LayoutRepr::UNIT.direct(), compute_semantic())),
BoolUnion { .. } => env
.cache
.put_in(Layout::new(LayoutRepr::BOOL.direct(), compute_semantic())),
ByteUnion(_) => env
.cache
.put_in(Layout::new(LayoutRepr::U8.direct(), compute_semantic())),
Newtype {
arguments: field_layouts,
..
} => {
let answer1 = if field_layouts.len() == 1 {
field_layouts[0]
} else {
env.cache
.put_in_direct_no_semantic(LayoutRepr::struct_(field_layouts.into_bump_slice()))
};
answer1
}
NewtypeByVoid {
data_tag_arguments, ..
} => {
if data_tag_arguments.len() == 1 {
data_tag_arguments[0]
} else {
env.cache.put_in_direct_no_semantic(LayoutRepr::struct_(
data_tag_arguments.into_bump_slice(),
))
}
}
Wrapped(variant) => {
use WrappedVariant::*;
match variant {
NonRecursive {
sorted_tag_layouts: tags,
} => {
let mut tag_layouts = Vec::with_capacity_in(tags.len(), env.arena);
tag_layouts.extend(tags.iter().map(|r| r.1));
let layout = Layout {
repr: LayoutRepr::Union(UnionLayout::NonRecursive(
tag_layouts.into_bump_slice(),
))
.direct(),
semantic: SemanticRepr::NONE,
};
env.cache.put_in(layout)
}
Recursive { .. }
| NullableWrapped { .. }
| NullableUnwrapped { .. }
| NonNullableUnwrapped { .. } => {
internal_error!("non-recursive tag union has recursive layout")
}
}
}
};
Cacheable(result, criteria)
}
fn layout_from_recursive_union<'a, L>(
env: &mut Env<'a, '_>,
rec_var: Variable,
tags: &UnsortedUnionLabels<L>,
) -> Cacheable<LayoutResult<'a>>
where
L: Label + Ord + Into<TagOrClosure>,
{
let arena = env.arena;
let subs = env.subs;
let mut criteria = CACHEABLE;
// some observations
//
// * recursive tag unions are always recursive
// * therefore at least one tag has a pointer (non-zero sized) field
// * they must (to be instantiated) have 2 or more tags
//
// That means none of the optimizations for enums or single tag tag unions apply
let rec_var = subs.get_root_key_without_compacting(rec_var);
let tags_vec = &tags.tags;
let mut tag_layouts = Vec::with_capacity_in(tags_vec.len(), arena);
let mut nullable = None;
if GENERATE_NULLABLE {
for (index, (_name, variables)) in tags_vec.iter().enumerate() {
if variables.is_empty() {
nullable = Some(index as TagIdIntType);
break;
}
}
}
env.insert_seen(rec_var);
for (index, &(_name, variables)) in tags_vec.iter().enumerate() {
if matches!(nullable, Some(i) if i == index as TagIdIntType) {
// don't add the nullable case
continue;
}
let mut tag_layout = Vec::with_capacity_in(variables.len() + 1, arena);
for &var in variables {
// TODO does this cause problems with mutually recursive unions?
if rec_var == subs.get_root_key_without_compacting(var) {
// The naked pointer will get fixed-up to loopback to the union below when we
// intern the union.
tag_layout.push(Layout::NAKED_RECURSIVE_PTR);
criteria.and(NAKED_RECURSION_PTR, env.subs);
continue;
}
let payload = cached!(Layout::from_var(env, var), criteria, env.subs);
tag_layout.push(payload);
}
tag_layout.sort_by(|layout1, layout2| {
// TODO(intern-layouts): provide alignment bytes on interner
let size1 = env.cache.interner.alignment_bytes(*layout1);
let size2 = env.cache.interner.alignment_bytes(*layout2);
size2.cmp(&size1)
});
tag_layouts.push(tag_layout.into_bump_slice());
}
env.remove_seen(rec_var);
let union_layout = if let Some(tag_id) = nullable {
match tag_layouts.into_bump_slice() {
[one] => {
let nullable_id = tag_id != 0;
UnionLayout::NullableUnwrapped {
nullable_id,
other_fields: one,
}
}
many => UnionLayout::NullableWrapped {
nullable_id: tag_id,
other_tags: many,
},
}
} else if tag_layouts.len() == 1 {
// drop the tag id
UnionLayout::NonNullableUnwrapped(tag_layouts.pop().unwrap())
} else {
UnionLayout::Recursive(tag_layouts.into_bump_slice())
};
let union_layout = if criteria.has_naked_recursion_pointer {
env.cache.interner.insert_recursive(
env.arena,
Layout {
repr: LayoutRepr::Union(union_layout).direct(),
semantic: SemanticRepr::NONE,
},
)
} else {
// There are no naked recursion pointers, so we can insert the layout as-is.
env.cache.interner.insert(Layout {
repr: LayoutRepr::Union(union_layout).direct(),
semantic: SemanticRepr::NONE,
})
};
criteria.pass_through_recursive_union(rec_var);
Cacheable(Ok(union_layout), criteria)
}
#[cfg(debug_assertions)]
pub fn ext_var_is_empty_record(subs: &Subs, ext_var: Variable) -> bool {
// the ext_var is empty
let fields = match roc_types::types::gather_fields(subs, RecordFields::empty(), ext_var) {
Ok(fields) => fields,
Err(_) => return false,
};
fields.fields.is_empty()
}
#[cfg(not(debug_assertions))]
pub fn ext_var_is_empty_record(_subs: &Subs, _ext_var: Variable) -> bool {
// This should only ever be used in debug_assert! macros
unreachable!();
}
#[cfg(debug_assertions)]
pub fn ext_var_is_empty_tag_union(subs: &Subs, tag_ext: TagExt) -> bool {
use roc_types::pretty_print::ChasedExt;
use Content::*;
// the ext_var is empty
let mut ext_fields = std::vec::Vec::new();
match roc_types::pretty_print::chase_ext_tag_union(subs, tag_ext.var(), &mut ext_fields) {
ChasedExt::Empty => ext_fields.is_empty(),
ChasedExt::NonEmpty { content, .. } => {
match content {
// Allow flex/rigid to decay away into nothing
FlexVar(_) | FlexAbleVar(..) | RigidVar(_) | RigidAbleVar(..) => {
ext_fields.is_empty()
}
// So that we can continue compiling in the presence of errors
Error => ext_fields.is_empty(),
_ => panic!("invalid content in ext_var: {content:?}"),
}
}
}
}
#[cfg(not(debug_assertions))]
pub fn ext_var_is_empty_tag_union(_: &Subs, _: TagExt) -> bool {
// This should only ever be used in debug_assert! macros
unreachable!();
}
fn layout_from_num_content<'a>(
content: &Content,
target_info: TargetInfo,
) -> Cacheable<LayoutResult<'a>> {
use roc_types::subs::Content::*;
use roc_types::subs::FlatType::*;
let result = match content {
RecursionVar { .. } => panic!("recursion var in num"),
FlexVar(_) | RigidVar(_) => {
// If a Num makes it all the way through type checking with an unbound
// type variable, then assume it's a 64-bit integer.
//
// (e.g. for (5 + 5) assume both 5s are 64-bit integers.)
Ok(Layout::default_integer())
}
FlexAbleVar(_, _) | RigidAbleVar(_, _) => todo_abilities!("Not reachable yet"),
Structure(Apply(symbol, args)) => match *symbol {
// Ints
Symbol::NUM_NAT => Ok(Layout::usize(target_info)),
Symbol::NUM_INTEGER => Ok(Layout::I64),
Symbol::NUM_I128 => Ok(Layout::I128),
Symbol::NUM_I64 => Ok(Layout::I64),
Symbol::NUM_I32 => Ok(Layout::I32),
Symbol::NUM_I16 => Ok(Layout::I16),
Symbol::NUM_I8 => Ok(Layout::I8),
Symbol::NUM_U128 => Ok(Layout::U128),
Symbol::NUM_U64 => Ok(Layout::U64),
Symbol::NUM_U32 => Ok(Layout::U32),
Symbol::NUM_U16 => Ok(Layout::U16),
Symbol::NUM_U8 => Ok(Layout::U8),
// Floats
Symbol::NUM_FLOATINGPOINT => Ok(Layout::F64),
Symbol::NUM_F64 => Ok(Layout::F64),
Symbol::NUM_F32 => Ok(Layout::F32),
// Dec
Symbol::NUM_DEC => Ok(Layout::DEC),
_ => {
panic!("Invalid Num.Num type application: Apply({symbol:?}, {args:?})");
}
},
Alias(_, _, _, _) => {
todo!("TODO recursively resolve type aliases in num_from_content");
}
Structure(_) | RangedNumber(..) | LambdaSet(_) | ErasedLambda => {
panic!("Invalid Num.Num type application: {content:?}");
}
Error => Err(LayoutProblem::Erroneous),
};
cacheable(result)
}
pub(crate) fn list_layout_from_elem<'a>(
env: &mut Env<'a, '_>,
element_var: Variable,
) -> Cacheable<LayoutResult<'a>> {
let mut criteria = CACHEABLE;
let is_variable = |content| matches!(content, &Content::FlexVar(_) | &Content::RigidVar(_));
let element_content = env.subs.get_content_without_compacting(element_var);
let element_layout = if is_variable(element_content) {
// If this was still a (List *) then it must have been an empty list
Layout::VOID
} else {
// NOTE: cannot re-use Content, because it may be recursive
// then some state is not correctly kept, we have to go through from_var
cached!(Layout::from_var(env, element_var), criteria, env.subs)
};
let list_layout = env.cache.put_in(Layout {
repr: LayoutRepr::Builtin(Builtin::List(element_layout)).direct(),
semantic: SemanticRepr::NONE,
});
Cacheable(Ok(list_layout), criteria)
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct LayoutId(u32);
impl LayoutId {
// Returns something like "#UserApp_foo_1" when given a symbol that interns to "foo"
// and a LayoutId of 1.
pub fn to_symbol_string(self, symbol: Symbol, interns: &Interns) -> String {
let ident_string = symbol.as_str(interns);
let module_string = interns.module_ids.get_name(symbol.module_id()).unwrap();
format!("{}_{}_{}", module_string, ident_string, self.0)
}
// Returns something like "roc__foo_1_exposed" when given a symbol that interns to "foo"
// and a LayoutId of 1.
pub fn to_exposed_symbol_string(self, symbol: Symbol, interns: &Interns) -> String {
let ident_string = symbol.as_str(interns);
format!("roc__{}_{}_exposed", ident_string, self.0)
}
pub fn to_exposed_generic_symbol_string(self, symbol: Symbol, interns: &Interns) -> String {
let ident_string = symbol.as_str(interns);
format!("roc__{}_{}_exposed_generic", ident_string, self.0)
}
}
struct IdsByLayout<'a> {
by_id: MutMap<LayoutRepr<'a>, u32>,
toplevels_by_id: MutMap<crate::ir::ProcLayout<'a>, u32>,
next_id: u32,
}
impl<'a> IdsByLayout<'a> {
#[inline(always)]
fn insert_layout(&mut self, layout: LayoutRepr<'a>) -> LayoutId {
match self.by_id.entry(layout) {
Entry::Vacant(vacant) => {
let answer = self.next_id;
vacant.insert(answer);
self.next_id += 1;
LayoutId(answer)
}
Entry::Occupied(occupied) => LayoutId(*occupied.get()),
}
}
#[inline(always)]
fn singleton_layout(layout: LayoutRepr<'a>) -> (Self, LayoutId) {
let mut by_id = HashMap::with_capacity_and_hasher(1, default_hasher());
by_id.insert(layout, 1);
let ids_by_layout = IdsByLayout {
by_id,
toplevels_by_id: Default::default(),
next_id: 2,
};
(ids_by_layout, LayoutId(1))
}
#[inline(always)]
fn insert_toplevel(&mut self, layout: crate::ir::ProcLayout<'a>) -> LayoutId {
match self.toplevels_by_id.entry(layout) {
Entry::Vacant(vacant) => {
let answer = self.next_id;
vacant.insert(answer);
self.next_id += 1;
LayoutId(answer)
}
Entry::Occupied(occupied) => LayoutId(*occupied.get()),
}
}
#[inline(always)]
fn singleton_toplevel(layout: crate::ir::ProcLayout<'a>) -> (Self, LayoutId) {
let mut toplevels_by_id = HashMap::with_capacity_and_hasher(1, default_hasher());
toplevels_by_id.insert(layout, 1);
let ids_by_layout = IdsByLayout {
by_id: Default::default(),
toplevels_by_id,
next_id: 2,
};
(ids_by_layout, LayoutId(1))
}
}
#[derive(Default)]
pub struct LayoutIds<'a> {
by_symbol: MutMap<Symbol, IdsByLayout<'a>>,
}
impl<'a> LayoutIds<'a> {
/// Returns a LayoutId which is unique for the given symbol and layout.
/// If given the same symbol and same layout, returns the same LayoutId.
#[inline(always)]
pub fn get<'b>(&mut self, symbol: Symbol, layout: &'b LayoutRepr<'a>) -> LayoutId {
match self.by_symbol.entry(symbol) {
Entry::Vacant(vacant) => {
let (ids_by_layout, layout_id) = IdsByLayout::singleton_layout(*layout);
vacant.insert(ids_by_layout);
layout_id
}
Entry::Occupied(mut occupied_ids) => occupied_ids.get_mut().insert_layout(*layout),
}
}
/// Returns a LayoutId which is unique for the given symbol and layout.
/// If given the same symbol and same layout, returns the same LayoutId.
#[inline(always)]
pub fn get_toplevel<'b>(
&mut self,
symbol: Symbol,
layout: &'b crate::ir::ProcLayout<'a>,
) -> LayoutId {
match self.by_symbol.entry(symbol) {
Entry::Vacant(vacant) => {
let (ids_by_layout, layout_id) = IdsByLayout::singleton_toplevel(*layout);
vacant.insert(ids_by_layout);
layout_id
}
Entry::Occupied(mut occupied_ids) => occupied_ids.get_mut().insert_toplevel(*layout),
}
}
}
/// Compare two fields when sorting them for code gen.
/// This is called by both code gen and glue, so that
/// their field orderings agree.
#[inline(always)]
pub fn cmp_fields<'a, L: Ord, I>(
interner: &I,
label1: &L,
layout1: InLayout<'a>,
label2: &L,
layout2: InLayout<'a>,
) -> Ordering
where
I: LayoutInterner<'a>,
{
let size1 = interner.get_repr(layout1).alignment_bytes(interner);
let size2 = interner.get_repr(layout2).alignment_bytes(interner);
size2.cmp(&size1).then(label1.cmp(label2))
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn width_and_alignment_union_empty_struct() {
let mut interner = STLayoutInterner::with_capacity(4, TargetInfo::default_x86_64());
let lambda_set = LambdaSet {
args: &(&[] as &[InLayout]),
ret: Layout::VOID,
set: &(&[(Symbol::LIST_MAP, &[] as &[InLayout])] as &[(Symbol, &[InLayout])]),
representation: Layout::UNIT,
full_layout: Layout::VOID,
};
let a = &[Layout::UNIT] as &[_];
let b = &[interner.insert(Layout {
repr: LayoutRepr::LambdaSet(lambda_set).direct(),
semantic: SemanticRepr::NONE,
})] as &[_];
let tt = [a, b];
let repr = LayoutRepr::Union(UnionLayout::NonRecursive(&tt));
assert_eq!(repr.stack_size(&interner), 1);
assert_eq!(repr.alignment_bytes(&interner), 1);
}
#[test]
fn memcpy_size_result_u32_unit() {
let mut interner = STLayoutInterner::with_capacity(4, TargetInfo::default_x86_64());
let ok_tag = &[interner.insert(Layout {
repr: LayoutRepr::Builtin(Builtin::Int(IntWidth::U32)).direct(),
semantic: SemanticRepr::NONE,
})];
let err_tag = &[Layout::UNIT];
let tags = [ok_tag as &[_], err_tag as &[_]];
let union_layout = UnionLayout::NonRecursive(&tags as &[_]);
let repr = LayoutRepr::Union(union_layout);
assert_eq!(repr.stack_size_without_alignment(&interner), 8);
}
#[test]
fn void_stack_size() {
let interner = STLayoutInterner::with_capacity(4, TargetInfo::default_x86_64());
assert_eq!(Layout::VOID_NAKED.repr(&interner).stack_size(&interner), 0);
}
#[test]
fn align_u128_in_tag_union() {
let interner = STLayoutInterner::with_capacity(4, TargetInfo::default_x86_64());
assert_eq!(interner.alignment_bytes(Layout::U128), 16);
}
}