mirror of
https://github.com/roc-lang/roc.git
synced 2025-09-28 14:24:45 +00:00
1594 lines
53 KiB
Rust
1594 lines
53 KiB
Rust
use roc_can::constraint::Constraint::{self, *};
|
|
use roc_can::expected::{Expected, PExpected};
|
|
use roc_collections::all::{ImMap, MutMap};
|
|
use roc_module::symbol::Symbol;
|
|
use roc_region::all::{Located, Region};
|
|
use roc_types::solved_types::Solved;
|
|
use roc_types::subs::{Content, Descriptor, FlatType, Mark, OptVariable, Rank, Subs, Variable};
|
|
use roc_types::types::Type::{self, *};
|
|
use roc_types::types::{Alias, Category, ErrorType, PatternCategory, RecordField};
|
|
use roc_unify::unify::unify;
|
|
use roc_unify::unify::Unified::*;
|
|
|
|
// Type checking system adapted from Elm by Evan Czaplicki, BSD-3-Clause Licensed
|
|
// https://github.com/elm/compiler
|
|
// Thank you, Evan!
|
|
|
|
// A lot of energy was put into making type inference fast. That means it's pretty intimidating.
|
|
//
|
|
// Fundamentally, type inference assigns very general types based on syntax, and then tries to
|
|
// make all the pieces fit together. For instance when writing
|
|
//
|
|
// > f x
|
|
//
|
|
// We know that `f` is a function, and thus must have some type `a -> b`.
|
|
// `x` is just a variable, that gets the type `c`
|
|
//
|
|
// Next comes constraint generation. For `f x` to be well-typed,
|
|
// it must be the case that `c = a`, So a constraint `Eq(c, a)` is generated.
|
|
// But `Eq` is a bit special: `c` does not need to equal `a` exactly, but they need to be equivalent.
|
|
// This allows for instance the use of aliases. `c` could be an alias, and so looks different from
|
|
// `a`, but they still represent the same type.
|
|
//
|
|
// Then we get to solving, which happens in this file.
|
|
//
|
|
// When we hit an `Eq` constraint, then we check whether the two involved types are in fact
|
|
// equivalent using unification, and when they are, we can substitute one for the other.
|
|
//
|
|
// When all constraints are processed, and no unification errors have occurred, then the program
|
|
// is type-correct. Otherwise the errors are reported.
|
|
//
|
|
// Now, coming back to efficiency, this type checker uses *ranks* to optimize
|
|
// The rank tracks the number of let-bindings a variable is "under". Top-level definitions
|
|
// have rank 1. A let in a top-level definition gets rank 2, and so on.
|
|
//
|
|
// This has to do with generalization of type variables. This is described here
|
|
//
|
|
// http://okmij.org/ftp/ML/generalization.html#levels
|
|
//
|
|
// The problem is that when doing inference naively, this program would fail to typecheck
|
|
//
|
|
// f =
|
|
// id = \x -> x
|
|
//
|
|
// { a: id 1, b: id "foo" }
|
|
//
|
|
// Because `id` is applied to an integer, the type `Int -> Int` is inferred, which then gives a
|
|
// type error for `id "foo"`.
|
|
//
|
|
// Thus instead the inferred type for `id` is generalized (see the `generalize` function) to `a -> a`.
|
|
// Ranks are used to limit the number of type variables considered for generalization. Only those inside
|
|
// of the let (so those used in inferring the type of `\x -> x`) are considered.
|
|
|
|
#[derive(PartialEq, Debug, Clone)]
|
|
pub enum TypeError {
|
|
BadExpr(Region, Category, ErrorType, Expected<ErrorType>),
|
|
BadPattern(Region, PatternCategory, ErrorType, PExpected<ErrorType>),
|
|
CircularType(Region, Symbol, ErrorType),
|
|
BadType(roc_types::types::Problem),
|
|
UnexposedLookup(Symbol),
|
|
}
|
|
|
|
#[derive(Clone, Debug, Default)]
|
|
pub struct Env {
|
|
pub vars_by_symbol: MutMap<Symbol, Variable>,
|
|
pub aliases: MutMap<Symbol, Alias>,
|
|
}
|
|
|
|
const DEFAULT_POOLS: usize = 8;
|
|
|
|
#[derive(Clone, Debug)]
|
|
struct Pools(Vec<Vec<Variable>>);
|
|
|
|
impl Default for Pools {
|
|
fn default() -> Self {
|
|
Pools::new(DEFAULT_POOLS)
|
|
}
|
|
}
|
|
|
|
impl Pools {
|
|
pub fn new(num_pools: usize) -> Self {
|
|
Pools(vec![Vec::new(); num_pools])
|
|
}
|
|
|
|
pub fn len(&self) -> usize {
|
|
self.0.len()
|
|
}
|
|
|
|
pub fn get_mut(&mut self, rank: Rank) -> &mut Vec<Variable> {
|
|
self.0
|
|
.get_mut(rank.into_usize())
|
|
.unwrap_or_else(|| panic!("Compiler bug: could not find pool at rank {}", rank))
|
|
}
|
|
|
|
pub fn get(&self, rank: Rank) -> &Vec<Variable> {
|
|
self.0
|
|
.get(rank.into_usize())
|
|
.unwrap_or_else(|| panic!("Compiler bug: could not find pool at rank {}", rank))
|
|
}
|
|
|
|
pub fn iter(&self) -> std::slice::Iter<'_, Vec<Variable>> {
|
|
self.0.iter()
|
|
}
|
|
|
|
pub fn split_last(&self) -> (&Vec<Variable>, &[Vec<Variable>]) {
|
|
self.0
|
|
.split_last()
|
|
.unwrap_or_else(|| panic!("Attempted to split_last() on non-empy Pools"))
|
|
}
|
|
|
|
pub fn extend_to(&mut self, n: usize) {
|
|
for _ in self.len()..n {
|
|
self.0.push(Vec::new());
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
struct State {
|
|
env: Env,
|
|
mark: Mark,
|
|
}
|
|
|
|
pub fn run(
|
|
env: &Env,
|
|
problems: &mut Vec<TypeError>,
|
|
mut subs: Subs,
|
|
constraint: &Constraint,
|
|
) -> (Solved<Subs>, Env) {
|
|
let env = run_in_place(env, problems, &mut subs, constraint);
|
|
|
|
(Solved(subs), env)
|
|
}
|
|
|
|
/// Modify an existing subs in-place instead
|
|
pub fn run_in_place(
|
|
env: &Env,
|
|
problems: &mut Vec<TypeError>,
|
|
subs: &mut Subs,
|
|
constraint: &Constraint,
|
|
) -> Env {
|
|
let mut pools = Pools::default();
|
|
let state = State {
|
|
env: env.clone(),
|
|
mark: Mark::NONE.next(),
|
|
};
|
|
let rank = Rank::toplevel();
|
|
let state = solve(
|
|
env,
|
|
state,
|
|
rank,
|
|
&mut pools,
|
|
problems,
|
|
&mut MutMap::default(),
|
|
subs,
|
|
constraint,
|
|
);
|
|
|
|
state.env
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn solve(
|
|
env: &Env,
|
|
state: State,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
problems: &mut Vec<TypeError>,
|
|
cached_aliases: &mut MutMap<Symbol, Variable>,
|
|
subs: &mut Subs,
|
|
constraint: &Constraint,
|
|
) -> State {
|
|
match constraint {
|
|
True => state,
|
|
SaveTheEnvironment => {
|
|
// NOTE deviation: elm only copies the env into the state on SaveTheEnvironment
|
|
let mut copy = state;
|
|
|
|
copy.env = env.clone();
|
|
|
|
copy
|
|
}
|
|
Eq(typ, expectation, category, region) => {
|
|
let actual = type_to_var(subs, rank, pools, cached_aliases, typ);
|
|
let expected = type_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
cached_aliases,
|
|
expectation.get_type_ref(),
|
|
);
|
|
|
|
match unify(subs, actual, expected) {
|
|
Success(vars) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
state
|
|
}
|
|
Failure(vars, actual_type, expected_type) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::BadExpr(
|
|
*region,
|
|
category.clone(),
|
|
actual_type,
|
|
expectation.clone().replace(expected_type),
|
|
);
|
|
|
|
problems.push(problem);
|
|
|
|
state
|
|
}
|
|
BadType(vars, problem) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
problems.push(TypeError::BadType(problem));
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
Store(source, target, _filename, _linenr) => {
|
|
// a special version of Eq that is used to store types in the AST.
|
|
// IT DOES NOT REPORT ERRORS!
|
|
let actual = type_to_var(subs, rank, pools, cached_aliases, source);
|
|
let target = *target;
|
|
|
|
match unify(subs, actual, target) {
|
|
Success(vars) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
state
|
|
}
|
|
Failure(vars, _actual_type, _expected_type) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
// ERROR NOT REPORTED
|
|
|
|
state
|
|
}
|
|
BadType(vars, _problem) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
// ERROR NOT REPORTED
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
Lookup(symbol, expectation, region) => {
|
|
match env.vars_by_symbol.get(&symbol) {
|
|
Some(var) => {
|
|
// Deep copy the vars associated with this symbol before unifying them.
|
|
// Otherwise, suppose we have this:
|
|
//
|
|
// identity = \a -> a
|
|
//
|
|
// x = identity 5
|
|
//
|
|
// When we call (identity 5), it's important that we not unify
|
|
// on identity's original vars. If we do, the type of `identity` will be
|
|
// mutated to be `Int -> Int` instead of `a -> `, which would be incorrect;
|
|
// the type of `identity` is more general than that!
|
|
//
|
|
// Instead, we want to unify on a *copy* of its vars. If the copy unifies
|
|
// successfully (in this case, to `Int -> Int`), we can use that to
|
|
// infer the type of this lookup (in this case, `Int`) without ever
|
|
// having mutated the original.
|
|
//
|
|
// If this Lookup is targeting a value in another module,
|
|
// then we copy from that module's Subs into our own. If the value
|
|
// is being looked up in this module, then we use our Subs as both
|
|
// the source and destination.
|
|
let actual = deep_copy_var(subs, rank, pools, *var);
|
|
let expected = type_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
cached_aliases,
|
|
expectation.get_type_ref(),
|
|
);
|
|
match unify(subs, actual, expected) {
|
|
Success(vars) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
state
|
|
}
|
|
|
|
Failure(vars, actual_type, expected_type) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::BadExpr(
|
|
*region,
|
|
Category::Lookup(*symbol),
|
|
actual_type,
|
|
expectation.clone().replace(expected_type),
|
|
);
|
|
|
|
problems.push(problem);
|
|
|
|
state
|
|
}
|
|
BadType(vars, problem) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
problems.push(TypeError::BadType(problem));
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
problems.push(TypeError::UnexposedLookup(*symbol));
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
And(sub_constraints) => {
|
|
let mut state = state;
|
|
|
|
for sub_constraint in sub_constraints.iter() {
|
|
state = solve(
|
|
env,
|
|
state,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
cached_aliases,
|
|
subs,
|
|
sub_constraint,
|
|
);
|
|
}
|
|
|
|
state
|
|
}
|
|
Pattern(region, category, typ, expectation) => {
|
|
let actual = type_to_var(subs, rank, pools, cached_aliases, typ);
|
|
let expected = type_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
cached_aliases,
|
|
expectation.get_type_ref(),
|
|
);
|
|
|
|
match unify(subs, actual, expected) {
|
|
Success(vars) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
state
|
|
}
|
|
Failure(vars, actual_type, expected_type) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::BadPattern(
|
|
*region,
|
|
category.clone(),
|
|
actual_type,
|
|
expectation.clone().replace(expected_type),
|
|
);
|
|
|
|
problems.push(problem);
|
|
|
|
state
|
|
}
|
|
BadType(vars, problem) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
problems.push(TypeError::BadType(problem));
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
Let(let_con) => {
|
|
match &let_con.ret_constraint {
|
|
True if let_con.rigid_vars.is_empty() => {
|
|
introduce(subs, rank, pools, &let_con.flex_vars);
|
|
|
|
// If the return expression is guaranteed to solve,
|
|
// solve the assignments themselves and move on.
|
|
solve(
|
|
&env,
|
|
state,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
cached_aliases,
|
|
subs,
|
|
&let_con.defs_constraint,
|
|
)
|
|
}
|
|
ret_con if let_con.rigid_vars.is_empty() && let_con.flex_vars.is_empty() => {
|
|
let state = solve(
|
|
env,
|
|
state,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
cached_aliases,
|
|
subs,
|
|
&let_con.defs_constraint,
|
|
);
|
|
|
|
// Add a variable for each def to new_vars_by_env.
|
|
let mut local_def_vars = ImMap::default();
|
|
|
|
for (symbol, loc_type) in let_con.def_types.iter() {
|
|
let var = type_to_var(subs, rank, pools, cached_aliases, &loc_type.value);
|
|
|
|
local_def_vars.insert(
|
|
*symbol,
|
|
Located {
|
|
value: var,
|
|
region: loc_type.region,
|
|
},
|
|
);
|
|
}
|
|
|
|
let mut new_env = env.clone();
|
|
for (symbol, loc_var) in local_def_vars.iter() {
|
|
if !new_env.vars_by_symbol.contains_key(&symbol) {
|
|
new_env.vars_by_symbol.insert(*symbol, loc_var.value);
|
|
}
|
|
}
|
|
|
|
let new_state = solve(
|
|
&new_env,
|
|
state,
|
|
rank,
|
|
pools,
|
|
problems,
|
|
cached_aliases,
|
|
subs,
|
|
ret_con,
|
|
);
|
|
|
|
for (symbol, loc_var) in local_def_vars {
|
|
check_for_infinite_type(subs, problems, symbol, loc_var);
|
|
}
|
|
|
|
new_state
|
|
}
|
|
ret_con => {
|
|
let rigid_vars = &let_con.rigid_vars;
|
|
let flex_vars = &let_con.flex_vars;
|
|
|
|
// work in the next pool to localize header
|
|
let next_rank = rank.next();
|
|
|
|
// introduce variables
|
|
for &var in rigid_vars.iter().chain(flex_vars.iter()) {
|
|
subs.set_rank(var, next_rank);
|
|
}
|
|
|
|
// determine the next pool
|
|
let next_pools;
|
|
if next_rank.into_usize() < pools.len() {
|
|
next_pools = pools
|
|
} else {
|
|
// we should be off by one at this point
|
|
debug_assert_eq!(next_rank.into_usize(), 1 + pools.len());
|
|
pools.extend_to(next_rank.into_usize());
|
|
next_pools = pools;
|
|
}
|
|
|
|
let pool: &mut Vec<Variable> = next_pools.get_mut(next_rank);
|
|
|
|
// Replace the contents of this pool with rigid_vars and flex_vars
|
|
pool.clear();
|
|
pool.reserve(rigid_vars.len() + flex_vars.len());
|
|
pool.extend(rigid_vars.iter());
|
|
pool.extend(flex_vars.iter());
|
|
|
|
// run solver in next pool
|
|
|
|
// Add a variable for each def to local_def_vars.
|
|
let mut local_def_vars = ImMap::default();
|
|
|
|
for (symbol, loc_type) in let_con.def_types.iter() {
|
|
let def_type = &loc_type.value;
|
|
|
|
let var =
|
|
type_to_var(subs, next_rank, next_pools, cached_aliases, def_type);
|
|
|
|
local_def_vars.insert(
|
|
*symbol,
|
|
Located {
|
|
value: var,
|
|
region: loc_type.region,
|
|
},
|
|
);
|
|
}
|
|
|
|
// Solve the assignments' constraints first.
|
|
let State {
|
|
env: saved_env,
|
|
mark,
|
|
} = solve(
|
|
&env,
|
|
state,
|
|
next_rank,
|
|
next_pools,
|
|
problems,
|
|
cached_aliases,
|
|
subs,
|
|
&let_con.defs_constraint,
|
|
);
|
|
|
|
let young_mark = mark;
|
|
let visit_mark = young_mark.next();
|
|
let final_mark = visit_mark.next();
|
|
|
|
debug_assert_eq!(
|
|
{
|
|
let offenders = next_pools
|
|
.get(next_rank)
|
|
.iter()
|
|
.filter(|var| {
|
|
let current = subs.get_without_compacting(
|
|
roc_types::subs::Variable::clone(var),
|
|
);
|
|
|
|
current.rank.into_usize() > next_rank.into_usize()
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
let result = offenders.len();
|
|
|
|
if result > 0 {
|
|
dbg!(&subs, &offenders, &let_con.def_types);
|
|
}
|
|
|
|
result
|
|
},
|
|
0
|
|
);
|
|
|
|
// pop pool
|
|
generalize(subs, young_mark, visit_mark, next_rank, next_pools);
|
|
|
|
next_pools.get_mut(next_rank).clear();
|
|
|
|
// check that things went well
|
|
debug_assert!({
|
|
// NOTE the `subs.redundant` check is added for the uniqueness
|
|
// inference, and does not come from elm. It's unclear whether this is
|
|
// a bug with uniqueness inference (something is redundant that
|
|
// shouldn't be) or that it just never came up in elm.
|
|
let failing: Vec<_> = rigid_vars
|
|
.iter()
|
|
.filter(|&var| {
|
|
!subs.redundant(*var)
|
|
&& subs.get_without_compacting(*var).rank != Rank::NONE
|
|
})
|
|
.collect();
|
|
|
|
if !failing.is_empty() {
|
|
println!("Rigids {:?}", &rigid_vars);
|
|
println!("Failing {:?}", failing);
|
|
}
|
|
|
|
failing.is_empty()
|
|
});
|
|
|
|
let mut new_env = env.clone();
|
|
for (symbol, loc_var) in local_def_vars.iter() {
|
|
// when there are duplicates, keep the one from `env`
|
|
if !new_env.vars_by_symbol.contains_key(&symbol) {
|
|
new_env.vars_by_symbol.insert(*symbol, loc_var.value);
|
|
}
|
|
}
|
|
|
|
// Note that this vars_by_symbol is the one returned by the
|
|
// previous call to solve()
|
|
let temp_state = State {
|
|
env: saved_env,
|
|
mark: final_mark,
|
|
};
|
|
|
|
// Now solve the body, using the new vars_by_symbol which includes
|
|
// the assignments' name-to-variable mappings.
|
|
let new_state = solve(
|
|
&new_env,
|
|
temp_state,
|
|
rank,
|
|
next_pools,
|
|
problems,
|
|
cached_aliases,
|
|
subs,
|
|
&ret_con,
|
|
);
|
|
|
|
for (symbol, loc_var) in local_def_vars {
|
|
check_for_infinite_type(subs, problems, symbol, loc_var);
|
|
}
|
|
|
|
new_state
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn type_to_var(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
cached: &mut MutMap<Symbol, Variable>,
|
|
typ: &Type,
|
|
) -> Variable {
|
|
type_to_variable(subs, rank, pools, cached, typ)
|
|
}
|
|
|
|
/// Abusing existing functions for our purposes
|
|
/// this is to put a solved type back into subs
|
|
pub fn insert_type_into_subs(subs: &mut Subs, typ: &Type) -> Variable {
|
|
let rank = Rank::NONE;
|
|
let mut pools = Pools::default();
|
|
let mut cached = MutMap::default();
|
|
|
|
type_to_variable(subs, rank, &mut pools, &mut cached, typ)
|
|
}
|
|
|
|
fn type_to_variable(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
cached: &mut MutMap<Symbol, Variable>,
|
|
typ: &Type,
|
|
) -> Variable {
|
|
match typ {
|
|
Variable(var) => *var,
|
|
Apply(symbol, args) => {
|
|
let mut arg_vars = Vec::with_capacity(args.len());
|
|
|
|
for arg in args {
|
|
arg_vars.push(type_to_variable(subs, rank, pools, cached, arg))
|
|
}
|
|
|
|
let flat_type = FlatType::Apply(*symbol, arg_vars);
|
|
let content = Content::Structure(flat_type);
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
EmptyRec => Variable::EMPTY_RECORD,
|
|
EmptyTagUnion => Variable::EMPTY_TAG_UNION,
|
|
|
|
// This case is important for the rank of boolean variables
|
|
Function(args, closure_type, ret_type) => {
|
|
let mut arg_vars = Vec::with_capacity(args.len());
|
|
|
|
for arg in args {
|
|
arg_vars.push(type_to_variable(subs, rank, pools, cached, arg))
|
|
}
|
|
|
|
let ret_var = type_to_variable(subs, rank, pools, cached, ret_type);
|
|
let closure_var = type_to_variable(subs, rank, pools, cached, closure_type);
|
|
let content = Content::Structure(FlatType::Func(arg_vars, closure_var, ret_var));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
Record(fields, ext) => {
|
|
let mut field_vars = MutMap::default();
|
|
|
|
for (field, field_type) in fields {
|
|
use RecordField::*;
|
|
|
|
let field_var = match field_type {
|
|
Required(typ) => Required(type_to_variable(subs, rank, pools, cached, typ)),
|
|
Optional(typ) => Optional(type_to_variable(subs, rank, pools, cached, typ)),
|
|
Demanded(typ) => Demanded(type_to_variable(subs, rank, pools, cached, typ)),
|
|
};
|
|
|
|
field_vars.insert(field.clone(), field_var);
|
|
}
|
|
|
|
let temp_ext_var = type_to_variable(subs, rank, pools, cached, ext);
|
|
let new_ext_var = match roc_types::pretty_print::chase_ext_record(
|
|
subs,
|
|
temp_ext_var,
|
|
&mut field_vars,
|
|
) {
|
|
Ok(()) => Variable::EMPTY_RECORD,
|
|
Err((new, _)) => new,
|
|
};
|
|
|
|
let content = Content::Structure(FlatType::Record(field_vars, new_ext_var));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
TagUnion(tags, ext) => {
|
|
let mut tag_vars = MutMap::default();
|
|
|
|
for (tag, tag_argument_types) in tags {
|
|
let mut tag_argument_vars = Vec::with_capacity(tag_argument_types.len());
|
|
|
|
for arg_type in tag_argument_types {
|
|
tag_argument_vars.push(type_to_variable(subs, rank, pools, cached, arg_type));
|
|
}
|
|
|
|
tag_vars.insert(tag.clone(), tag_argument_vars);
|
|
}
|
|
|
|
let temp_ext_var = type_to_variable(subs, rank, pools, cached, ext);
|
|
let mut ext_tag_vec = Vec::new();
|
|
let new_ext_var = match roc_types::pretty_print::chase_ext_tag_union(
|
|
subs,
|
|
temp_ext_var,
|
|
&mut ext_tag_vec,
|
|
) {
|
|
Ok(()) => Variable::EMPTY_TAG_UNION,
|
|
Err((new, _)) => new,
|
|
};
|
|
tag_vars.extend(ext_tag_vec.into_iter());
|
|
|
|
let content = Content::Structure(FlatType::TagUnion(tag_vars, new_ext_var));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
FunctionOrTagUnion(tag_name, symbol, ext) => {
|
|
let mut tag_vars = MutMap::default();
|
|
|
|
let temp_ext_var = type_to_variable(subs, rank, pools, cached, ext);
|
|
let mut ext_tag_vec = Vec::new();
|
|
let new_ext_var = match roc_types::pretty_print::chase_ext_tag_union(
|
|
subs,
|
|
temp_ext_var,
|
|
&mut ext_tag_vec,
|
|
) {
|
|
Ok(()) => Variable::EMPTY_TAG_UNION,
|
|
Err((new, _)) => new,
|
|
};
|
|
tag_vars.extend(ext_tag_vec.into_iter());
|
|
|
|
let content = Content::Structure(FlatType::TagUnion(tag_vars, new_ext_var));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
RecursiveTagUnion(rec_var, tags, ext) => {
|
|
let mut tag_vars = MutMap::default();
|
|
|
|
for (tag, tag_argument_types) in tags {
|
|
let mut tag_argument_vars = Vec::with_capacity(tag_argument_types.len());
|
|
|
|
for arg_type in tag_argument_types {
|
|
tag_argument_vars.push(type_to_variable(subs, rank, pools, cached, arg_type));
|
|
}
|
|
|
|
tag_vars.insert(tag.clone(), tag_argument_vars);
|
|
}
|
|
|
|
let temp_ext_var = type_to_variable(subs, rank, pools, cached, ext);
|
|
let mut ext_tag_vec = Vec::new();
|
|
let new_ext_var = match roc_types::pretty_print::chase_ext_tag_union(
|
|
subs,
|
|
temp_ext_var,
|
|
&mut ext_tag_vec,
|
|
) {
|
|
Ok(()) => Variable::EMPTY_TAG_UNION,
|
|
Err((new, _)) => new,
|
|
};
|
|
tag_vars.extend(ext_tag_vec.into_iter());
|
|
|
|
let content =
|
|
Content::Structure(FlatType::RecursiveTagUnion(*rec_var, tag_vars, new_ext_var));
|
|
|
|
let tag_union_var = register(subs, rank, pools, content);
|
|
|
|
subs.set_content(
|
|
*rec_var,
|
|
Content::RecursionVar {
|
|
opt_name: None,
|
|
structure: tag_union_var,
|
|
},
|
|
);
|
|
|
|
tag_union_var
|
|
}
|
|
Alias(Symbol::BOOL_BOOL, _, _) => Variable::BOOL,
|
|
Alias(symbol, args, alias_type) => {
|
|
// TODO cache in uniqueness inference gives problems! all Int's get the same uniqueness var!
|
|
// Cache aliases without type arguments. Commonly used aliases like `Int` would otherwise get O(n)
|
|
// different variables (once for each occurence). The recursion restriction is required
|
|
// for uniqueness types only: recursive aliases "introduce" an unbound uniqueness
|
|
// attribute in the body, when
|
|
//
|
|
// Peano : [ S Peano, Z ]
|
|
//
|
|
// becomes
|
|
//
|
|
// Peano : [ S (Attr u Peano), Z ]
|
|
//
|
|
// This `u` variable can be different between lists, so giving just one variable to
|
|
// this type is incorrect.
|
|
// TODO does caching work at all with uniqueness types? even Int then hides a uniqueness variable
|
|
let is_recursive = alias_type.is_recursive();
|
|
let no_args = args.is_empty();
|
|
/*
|
|
if no_args && !is_recursive {
|
|
if let Some(var) = cached.get(symbol) {
|
|
return *var;
|
|
}
|
|
}
|
|
*/
|
|
|
|
let mut arg_vars = Vec::with_capacity(args.len());
|
|
let mut new_aliases = ImMap::default();
|
|
|
|
for (arg, arg_type) in args {
|
|
let arg_var = type_to_variable(subs, rank, pools, cached, arg_type);
|
|
|
|
arg_vars.push((arg.clone(), arg_var));
|
|
new_aliases.insert(arg.clone(), arg_var);
|
|
}
|
|
|
|
let alias_var = type_to_variable(subs, rank, pools, cached, alias_type);
|
|
let content = Content::Alias(*symbol, arg_vars, alias_var);
|
|
|
|
let result = register(subs, rank, pools, content);
|
|
|
|
if no_args && !is_recursive {
|
|
// cached.insert(*symbol, result);
|
|
}
|
|
|
|
result
|
|
}
|
|
HostExposedAlias {
|
|
name: symbol,
|
|
arguments: args,
|
|
actual: alias_type,
|
|
actual_var,
|
|
..
|
|
} => {
|
|
let mut arg_vars = Vec::with_capacity(args.len());
|
|
let mut new_aliases = ImMap::default();
|
|
|
|
for (arg, arg_type) in args {
|
|
let arg_var = type_to_variable(subs, rank, pools, cached, arg_type);
|
|
|
|
arg_vars.push((arg.clone(), arg_var));
|
|
new_aliases.insert(arg.clone(), arg_var);
|
|
}
|
|
|
|
let alias_var = type_to_variable(subs, rank, pools, cached, alias_type);
|
|
|
|
// unify the actual_var with the result var
|
|
// this can be used to access the type of the actual_var
|
|
// to determine its layout later
|
|
// subs.set_content(*actual_var, descriptor.content);
|
|
|
|
//subs.set(*actual_var, descriptor.clone());
|
|
let content = Content::Alias(*symbol, arg_vars, alias_var);
|
|
|
|
let result = register(subs, rank, pools, content);
|
|
|
|
// We only want to unify the actual_var with the alias once
|
|
// if it's already redirected (and therefore, redundant)
|
|
// don't do it again
|
|
if !subs.redundant(*actual_var) {
|
|
let descriptor = subs.get(result);
|
|
subs.union(result, *actual_var, descriptor);
|
|
}
|
|
|
|
result
|
|
}
|
|
Erroneous(problem) => {
|
|
let content = Content::Structure(FlatType::Erroneous(problem.clone()));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn check_for_infinite_type(
|
|
subs: &mut Subs,
|
|
problems: &mut Vec<TypeError>,
|
|
symbol: Symbol,
|
|
loc_var: Located<Variable>,
|
|
) {
|
|
let var = loc_var.value;
|
|
|
|
while let Some((recursive, _chain)) = subs.occurs(var) {
|
|
let description = subs.get(recursive);
|
|
let content = description.content;
|
|
|
|
// try to make a tag union recursive, see if that helps
|
|
match content {
|
|
Content::Structure(FlatType::TagUnion(tags, ext_var)) => {
|
|
let rec_var = subs.fresh_unnamed_flex_var();
|
|
subs.set_rank(rec_var, description.rank);
|
|
subs.set_content(
|
|
rec_var,
|
|
Content::RecursionVar {
|
|
opt_name: None,
|
|
structure: recursive,
|
|
},
|
|
);
|
|
|
|
let mut new_tags = MutMap::default();
|
|
|
|
for (label, args) in &tags {
|
|
let new_args: Vec<_> = args
|
|
.iter()
|
|
.map(|var| subs.explicit_substitute(recursive, rec_var, *var))
|
|
.collect();
|
|
|
|
new_tags.insert(label.clone(), new_args);
|
|
}
|
|
|
|
let new_ext_var = subs.explicit_substitute(recursive, rec_var, ext_var);
|
|
|
|
let flat_type = FlatType::RecursiveTagUnion(rec_var, new_tags, new_ext_var);
|
|
|
|
subs.set_content(recursive, Content::Structure(flat_type));
|
|
}
|
|
|
|
_other => circular_error(subs, problems, symbol, &loc_var),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn circular_error(
|
|
subs: &mut Subs,
|
|
problems: &mut Vec<TypeError>,
|
|
symbol: Symbol,
|
|
loc_var: &Located<Variable>,
|
|
) {
|
|
let var = loc_var.value;
|
|
let (error_type, _) = subs.var_to_error_type(var);
|
|
let problem = TypeError::CircularType(loc_var.region, symbol, error_type);
|
|
|
|
subs.set_content(var, Content::Error);
|
|
|
|
problems.push(problem);
|
|
}
|
|
|
|
fn generalize(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
visit_mark: Mark,
|
|
young_rank: Rank,
|
|
pools: &mut Pools,
|
|
) {
|
|
let young_vars = pools.get(young_rank);
|
|
let rank_table = pool_to_rank_table(subs, young_mark, young_rank, young_vars);
|
|
|
|
// Get the ranks right for each entry.
|
|
// Start at low ranks so we only have to pass over the information once.
|
|
for (index, table) in rank_table.iter().enumerate() {
|
|
for &var in table.iter() {
|
|
adjust_rank(subs, young_mark, visit_mark, Rank::from(index), var);
|
|
}
|
|
}
|
|
|
|
let (last_pool, all_but_last_pool) = rank_table.split_last();
|
|
|
|
// For variables that have rank lowerer than young_rank, register them in
|
|
// the appropriate old pool if they are not redundant.
|
|
for vars in all_but_last_pool {
|
|
for &var in vars {
|
|
if !subs.redundant(var) {
|
|
let rank = subs.get_rank(var);
|
|
|
|
pools.get_mut(rank).push(var);
|
|
}
|
|
}
|
|
}
|
|
|
|
// For variables with rank young_rank, if rank < young_rank: register in old pool,
|
|
// otherwise generalize
|
|
for &var in last_pool {
|
|
if !subs.redundant(var) {
|
|
let desc_rank = subs.get_rank(var);
|
|
|
|
if desc_rank < young_rank {
|
|
pools.get_mut(desc_rank).push(var);
|
|
} else {
|
|
subs.set_rank(var, Rank::NONE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn pool_to_rank_table(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
young_rank: Rank,
|
|
young_vars: &[Variable],
|
|
) -> Pools {
|
|
let mut pools = Pools::new(young_rank.into_usize() + 1);
|
|
|
|
// Sort the variables into buckets by rank.
|
|
for &var in young_vars.iter() {
|
|
let rank = subs.get_rank(var);
|
|
subs.set_mark(var, young_mark);
|
|
|
|
debug_assert!(rank.into_usize() < young_rank.into_usize() + 1);
|
|
pools.get_mut(rank).push(var);
|
|
}
|
|
|
|
pools
|
|
}
|
|
|
|
/// Adjust variable ranks such that ranks never increase as you move deeper.
|
|
/// This way the outermost rank is representative of the entire structure.
|
|
fn adjust_rank(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
visit_mark: Mark,
|
|
group_rank: Rank,
|
|
var: Variable,
|
|
) -> Rank {
|
|
let desc = subs.get(var);
|
|
|
|
if desc.mark == young_mark {
|
|
let Descriptor {
|
|
content,
|
|
rank: _,
|
|
mark: _,
|
|
copy,
|
|
} = desc;
|
|
|
|
// Mark the variable as visited before adjusting content, as it may be cyclic.
|
|
subs.set_mark(var, visit_mark);
|
|
|
|
let max_rank = adjust_rank_content(subs, young_mark, visit_mark, group_rank, &content);
|
|
|
|
subs.set(
|
|
var,
|
|
Descriptor {
|
|
content,
|
|
rank: max_rank,
|
|
mark: visit_mark,
|
|
copy,
|
|
},
|
|
);
|
|
|
|
max_rank
|
|
} else if desc.mark == visit_mark {
|
|
// nothing changes
|
|
desc.rank
|
|
} else {
|
|
let mut desc = desc;
|
|
|
|
let min_rank = group_rank.min(desc.rank);
|
|
|
|
// TODO from elm-compiler: how can min_rank ever be group_rank?
|
|
desc.rank = min_rank;
|
|
desc.mark = visit_mark;
|
|
|
|
subs.set(var, desc);
|
|
|
|
min_rank
|
|
}
|
|
}
|
|
|
|
fn adjust_rank_content(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
visit_mark: Mark,
|
|
group_rank: Rank,
|
|
content: &Content,
|
|
) -> Rank {
|
|
use roc_types::subs::Content::*;
|
|
use roc_types::subs::FlatType::*;
|
|
|
|
match content {
|
|
FlexVar(_) | RigidVar(_) | Error => group_rank,
|
|
|
|
RecursionVar { .. } => group_rank,
|
|
|
|
Structure(flat_type) => {
|
|
match flat_type {
|
|
Apply(_, args) => {
|
|
let mut rank = Rank::toplevel();
|
|
|
|
for var in args {
|
|
rank =
|
|
rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, *var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
Func(arg_vars, closure_var, ret_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ret_var);
|
|
|
|
// TODO investigate further.
|
|
//
|
|
// My theory is that because the closure_var contains variables already
|
|
// contained in the signature only, it does not need to be part of the rank
|
|
// calculuation
|
|
if true {
|
|
rank = rank.max(adjust_rank(
|
|
subs,
|
|
young_mark,
|
|
visit_mark,
|
|
group_rank,
|
|
*closure_var,
|
|
));
|
|
}
|
|
|
|
for var in arg_vars {
|
|
rank =
|
|
rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, *var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
EmptyRecord => {
|
|
// from elm-compiler: THEORY: an empty record never needs to get generalized
|
|
Rank::toplevel()
|
|
}
|
|
|
|
EmptyTagUnion => Rank::toplevel(),
|
|
|
|
Record(fields, ext_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
|
|
|
|
for var in fields.values() {
|
|
rank = rank.max(adjust_rank(
|
|
subs,
|
|
young_mark,
|
|
visit_mark,
|
|
group_rank,
|
|
var.into_inner(),
|
|
));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
TagUnion(tags, ext_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
|
|
|
|
for var in tags.values().flatten() {
|
|
rank =
|
|
rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, *var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
RecursiveTagUnion(rec_var, tags, ext_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
|
|
|
|
for var in tags.values().flatten() {
|
|
rank =
|
|
rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, *var));
|
|
}
|
|
|
|
// THEORY: the recursion var has the same rank as the tag union itself
|
|
// all types it uses are also in the tags already, so it cannot influence the
|
|
// rank
|
|
debug_assert!(
|
|
rank >= adjust_rank(subs, young_mark, visit_mark, group_rank, *rec_var)
|
|
);
|
|
|
|
rank
|
|
}
|
|
|
|
Erroneous(_) => group_rank,
|
|
}
|
|
}
|
|
|
|
Alias(_, args, real_var) => {
|
|
let mut rank = Rank::toplevel();
|
|
|
|
for (_, var) in args {
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, *var));
|
|
}
|
|
|
|
// from elm-compiler: THEORY: anything in the real_var would be Rank::toplevel()
|
|
// this theory is not true in Roc! aliases of function types capture the closure var
|
|
rank = rank.max(adjust_rank(
|
|
subs, young_mark, visit_mark, group_rank, *real_var,
|
|
));
|
|
|
|
rank
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Introduce some variables to Pools at the given rank.
|
|
/// Also, set each of their ranks in Subs to be the given rank.
|
|
fn introduce(subs: &mut Subs, rank: Rank, pools: &mut Pools, vars: &[Variable]) {
|
|
let pool: &mut Vec<Variable> = pools.get_mut(rank);
|
|
|
|
for &var in vars.iter() {
|
|
subs.set_rank(var, rank);
|
|
}
|
|
|
|
pool.extend(vars);
|
|
}
|
|
|
|
/// Function that converts rigids variables to flex variables
|
|
/// this is used during the monomorphization process
|
|
pub fn instantiate_rigids(subs: &mut Subs, var: Variable) {
|
|
let rank = Rank::NONE;
|
|
let mut pools = Pools::default();
|
|
|
|
instantiate_rigids_help(subs, rank, &mut pools, var);
|
|
}
|
|
|
|
fn instantiate_rigids_help(
|
|
subs: &mut Subs,
|
|
max_rank: Rank,
|
|
pools: &mut Pools,
|
|
var: Variable,
|
|
) -> Variable {
|
|
use roc_types::subs::Content::*;
|
|
use roc_types::subs::FlatType::*;
|
|
|
|
let desc = subs.get_without_compacting(var);
|
|
|
|
if let Some(copy) = desc.copy.into_variable() {
|
|
return copy;
|
|
}
|
|
|
|
let make_descriptor = |content| Descriptor {
|
|
content,
|
|
rank: max_rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
};
|
|
|
|
let content = desc.content;
|
|
let copy = var;
|
|
|
|
pools.get_mut(max_rank).push(copy);
|
|
|
|
// Link the original variable to the new variable. This lets us
|
|
// avoid making multiple copies of the variable we are instantiating.
|
|
//
|
|
// Need to do this before recursively copying to avoid looping.
|
|
subs.set(
|
|
var,
|
|
Descriptor {
|
|
content: content.clone(),
|
|
rank: desc.rank,
|
|
mark: Mark::NONE,
|
|
copy: copy.into(),
|
|
},
|
|
);
|
|
|
|
// Now we recursively copy the content of the variable.
|
|
// We have already marked the variable as copied, so we
|
|
// will not repeat this work or crawl this variable again.
|
|
match content {
|
|
Structure(flat_type) => {
|
|
let new_flat_type = match flat_type {
|
|
Apply(symbol, args) => {
|
|
let args = args
|
|
.into_iter()
|
|
.map(|var| instantiate_rigids_help(subs, max_rank, pools, var))
|
|
.collect();
|
|
|
|
Apply(symbol, args)
|
|
}
|
|
|
|
Func(arg_vars, closure_var, ret_var) => {
|
|
let new_ret_var = instantiate_rigids_help(subs, max_rank, pools, ret_var);
|
|
let new_closure_var =
|
|
instantiate_rigids_help(subs, max_rank, pools, closure_var);
|
|
let arg_vars = arg_vars
|
|
.into_iter()
|
|
.map(|var| instantiate_rigids_help(subs, max_rank, pools, var))
|
|
.collect();
|
|
|
|
Func(arg_vars, new_closure_var, new_ret_var)
|
|
}
|
|
|
|
same @ EmptyRecord | same @ EmptyTagUnion | same @ Erroneous(_) => same,
|
|
|
|
Record(fields, ext_var) => {
|
|
let mut new_fields = MutMap::default();
|
|
|
|
for (label, field) in fields {
|
|
use RecordField::*;
|
|
|
|
let new_field = match field {
|
|
Demanded(var) => {
|
|
Demanded(instantiate_rigids_help(subs, max_rank, pools, var))
|
|
}
|
|
Required(var) => {
|
|
Required(instantiate_rigids_help(subs, max_rank, pools, var))
|
|
}
|
|
Optional(var) => {
|
|
Optional(instantiate_rigids_help(subs, max_rank, pools, var))
|
|
}
|
|
};
|
|
|
|
new_fields.insert(label, new_field);
|
|
}
|
|
|
|
Record(
|
|
new_fields,
|
|
instantiate_rigids_help(subs, max_rank, pools, ext_var),
|
|
)
|
|
}
|
|
|
|
TagUnion(tags, ext_var) => {
|
|
let mut new_tags = MutMap::default();
|
|
|
|
for (tag, vars) in tags {
|
|
let new_vars: Vec<Variable> = vars
|
|
.into_iter()
|
|
.map(|var| instantiate_rigids_help(subs, max_rank, pools, var))
|
|
.collect();
|
|
new_tags.insert(tag, new_vars);
|
|
}
|
|
|
|
TagUnion(
|
|
new_tags,
|
|
instantiate_rigids_help(subs, max_rank, pools, ext_var),
|
|
)
|
|
}
|
|
|
|
RecursiveTagUnion(rec_var, tags, ext_var) => {
|
|
let mut new_tags = MutMap::default();
|
|
|
|
let new_rec_var = instantiate_rigids_help(subs, max_rank, pools, rec_var);
|
|
|
|
for (tag, vars) in tags {
|
|
let new_vars: Vec<Variable> = vars
|
|
.into_iter()
|
|
.map(|var| instantiate_rigids_help(subs, max_rank, pools, var))
|
|
.collect();
|
|
new_tags.insert(tag, new_vars);
|
|
}
|
|
|
|
RecursiveTagUnion(
|
|
new_rec_var,
|
|
new_tags,
|
|
instantiate_rigids_help(subs, max_rank, pools, ext_var),
|
|
)
|
|
}
|
|
};
|
|
|
|
subs.set(copy, make_descriptor(Structure(new_flat_type)));
|
|
|
|
copy
|
|
}
|
|
|
|
FlexVar(_) | Error => copy,
|
|
|
|
RecursionVar {
|
|
opt_name,
|
|
structure,
|
|
} => {
|
|
let new_structure = instantiate_rigids_help(subs, max_rank, pools, structure);
|
|
|
|
subs.set(
|
|
copy,
|
|
make_descriptor(RecursionVar {
|
|
opt_name,
|
|
structure: new_structure,
|
|
}),
|
|
);
|
|
|
|
copy
|
|
}
|
|
|
|
RigidVar(name) => {
|
|
subs.set(copy, make_descriptor(FlexVar(Some(name))));
|
|
|
|
copy
|
|
}
|
|
|
|
Alias(symbol, args, real_type_var) => {
|
|
let new_args = args
|
|
.into_iter()
|
|
.map(|(name, var)| (name, instantiate_rigids_help(subs, max_rank, pools, var)))
|
|
.collect();
|
|
let new_real_type_var = instantiate_rigids_help(subs, max_rank, pools, real_type_var);
|
|
let new_content = Alias(symbol, new_args, new_real_type_var);
|
|
|
|
subs.set(copy, make_descriptor(new_content));
|
|
|
|
copy
|
|
}
|
|
}
|
|
}
|
|
|
|
fn deep_copy_var(subs: &mut Subs, rank: Rank, pools: &mut Pools, var: Variable) -> Variable {
|
|
let copy = deep_copy_var_help(subs, rank, pools, var);
|
|
|
|
subs.restore(var);
|
|
|
|
copy
|
|
}
|
|
|
|
fn deep_copy_var_help(
|
|
subs: &mut Subs,
|
|
max_rank: Rank,
|
|
pools: &mut Pools,
|
|
var: Variable,
|
|
) -> Variable {
|
|
use roc_types::subs::Content::*;
|
|
use roc_types::subs::FlatType::*;
|
|
|
|
let desc = subs.get_without_compacting(var);
|
|
|
|
if let Some(copy) = desc.copy.into_variable() {
|
|
return copy;
|
|
} else if desc.rank != Rank::NONE {
|
|
return var;
|
|
}
|
|
|
|
let make_descriptor = |content| Descriptor {
|
|
content,
|
|
rank: max_rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
};
|
|
|
|
let content = desc.content;
|
|
let copy = subs.fresh(make_descriptor(content.clone()));
|
|
|
|
pools.get_mut(max_rank).push(copy);
|
|
|
|
// Link the original variable to the new variable. This lets us
|
|
// avoid making multiple copies of the variable we are instantiating.
|
|
//
|
|
// Need to do this before recursively copying to avoid looping.
|
|
subs.set(
|
|
var,
|
|
Descriptor {
|
|
content: content.clone(),
|
|
rank: desc.rank,
|
|
mark: Mark::NONE,
|
|
copy: copy.into(),
|
|
},
|
|
);
|
|
|
|
// Now we recursively copy the content of the variable.
|
|
// We have already marked the variable as copied, so we
|
|
// will not repeat this work or crawl this variable again.
|
|
match content {
|
|
Structure(flat_type) => {
|
|
let new_flat_type = match flat_type {
|
|
Apply(symbol, args) => {
|
|
let args = args
|
|
.into_iter()
|
|
.map(|var| deep_copy_var_help(subs, max_rank, pools, var))
|
|
.collect();
|
|
|
|
Apply(symbol, args)
|
|
}
|
|
|
|
Func(arg_vars, closure_var, ret_var) => {
|
|
let new_ret_var = deep_copy_var_help(subs, max_rank, pools, ret_var);
|
|
let new_closure_var = deep_copy_var_help(subs, max_rank, pools, closure_var);
|
|
let arg_vars = arg_vars
|
|
.into_iter()
|
|
.map(|var| deep_copy_var_help(subs, max_rank, pools, var))
|
|
.collect();
|
|
|
|
Func(arg_vars, new_closure_var, new_ret_var)
|
|
}
|
|
|
|
same @ EmptyRecord | same @ EmptyTagUnion | same @ Erroneous(_) => same,
|
|
|
|
Record(fields, ext_var) => {
|
|
let mut new_fields = MutMap::default();
|
|
|
|
for (label, field) in fields {
|
|
use RecordField::*;
|
|
|
|
let new_field = match field {
|
|
Demanded(var) => {
|
|
Demanded(deep_copy_var_help(subs, max_rank, pools, var))
|
|
}
|
|
Required(var) => {
|
|
Required(deep_copy_var_help(subs, max_rank, pools, var))
|
|
}
|
|
Optional(var) => {
|
|
Optional(deep_copy_var_help(subs, max_rank, pools, var))
|
|
}
|
|
};
|
|
|
|
new_fields.insert(label, new_field);
|
|
}
|
|
|
|
Record(
|
|
new_fields,
|
|
deep_copy_var_help(subs, max_rank, pools, ext_var),
|
|
)
|
|
}
|
|
|
|
TagUnion(tags, ext_var) => {
|
|
let mut new_tags = MutMap::default();
|
|
|
|
for (tag, vars) in tags {
|
|
let new_vars: Vec<Variable> = vars
|
|
.into_iter()
|
|
.map(|var| deep_copy_var_help(subs, max_rank, pools, var))
|
|
.collect();
|
|
new_tags.insert(tag, new_vars);
|
|
}
|
|
|
|
TagUnion(new_tags, deep_copy_var_help(subs, max_rank, pools, ext_var))
|
|
}
|
|
|
|
RecursiveTagUnion(rec_var, tags, ext_var) => {
|
|
let mut new_tags = MutMap::default();
|
|
|
|
let new_rec_var = deep_copy_var_help(subs, max_rank, pools, rec_var);
|
|
|
|
for (tag, vars) in tags {
|
|
let new_vars: Vec<Variable> = vars
|
|
.into_iter()
|
|
.map(|var| deep_copy_var_help(subs, max_rank, pools, var))
|
|
.collect();
|
|
new_tags.insert(tag, new_vars);
|
|
}
|
|
|
|
RecursiveTagUnion(
|
|
new_rec_var,
|
|
new_tags,
|
|
deep_copy_var_help(subs, max_rank, pools, ext_var),
|
|
)
|
|
}
|
|
};
|
|
|
|
subs.set(copy, make_descriptor(Structure(new_flat_type)));
|
|
|
|
copy
|
|
}
|
|
|
|
FlexVar(_) | Error => copy,
|
|
|
|
RecursionVar {
|
|
opt_name,
|
|
structure,
|
|
} => {
|
|
let new_structure = deep_copy_var_help(subs, max_rank, pools, structure);
|
|
|
|
subs.set(
|
|
copy,
|
|
make_descriptor(RecursionVar {
|
|
opt_name,
|
|
structure: new_structure,
|
|
}),
|
|
);
|
|
|
|
copy
|
|
}
|
|
|
|
RigidVar(name) => {
|
|
subs.set(copy, make_descriptor(FlexVar(Some(name))));
|
|
|
|
copy
|
|
}
|
|
|
|
Alias(symbol, args, real_type_var) => {
|
|
let new_args = args
|
|
.into_iter()
|
|
.map(|(name, var)| (name, deep_copy_var_help(subs, max_rank, pools, var)))
|
|
.collect();
|
|
let new_real_type_var = deep_copy_var_help(subs, max_rank, pools, real_type_var);
|
|
let new_content = Alias(symbol, new_args, new_real_type_var);
|
|
|
|
subs.set(copy, make_descriptor(new_content));
|
|
|
|
copy
|
|
}
|
|
}
|
|
}
|
|
|
|
fn register(subs: &mut Subs, rank: Rank, pools: &mut Pools, content: Content) -> Variable {
|
|
let var = subs.fresh(Descriptor {
|
|
content,
|
|
rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
});
|
|
|
|
pools.get_mut(rank).push(var);
|
|
|
|
var
|
|
}
|