roc/compiler/mono/src/ir.rs
2020-08-10 21:25:47 -04:00

3258 lines
113 KiB
Rust

use self::InProgressProc::*;
use crate::exhaustive::{Ctor, Guard, RenderAs, TagId};
use crate::layout::{Builtin, Layout, LayoutCache, LayoutProblem};
use bumpalo::collections::Vec;
use bumpalo::Bump;
use roc_collections::all::{default_hasher, MutMap, MutSet};
use roc_module::ident::{Ident, Lowercase, TagName};
use roc_module::low_level::LowLevel;
use roc_module::symbol::{IdentIds, ModuleId, Symbol};
use roc_problem::can::RuntimeError;
use roc_region::all::{Located, Region};
use roc_types::subs::{Content, FlatType, Subs, Variable};
use std::collections::HashMap;
use ven_pretty::{BoxAllocator, DocAllocator, DocBuilder};
#[derive(Clone, Debug)]
pub enum MonoProblem {
PatternProblem(crate::exhaustive::Error),
}
#[derive(Clone, Debug, PartialEq)]
pub struct PartialProc<'a> {
pub annotation: Variable,
pub pattern_symbols: Vec<'a, Symbol>,
pub body: roc_can::expr::Expr,
}
#[derive(Clone, Debug, PartialEq)]
pub struct PendingSpecialization<'a> {
pub fn_var: Variable,
pub ret_var: Variable,
pub pattern_vars: Vec<'a, Variable>,
}
#[derive(Clone, Debug, PartialEq)]
pub struct Proc<'a> {
pub name: Symbol,
pub args: &'a [(Layout<'a>, Symbol)],
pub body: Stmt<'a>,
pub closes_over: Layout<'a>,
pub ret_layout: Layout<'a>,
}
impl<'a> Proc<'a> {
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D, _parens: bool) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
let args_doc = self
.args
.iter()
.map(|(_, symbol)| alloc.text(format!("{}", symbol)));
alloc
.text(format!("procedure {} (", self.name))
.append(alloc.intersperse(args_doc, ", "))
.append("):")
.append(alloc.hardline())
.append(self.body.to_doc(alloc).indent(4))
}
pub fn to_pretty(&self, width: usize) -> String {
let allocator = BoxAllocator;
let mut w = std::vec::Vec::new();
self.to_doc::<_, ()>(&allocator, false)
.1
.render(width, &mut w)
.unwrap();
w.push(b'\n');
String::from_utf8(w).unwrap()
}
}
#[derive(Clone, Debug, PartialEq, Default)]
pub struct Procs<'a> {
pub partial_procs: MutMap<Symbol, PartialProc<'a>>,
pub module_thunks: MutSet<Symbol>,
pub pending_specializations:
Option<MutMap<Symbol, MutMap<Layout<'a>, PendingSpecialization<'a>>>>,
pub specialized: MutMap<(Symbol, Layout<'a>), InProgressProc<'a>>,
pub runtime_errors: MutMap<Symbol, &'a str>,
}
#[derive(Clone, Debug, PartialEq)]
pub enum InProgressProc<'a> {
InProgress,
Done(Proc<'a>),
}
impl<'a> Procs<'a> {
// TODO investigate make this an iterator?
pub fn get_specialized_procs(self, arena: &'a Bump) -> MutMap<(Symbol, Layout<'a>), Proc<'a>> {
let mut result = MutMap::with_capacity_and_hasher(self.specialized.len(), default_hasher());
for (key, in_prog_proc) in self.specialized.into_iter() {
match in_prog_proc {
InProgress => unreachable!("The procedure {:?} should have be done by now", key),
Done(mut proc) => {
crate::inc_dec::visit_proc(arena, &mut proc);
result.insert(key, proc);
}
}
}
result
}
// TODO trim down these arguments!
#[allow(clippy::too_many_arguments)]
pub fn insert_named(
&mut self,
env: &mut Env<'a, '_>,
layout_cache: &mut LayoutCache<'a>,
name: Symbol,
annotation: Variable,
loc_args: std::vec::Vec<(Variable, Located<roc_can::pattern::Pattern>)>,
loc_body: Located<roc_can::expr::Expr>,
ret_var: Variable,
) {
match patterns_to_when(env, layout_cache, loc_args, ret_var, loc_body) {
Ok((_, pattern_symbols, body)) => {
// a named closure. Since these aren't specialized by the surrounding
// context, we can't add pending specializations for them yet.
// (If we did, all named polymorphic functions would immediately error
// on trying to convert a flex var to a Layout.)
self.partial_procs.insert(
name,
PartialProc {
annotation,
pattern_symbols,
body: body.value,
},
);
}
Err(error) => {
// If the function has invalid patterns in its arguments,
// its call sites will code gen to runtime errors. This happens
// at the call site so we don't have to try to define the
// function LLVM, which would be difficult considering LLVM
// wants to know what symbols each argument corresponds to,
// and in this case the patterns were invalid, so we don't know
// what the symbols ought to be.
let error_msg = format!("TODO generate a RuntimeError message for {:?}", error);
self.runtime_errors.insert(name, env.arena.alloc(error_msg));
}
}
}
// TODO trim these down
#[allow(clippy::too_many_arguments)]
pub fn insert_anonymous(
&mut self,
env: &mut Env<'a, '_>,
symbol: Symbol,
annotation: Variable,
loc_args: std::vec::Vec<(Variable, Located<roc_can::pattern::Pattern>)>,
loc_body: Located<roc_can::expr::Expr>,
ret_var: Variable,
layout_cache: &mut LayoutCache<'a>,
) -> Result<Layout<'a>, RuntimeError> {
match patterns_to_when(env, layout_cache, loc_args, ret_var, loc_body) {
Ok((pattern_vars, pattern_symbols, body)) => {
// an anonymous closure. These will always be specialized already
// by the surrounding context, so we can add pending specializations
// for them immediately.
let layout = layout_cache
.from_var(env.arena, annotation, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
// if we've already specialized this one, no further work is needed.
//
// NOTE: this #[allow(clippy::map_entry)] here is for correctness!
// Changing it to use .entry() would necessarily make it incorrect.
#[allow(clippy::map_entry)]
if !self.specialized.contains_key(&(symbol, layout.clone())) {
let pending = PendingSpecialization {
ret_var,
fn_var: annotation,
pattern_vars,
};
match &mut self.pending_specializations {
Some(pending_specializations) => {
// register the pending specialization, so this gets code genned later
add_pending(pending_specializations, symbol, layout.clone(), pending);
debug_assert!(!self.partial_procs.contains_key(&symbol), "Procs was told to insert a value for symbol {:?}, but there was already an entry for that key! Procs should never attempt to insert duplicates.", symbol);
self.partial_procs.insert(
symbol,
PartialProc {
annotation,
pattern_symbols,
body: body.value,
},
);
}
None => {
// TODO should pending_procs hold a Rc<Proc>?
let partial_proc = PartialProc {
annotation,
pattern_symbols,
body: body.value,
};
// Mark this proc as in-progress, so if we're dealing with
// mutually recursive functions, we don't loop forever.
// (We had a bug around this before this system existed!)
self.specialized
.insert((symbol, layout.clone()), InProgress);
match specialize(env, self, symbol, layout_cache, pending, partial_proc)
{
Ok(proc) => {
self.specialized
.insert((symbol, layout.clone()), Done(proc));
}
Err(error) => {
let error_msg = format!(
"TODO generate a RuntimeError message for {:?}",
error
);
self.runtime_errors
.insert(symbol, env.arena.alloc(error_msg));
}
}
}
}
}
Ok(layout)
}
Err(loc_error) => Err(loc_error.value),
}
}
/// Add a named function that will be publicly exposed to the host
pub fn insert_exposed(
&mut self,
name: Symbol,
layout: Layout<'a>,
pattern_vars: Vec<'a, Variable>,
fn_var: Variable,
ret_var: Variable,
) {
let tuple = (name, layout);
// If we've already specialized this one, no further work is needed.
if self.specialized.contains_key(&tuple) {
return;
}
// We're done with that tuple, so move layout back out to avoid cloning it.
let (name, layout) = tuple;
let pending = PendingSpecialization {
pattern_vars,
ret_var,
fn_var,
};
// This should only be called when pending_specializations is Some.
// Otherwise, it's being called in the wrong pass!
match &mut self.pending_specializations {
Some(pending_specializations) => {
// register the pending specialization, so this gets code genned later
add_pending(pending_specializations, name, layout, pending)
}
None => unreachable!("insert_exposed was called after the pending specializations phase had already completed!"),
}
}
}
fn add_pending<'a>(
pending_specializations: &mut MutMap<Symbol, MutMap<Layout<'a>, PendingSpecialization<'a>>>,
symbol: Symbol,
layout: Layout<'a>,
pending: PendingSpecialization<'a>,
) {
let all_pending = pending_specializations
.entry(symbol)
.or_insert_with(|| HashMap::with_capacity_and_hasher(1, default_hasher()));
all_pending.insert(layout, pending);
}
#[derive(Default)]
pub struct Specializations<'a> {
by_symbol: MutMap<Symbol, MutMap<Layout<'a>, Proc<'a>>>,
runtime_errors: MutSet<Symbol>,
}
impl<'a> Specializations<'a> {
pub fn insert(&mut self, symbol: Symbol, layout: Layout<'a>, proc: Proc<'a>) {
let procs_by_layout = self
.by_symbol
.entry(symbol)
.or_insert_with(|| HashMap::with_capacity_and_hasher(1, default_hasher()));
// If we already have an entry for this, it should be no different
// from what we're about to insert.
debug_assert!(
!procs_by_layout.contains_key(&layout) || procs_by_layout.get(&layout) == Some(&proc)
);
// We shouldn't already have a runtime error recorded for this symbol
debug_assert!(!self.runtime_errors.contains(&symbol));
procs_by_layout.insert(layout, proc);
}
pub fn runtime_error(&mut self, symbol: Symbol) {
// We shouldn't already have a normal proc recorded for this symbol
debug_assert!(!self.by_symbol.contains_key(&symbol));
self.runtime_errors.insert(symbol);
}
pub fn into_owned(self) -> (MutMap<Symbol, MutMap<Layout<'a>, Proc<'a>>>, MutSet<Symbol>) {
(self.by_symbol, self.runtime_errors)
}
pub fn len(&self) -> usize {
let runtime_errors: usize = self.runtime_errors.len();
let specializations: usize = self.by_symbol.len();
runtime_errors + specializations
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
}
pub struct Env<'a, 'i> {
pub arena: &'a Bump,
pub subs: &'a mut Subs,
pub problems: &'i mut std::vec::Vec<MonoProblem>,
pub home: ModuleId,
pub ident_ids: &'i mut IdentIds,
}
impl<'a, 'i> Env<'a, 'i> {
pub fn unique_symbol(&mut self) -> Symbol {
let ident_id = self.ident_ids.gen_unique();
self.home.register_debug_idents(&self.ident_ids);
Symbol::new(self.home, ident_id)
}
}
#[derive(Clone, Debug, PartialEq, Copy, Eq, Hash)]
pub struct JoinPointId(Symbol);
#[derive(Clone, Debug, PartialEq)]
pub struct Param<'a> {
pub symbol: Symbol,
pub borrow: bool,
pub layout: Layout<'a>,
}
pub type Stores<'a> = &'a [(Symbol, Layout<'a>, Expr<'a>)];
#[derive(Clone, Debug, PartialEq)]
pub enum Stmt<'a> {
Let(Symbol, Expr<'a>, Layout<'a>, &'a Stmt<'a>),
Switch {
/// This *must* stand for an integer, because Switch potentially compiles to a jump table.
cond_symbol: Symbol,
cond_layout: Layout<'a>,
/// The u64 in the tuple will be compared directly to the condition Expr.
/// If they are equal, this branch will be taken.
branches: &'a [(u64, Stmt<'a>)],
/// If no other branches pass, this default branch will be taken.
default_branch: &'a Stmt<'a>,
/// Each branch must return a value of this type.
ret_layout: Layout<'a>,
},
Cond {
// The left-hand side of the conditional comparison and the right-hand side.
// These are stored separately because there are different machine instructions
// for e.g. "compare float and jump" vs. "compare integer and jump"
// symbol storing the original expression that we branch on, e.g. `Ok 42`
// required for RC logic
cond_symbol: Symbol,
cond_layout: Layout<'a>,
// symbol storing the value that we branch on, e.g. `1` representing the `Ok` tag
branching_symbol: Symbol,
branching_layout: Layout<'a>,
// What to do if the condition either passes or fails
pass: &'a Stmt<'a>,
fail: &'a Stmt<'a>,
ret_layout: Layout<'a>,
},
Ret(Symbol),
Inc(Symbol, &'a Stmt<'a>),
Dec(Symbol, &'a Stmt<'a>),
Join {
id: JoinPointId,
parameters: &'a [Param<'a>],
/// does not contain jumps to this id
continuation: &'a Stmt<'a>,
/// contains the jumps to this id
remainder: &'a Stmt<'a>,
},
Jump(JoinPointId, &'a [Symbol]),
RuntimeError(&'a str),
}
#[derive(Clone, Debug, PartialEq)]
pub enum Literal<'a> {
// Literals
Int(i64),
Float(f64),
Str(&'a str),
/// Closed tag unions containing exactly two (0-arity) tags compile to Expr::Bool,
/// so they can (at least potentially) be emitted as 1-bit machine bools.
///
/// So [ True, False ] compiles to this, and so do [ A, B ] and [ Foo, Bar ].
/// However, a union like [ True, False, Other Int ] would not.
Bool(bool),
/// Closed tag unions containing between 3 and 256 tags (all of 0 arity)
/// compile to bytes, e.g. [ Blue, Black, Red, Green, White ]
Byte(u8),
}
#[derive(Clone, Debug, PartialEq, Copy)]
pub enum CallType {
ByName(Symbol),
ByPointer(Symbol),
}
#[derive(Clone, Debug, PartialEq)]
pub enum Expr<'a> {
Literal(Literal<'a>),
// Functions
FunctionPointer(Symbol, Layout<'a>),
FunctionCall {
call_type: CallType,
layout: Layout<'a>,
arg_layouts: &'a [Layout<'a>],
args: &'a [Symbol],
},
RunLowLevel(LowLevel, &'a [Symbol]),
Tag {
tag_layout: Layout<'a>,
tag_name: TagName,
tag_id: u8,
union_size: u8,
arguments: &'a [Symbol],
},
Struct(&'a [Symbol]),
AccessAtIndex {
index: u64,
field_layouts: &'a [Layout<'a>],
structure: Symbol,
is_unwrapped: bool,
},
Array {
elem_layout: Layout<'a>,
elems: &'a [Symbol],
},
EmptyArray,
RuntimeErrorFunction(&'a str),
}
impl<'a> Literal<'a> {
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
use Literal::*;
match self {
Int(lit) => alloc.text(format!("{}i64", lit)),
Float(lit) => alloc.text(format!("{}f64", lit)),
Bool(lit) => alloc.text(format!("{}", lit)),
Byte(lit) => alloc.text(format!("{}u8", lit)),
Str(lit) => alloc.text(format!("{:?}", lit)),
}
}
}
fn symbol_to_doc<'b, D, A>(alloc: &'b D, symbol: Symbol) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
alloc.text(format!("{}", symbol))
}
fn join_point_to_doc<'b, D, A>(alloc: &'b D, symbol: JoinPointId) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
alloc.text(format!("{}", symbol.0))
}
impl<'a> Expr<'a> {
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
use Expr::*;
match self {
Literal(lit) => lit.to_doc(alloc),
FunctionPointer(symbol, _) => symbol_to_doc(alloc, *symbol),
FunctionCall {
call_type, args, ..
} => match call_type {
CallType::ByName(name) => {
let it = std::iter::once(name)
.chain(args.iter())
.map(|s| symbol_to_doc(alloc, *s));
alloc.text("CallByName ").append(alloc.intersperse(it, " "))
}
CallType::ByPointer(name) => {
let it = std::iter::once(name)
.chain(args.iter())
.map(|s| symbol_to_doc(alloc, *s));
alloc
.text("CallByPointer ")
.append(alloc.intersperse(it, " "))
}
},
RunLowLevel(lowlevel, args) => {
let it = args.iter().map(|s| symbol_to_doc(alloc, *s));
alloc
.text(format!("lowlevel {:?} ", lowlevel))
.append(alloc.intersperse(it, " "))
}
Tag {
tag_name,
arguments,
..
} => {
let doc_tag = match tag_name {
TagName::Global(s) => alloc.text(s.as_str()),
TagName::Private(s) => alloc.text(format!("{}", s)),
};
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s));
doc_tag
.append(alloc.space())
.append(alloc.intersperse(it, " "))
}
Struct(args) => {
let it = args.iter().map(|s| symbol_to_doc(alloc, *s));
alloc
.text("Struct {")
.append(alloc.intersperse(it, ", "))
.append(alloc.text("}"))
}
Array { elems, .. } => {
let it = elems.iter().map(|s| symbol_to_doc(alloc, *s));
alloc
.text("Array [")
.append(alloc.intersperse(it, ", "))
.append(alloc.text("]"))
}
EmptyArray => alloc.text("Array []"),
AccessAtIndex {
index, structure, ..
} => alloc
.text(format!("Index {} ", index))
.append(symbol_to_doc(alloc, *structure)),
RuntimeErrorFunction(s) => alloc.text(format!("ErrorFunction {}", s)),
}
}
}
impl<'a> Stmt<'a> {
pub fn new(
env: &mut Env<'a, '_>,
can_expr: roc_can::expr::Expr,
procs: &mut Procs<'a>,
) -> Self {
let mut layout_cache = LayoutCache::default();
from_can(env, can_expr, procs, &mut layout_cache)
}
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
use Stmt::*;
match self {
Let(symbol, expr, _, cont) => alloc
.text("let ")
.append(symbol_to_doc(alloc, *symbol))
.append(" = ")
.append(expr.to_doc(alloc))
.append(";")
.append(alloc.hardline())
.append(cont.to_doc(alloc)),
Ret(symbol) => alloc
.text("ret ")
.append(symbol_to_doc(alloc, *symbol))
.append(";"),
Switch {
cond_symbol,
branches,
default_branch,
..
} => {
let default_doc = alloc
.text("default:")
.append(alloc.hardline())
.append(default_branch.to_doc(alloc).indent(4))
.indent(4);
let branches_docs = branches
.iter()
.map(|(tag, expr)| {
alloc
.text(format!("case {}:", tag))
.append(alloc.hardline())
.append(expr.to_doc(alloc).indent(4))
.indent(4)
})
.chain(std::iter::once(default_doc));
//
alloc
.text(format!("switch {}:", cond_symbol))
.append(alloc.hardline())
.append(
alloc.intersperse(branches_docs, alloc.hardline().append(alloc.hardline())),
)
.append(alloc.hardline())
}
Cond {
branching_symbol,
pass,
fail,
..
} => alloc
.text(format!("if {} then", branching_symbol))
.append(alloc.hardline())
.append(pass.to_doc(alloc).indent(4))
.append(alloc.hardline())
.append(alloc.text("else"))
.append(alloc.hardline())
.append(fail.to_doc(alloc).indent(4)),
RuntimeError(s) => alloc.text(format!("Error {}", s)),
Join {
id,
parameters,
continuation,
remainder,
} => {
let it = parameters.iter().map(|p| symbol_to_doc(alloc, p.symbol));
alloc.intersperse(
vec![
remainder.to_doc(alloc),
alloc
.text("joinpoint ")
.append(join_point_to_doc(alloc, *id))
.append(" ".repeat(parameters.len().min(1)))
.append(alloc.intersperse(it, alloc.space()))
.append(":"),
continuation.to_doc(alloc).indent(4),
],
alloc.hardline(),
)
}
Jump(id, arguments) => {
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s));
alloc
.text("jump ")
.append(join_point_to_doc(alloc, *id))
.append(" ".repeat(arguments.len().min(1)))
.append(alloc.intersperse(it, alloc.space()))
.append(";")
}
Inc(symbol, cont) => alloc
.text("inc ")
.append(symbol_to_doc(alloc, *symbol))
.append(";")
.append(alloc.hardline())
.append(cont.to_doc(alloc)),
Dec(symbol, cont) => alloc
.text("dec ")
.append(symbol_to_doc(alloc, *symbol))
.append(";")
.append(alloc.hardline())
.append(cont.to_doc(alloc)),
}
}
pub fn to_pretty(&self, width: usize) -> String {
let allocator = BoxAllocator;
let mut w = std::vec::Vec::new();
self.to_doc::<_, ()>(&allocator)
.1
.render(width, &mut w)
.unwrap();
w.push(b'\n');
String::from_utf8(w).unwrap()
}
pub fn is_terminal(&self) -> bool {
use Stmt::*;
match self {
Cond { .. } | Switch { .. } => {
// TODO is this the reason Lean only looks at the outermost `when`?
true
}
Ret(_) => true,
Jump(_, _) => true,
_ => false,
}
}
}
/// turn record/tag patterns into a when expression, e.g.
///
/// foo = \{ x } -> body
///
/// becomes
///
/// foo = \r -> when r is { x } -> body
///
/// conversion of one-pattern when expressions will do the most optimal thing
#[allow(clippy::type_complexity)]
fn patterns_to_when<'a>(
env: &mut Env<'a, '_>,
layout_cache: &mut LayoutCache<'a>,
patterns: std::vec::Vec<(Variable, Located<roc_can::pattern::Pattern>)>,
body_var: Variable,
body: Located<roc_can::expr::Expr>,
) -> Result<
(
Vec<'a, Variable>,
Vec<'a, Symbol>,
Located<roc_can::expr::Expr>,
),
Located<RuntimeError>,
> {
let mut arg_vars = Vec::with_capacity_in(patterns.len(), env.arena);
let mut symbols = Vec::with_capacity_in(patterns.len(), env.arena);
let mut body = Ok(body);
// patterns that are not yet in a when (e.g. in let or function arguments) must be irrefutable
// to pass type checking. So the order in which we add them to the body does not matter: there
// are only stores anyway, no branches.
for (pattern_var, pattern) in patterns.into_iter() {
let context = crate::exhaustive::Context::BadArg;
let mono_pattern = from_can_pattern(env, layout_cache, &pattern.value);
match crate::exhaustive::check(
pattern.region,
&[(
Located::at(pattern.region, mono_pattern.clone()),
crate::exhaustive::Guard::NoGuard,
)],
context,
) {
Ok(_) => {
// Replace the body with a new one, but only if it was Ok.
if let Ok(unwrapped_body) = body {
let (new_symbol, new_body) =
pattern_to_when(env, pattern_var, pattern, body_var, unwrapped_body);
symbols.push(new_symbol);
arg_vars.push(pattern_var);
body = Ok(new_body)
}
}
Err(errors) => {
for error in errors {
env.problems.push(MonoProblem::PatternProblem(error))
}
let value = RuntimeError::UnsupportedPattern(pattern.region);
// Even if the body was Ok, replace it with this Err.
// If it was already an Err, leave it at that Err, so the first
// RuntimeError we encountered remains the first.
body = body.and_then(|_| {
Err(Located {
region: pattern.region,
value,
})
});
}
}
}
match body {
Ok(body) => Ok((arg_vars, symbols, body)),
Err(loc_error) => Err(loc_error),
}
}
/// turn irrefutable patterns into when. For example
///
/// foo = \{ x } -> body
///
/// Assuming the above program typechecks, the pattern match cannot fail
/// (it is irrefutable). It becomes
///
/// foo = \r ->
/// when r is
/// { x } -> body
///
/// conversion of one-pattern when expressions will do the most optimal thing
fn pattern_to_when<'a>(
env: &mut Env<'a, '_>,
pattern_var: Variable,
pattern: Located<roc_can::pattern::Pattern>,
body_var: Variable,
body: Located<roc_can::expr::Expr>,
) -> (Symbol, Located<roc_can::expr::Expr>) {
use roc_can::expr::Expr::*;
use roc_can::expr::WhenBranch;
use roc_can::pattern::Pattern::*;
match &pattern.value {
Identifier(symbol) => (*symbol, body),
Underscore => {
// for underscore we generate a dummy Symbol
(env.unique_symbol(), body)
}
Shadowed(region, loc_ident) => {
let error = roc_problem::can::RuntimeError::Shadowing {
original_region: *region,
shadow: loc_ident.clone(),
};
(env.unique_symbol(), Located::at_zero(RuntimeError(error)))
}
UnsupportedPattern(region) => {
// create the runtime error here, instead of delegating to When.
// UnsupportedPattern should then never occcur in When
let error = roc_problem::can::RuntimeError::UnsupportedPattern(*region);
(env.unique_symbol(), Located::at_zero(RuntimeError(error)))
}
MalformedPattern(problem, region) => {
// create the runtime error here, instead of delegating to When.
let error = roc_problem::can::RuntimeError::MalformedPattern(*problem, *region);
(env.unique_symbol(), Located::at_zero(RuntimeError(error)))
}
AppliedTag { .. } | RecordDestructure { .. } => {
let symbol = env.unique_symbol();
let wrapped_body = When {
cond_var: pattern_var,
expr_var: body_var,
region: Region::zero(),
loc_cond: Box::new(Located::at_zero(Var(symbol))),
branches: vec![WhenBranch {
patterns: vec![pattern],
value: body,
guard: None,
}],
};
(symbol, Located::at_zero(wrapped_body))
}
IntLiteral(_) | NumLiteral(_, _) | FloatLiteral(_) | StrLiteral(_) => {
// These patters are refutable, and thus should never occur outside a `when` expression
// They should have been replaced with `UnsupportedPattern` during canonicalization
unreachable!("refutable pattern {:?} where irrefutable pattern is expected. This should never happen!", pattern.value)
}
}
}
pub fn specialize_all<'a>(
env: &mut Env<'a, '_>,
mut procs: Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
) -> Procs<'a> {
let mut pending_specializations = procs.pending_specializations.unwrap_or_default();
// When calling from_can, pending_specializations should be unavailable.
// This must be a single pass, and we must not add any more entries to it!
procs.pending_specializations = None;
for (name, mut by_layout) in pending_specializations.drain() {
// Use the function's symbol's home module as the home module
// when doing canonicalization. This will be important to determine
// whether or not it's safe to defer specialization.
env.home = name.module_id();
for (layout, pending) in by_layout.drain() {
// If we've already seen this (Symbol, Layout) combination before,
// don't try to specialize it again. If we do, we'll loop forever!
//
// NOTE: this #[allow(clippy::map_entry)] here is for correctness!
// Changing it to use .entry() would necessarily make it incorrect.
#[allow(clippy::map_entry)]
if !procs.specialized.contains_key(&(name, layout.clone())) {
// TODO should pending_procs hold a Rc<Proc>?
let partial_proc = procs
.partial_procs
.get(&name)
.unwrap_or_else(|| panic!("Could not find partial_proc for {:?}", name))
.clone();
// Mark this proc as in-progress, so if we're dealing with
// mutually recursive functions, we don't loop forever.
// (We had a bug around this before this system existed!)
procs.specialized.insert((name, layout.clone()), InProgress);
match specialize(env, &mut procs, name, layout_cache, pending, partial_proc) {
Ok(proc) => {
procs.specialized.insert((name, layout), Done(proc));
}
Err(error) => {
let error_msg = env.arena.alloc(format!(
"TODO generate a RuntimeError message for {:?}",
error
));
procs.runtime_errors.insert(name, error_msg);
}
}
}
}
}
procs
}
fn specialize<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
proc_name: Symbol,
layout_cache: &mut LayoutCache<'a>,
pending: PendingSpecialization<'a>,
partial_proc: PartialProc<'a>,
) -> Result<Proc<'a>, LayoutProblem> {
let PendingSpecialization {
ret_var,
fn_var,
pattern_vars,
} = pending;
let PartialProc {
annotation,
pattern_symbols,
body,
} = partial_proc;
// unify the called function with the specialized signature, then specialize the function body
let snapshot = env.subs.snapshot();
let unified = roc_unify::unify::unify(env.subs, annotation, fn_var);
debug_assert!(matches!(unified, roc_unify::unify::Unified::Success(_)));
let ret_symbol = env.unique_symbol();
let hole = env.arena.alloc(Stmt::Ret(ret_symbol));
let specialized_body = with_hole(env, body, procs, layout_cache, ret_symbol, hole);
// reset subs, so we don't get type errors when specializing for a different signature
env.subs.rollback_to(snapshot);
let mut proc_args = Vec::with_capacity_in(pattern_vars.len(), &env.arena);
debug_assert_eq!(
&pattern_vars.len(),
&pattern_symbols.len(),
"Tried to zip two vecs with different lengths!"
);
for (arg_var, arg_name) in pattern_vars.iter().zip(pattern_symbols.iter()) {
let layout = layout_cache.from_var(&env.arena, *arg_var, env.subs)?;
proc_args.push((layout, *arg_name));
}
let ret_layout = layout_cache
.from_var(&env.arena, ret_var, env.subs)
.unwrap_or_else(|err| panic!("TODO handle invalid function {:?}", err));
// TODO WRONG
let closes_over_layout = Layout::Struct(&[]);
let proc = Proc {
name: proc_name,
args: proc_args.into_bump_slice(),
body: specialized_body,
closes_over: closes_over_layout,
ret_layout,
};
Ok(proc)
}
pub fn with_hole<'a>(
env: &mut Env<'a, '_>,
can_expr: roc_can::expr::Expr,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
use roc_can::expr::Expr::*;
let arena = env.arena;
match can_expr {
Int(_, num) => Stmt::Let(
assigned,
Expr::Literal(Literal::Int(num)),
Layout::Builtin(Builtin::Int64),
hole,
),
Float(_, num) => Stmt::Let(
assigned,
Expr::Literal(Literal::Float(num)),
Layout::Builtin(Builtin::Float64),
hole,
),
Str(string) | BlockStr(string) => Stmt::Let(
assigned,
Expr::Literal(Literal::Str(arena.alloc(string))),
Layout::Builtin(Builtin::Str),
hole,
),
Num(var, num) => match num_argument_to_int_or_float(env.subs, var) {
IntOrFloat::IntType => Stmt::Let(
assigned,
Expr::Literal(Literal::Int(num)),
Layout::Builtin(Builtin::Int64),
hole,
),
IntOrFloat::FloatType => Stmt::Let(
assigned,
Expr::Literal(Literal::Float(num as f64)),
Layout::Builtin(Builtin::Float64),
hole,
),
},
LetNonRec(def, cont, _, _) => {
// WRONG! this is introduces new control flow, and should call `from_can` again
if let roc_can::pattern::Pattern::Identifier(symbol) = def.loc_pattern.value {
let mut stmt = with_hole(env, cont.value, procs, layout_cache, assigned, hole);
// this is an alias of a variable
if let roc_can::expr::Expr::Var(original) = def.loc_expr.value {
substitute_in_exprs(env.arena, &mut stmt, symbol, original);
}
with_hole(
env,
def.loc_expr.value,
procs,
layout_cache,
symbol,
env.arena.alloc(stmt),
)
} else {
// this may be a destructure pattern
let mono_pattern = from_can_pattern(env, layout_cache, &def.loc_pattern.value);
if let Pattern::Identifier(symbol) = mono_pattern {
let hole = env
.arena
.alloc(from_can(env, cont.value, procs, layout_cache));
with_hole(env, def.loc_expr.value, procs, layout_cache, symbol, hole)
} else {
let context = crate::exhaustive::Context::BadDestruct;
match crate::exhaustive::check(
def.loc_pattern.region,
&[(
Located::at(def.loc_pattern.region, mono_pattern.clone()),
crate::exhaustive::Guard::NoGuard,
)],
context,
) {
Ok(_) => {}
Err(errors) => {
for error in errors {
env.problems.push(MonoProblem::PatternProblem(error))
}
} // TODO make all variables bound in the pattern evaluate to a runtime error
// return Stmt::RuntimeError("TODO non-exhaustive pattern");
}
// convert the continuation
let mut stmt = from_can(env, cont.value, procs, layout_cache);
let outer_symbol = env.unique_symbol();
stmt =
store_pattern(env, procs, layout_cache, &mono_pattern, outer_symbol, stmt)
.unwrap();
// convert the def body, store in outer_symbol
with_hole(
env,
def.loc_expr.value,
procs,
layout_cache,
outer_symbol,
env.arena.alloc(stmt),
)
}
}
}
Var(symbol) => {
if procs.module_thunks.contains(&symbol) {
let partial_proc = procs.partial_procs.get(&symbol).unwrap();
let fn_var = partial_proc.annotation;
let ret_var = fn_var; // These are the same for a thunk.
// This is a top-level declaration, which will code gen to a 0-arity thunk.
let result = call_by_name(
env,
procs,
fn_var,
ret_var,
symbol,
std::vec::Vec::new(),
layout_cache,
assigned,
env.arena.alloc(Stmt::Ret(assigned)),
);
return result;
}
// A bit ugly, but it does the job
match hole {
Stmt::Jump(id, _) => Stmt::Jump(*id, env.arena.alloc([symbol])),
_ => {
// if you see this, there is variable aliasing going on
Stmt::Ret(symbol)
}
}
}
// Var(symbol) => panic!("reached Var {}", symbol),
// assigned,
// Stmt::Ret(symbol),
Tag {
variant_var,
name: tag_name,
arguments: args,
..
} => {
use crate::layout::UnionVariant::*;
let arena = env.arena;
let variant = crate::layout::union_sorted_tags(env.arena, variant_var, env.subs);
match variant {
Never => unreachable!("The `[]` type has no constructors"),
Unit => Stmt::Let(assigned, Expr::Struct(&[]), Layout::Struct(&[]), hole),
BoolUnion { ttrue, .. } => Stmt::Let(
assigned,
Expr::Literal(Literal::Bool(tag_name == ttrue)),
Layout::Builtin(Builtin::Int1),
hole,
),
ByteUnion(tag_names) => {
let tag_id = tag_names
.iter()
.position(|key| key == &tag_name)
.expect("tag must be in its own type");
Stmt::Let(
assigned,
Expr::Literal(Literal::Byte(tag_id as u8)),
Layout::Builtin(Builtin::Int8),
hole,
)
}
Unwrapped(field_layouts) => {
let mut field_symbols = Vec::with_capacity_in(field_layouts.len(), env.arena);
for (_, arg) in args.iter() {
if let roc_can::expr::Expr::Var(symbol) = arg.value {
field_symbols.push(symbol);
} else {
field_symbols.push(env.unique_symbol());
}
}
// Layout will unpack this unwrapped tack if it only has one (non-zero-sized) field
let layout = layout_cache
.from_var(env.arena, variant_var, env.subs)
.unwrap_or_else(|err| {
panic!("TODO turn fn_var into a RuntimeError {:?}", err)
});
// even though this was originally a Tag, we treat it as a Struct from now on
let mut stmt = Stmt::Let(
assigned,
Expr::Struct(field_symbols.clone().into_bump_slice()),
layout,
hole,
);
for ((_, arg), symbol) in args.into_iter().rev().zip(field_symbols.iter().rev())
{
// if this argument is already a symbol, we don't need to re-define it
if let roc_can::expr::Expr::Var(_) = arg.value {
continue;
}
stmt = with_hole(
env,
arg.value,
procs,
layout_cache,
*symbol,
env.arena.alloc(stmt),
);
}
stmt
}
Wrapped(sorted_tag_layouts) => {
let union_size = sorted_tag_layouts.len() as u8;
let (tag_id, (_, _)) = sorted_tag_layouts
.iter()
.enumerate()
.find(|(_, (key, _))| key == &tag_name)
.expect("tag must be in its own type");
let mut field_symbols: Vec<Symbol> = Vec::with_capacity_in(args.len(), arena);
let tag_id_symbol = env.unique_symbol();
field_symbols.push(tag_id_symbol);
for (_, arg) in args.iter() {
if let roc_can::expr::Expr::Var(symbol) = arg.value {
field_symbols.push(symbol);
} else {
field_symbols.push(env.unique_symbol());
}
}
let mut layouts: Vec<&'a [Layout<'a>]> =
Vec::with_capacity_in(sorted_tag_layouts.len(), env.arena);
for (_, arg_layouts) in sorted_tag_layouts.into_iter() {
layouts.push(arg_layouts);
}
let field_symbols = field_symbols.into_bump_slice();
let layout = Layout::Union(layouts.into_bump_slice());
let tag = Expr::Tag {
tag_layout: layout.clone(),
tag_name,
tag_id: tag_id as u8,
union_size,
arguments: field_symbols,
};
let mut stmt = Stmt::Let(assigned, tag, layout, hole);
for ((_, arg), symbol) in args.into_iter().rev().zip(field_symbols.iter().rev())
{
// if this argument is already a symbol, we don't need to re-define it
if let roc_can::expr::Expr::Var(_) = arg.value {
continue;
}
stmt = with_hole(
env,
arg.value,
procs,
layout_cache,
*symbol,
env.arena.alloc(stmt),
);
}
// define the tag id
stmt = Stmt::Let(
tag_id_symbol,
Expr::Literal(Literal::Int(tag_id as i64)),
Layout::Builtin(Builtin::Int64),
arena.alloc(stmt),
);
stmt
}
}
}
Record {
record_var,
mut fields,
..
} => {
let sorted_fields = crate::layout::sort_record_fields(env.arena, record_var, env.subs);
let mut field_symbols = Vec::with_capacity_in(fields.len(), env.arena);
let mut field_layouts = Vec::with_capacity_in(fields.len(), env.arena);
let mut can_fields = Vec::with_capacity_in(fields.len(), env.arena);
for (label, layout) in sorted_fields.into_iter() {
field_layouts.push(layout);
let field = fields.remove(&label).unwrap();
if let roc_can::expr::Expr::Var(symbol) = field.loc_expr.value {
field_symbols.push(symbol);
can_fields.push(None);
} else {
field_symbols.push(env.unique_symbol());
can_fields.push(Some(field));
}
}
// creating a record from the var will unpack it if it's just a single field.
let layout = layout_cache
.from_var(env.arena, record_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
let field_symbols = field_symbols.into_bump_slice();
let mut stmt = Stmt::Let(assigned, Expr::Struct(field_symbols), layout, hole);
for (opt_field, symbol) in can_fields.into_iter().rev().zip(field_symbols.iter().rev())
{
if let Some(field) = opt_field {
stmt = with_hole(
env,
field.loc_expr.value,
procs,
layout_cache,
*symbol,
env.arena.alloc(stmt),
);
}
}
stmt
}
EmptyRecord => Stmt::Let(assigned, Expr::Struct(&[]), Layout::Struct(&[]), hole),
If {
cond_var,
branch_var,
branches,
final_else,
} => {
let ret_layout = layout_cache
.from_var(env.arena, branch_var, env.subs)
.expect("invalid ret_layout");
let cond_layout = layout_cache
.from_var(env.arena, cond_var, env.subs)
.expect("invalid cond_layout");
let assigned_in_jump = env.unique_symbol();
let id = JoinPointId(env.unique_symbol());
let jump = env
.arena
.alloc(Stmt::Jump(id, env.arena.alloc([assigned_in_jump])));
let mut stmt = with_hole(
env,
final_else.value,
procs,
layout_cache,
assigned_in_jump,
jump,
);
for (loc_cond, loc_then) in branches.into_iter().rev() {
let branching_symbol = env.unique_symbol();
let then = with_hole(
env,
loc_then.value,
procs,
layout_cache,
assigned_in_jump,
jump,
);
stmt = Stmt::Cond {
cond_symbol: branching_symbol,
branching_symbol,
cond_layout: cond_layout.clone(),
branching_layout: cond_layout.clone(),
pass: env.arena.alloc(then),
fail: env.arena.alloc(stmt),
ret_layout: ret_layout.clone(),
};
// add condition
stmt = with_hole(
env,
loc_cond.value,
procs,
layout_cache,
branching_symbol,
env.arena.alloc(stmt),
);
}
let layout = layout_cache
.from_var(env.arena, branch_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
let param = Param {
symbol: assigned,
layout,
borrow: false,
};
Stmt::Join {
id,
parameters: env.arena.alloc([param]),
remainder: env.arena.alloc(stmt),
continuation: hole,
}
}
When {
cond_var,
expr_var,
region,
loc_cond,
branches,
} => {
let cond_symbol = if let roc_can::expr::Expr::Var(symbol) = loc_cond.value {
symbol
} else {
env.unique_symbol()
};
let id = JoinPointId(env.unique_symbol());
let mut stmt = from_can_when(
env,
cond_var,
expr_var,
region,
cond_symbol,
branches,
layout_cache,
procs,
Some(id),
);
// define the `when` condition
if let roc_can::expr::Expr::Var(_) = loc_cond.value {
// do nothing
} else {
stmt = with_hole(
env,
loc_cond.value,
procs,
layout_cache,
cond_symbol,
env.arena.alloc(stmt),
);
};
let layout = layout_cache
.from_var(env.arena, expr_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
let param = Param {
symbol: assigned,
layout,
borrow: false,
};
Stmt::Join {
id,
parameters: env.arena.alloc([param]),
remainder: env.arena.alloc(stmt),
continuation: env.arena.alloc(hole),
}
}
List { loc_elems, .. } if loc_elems.is_empty() => {
// because an empty list has an unknown element type, it is handled differently
let expr = Expr::EmptyArray;
Stmt::Let(assigned, expr, Layout::Builtin(Builtin::EmptyList), hole)
}
List {
list_var,
elem_var,
loc_elems,
} => {
let mut arg_symbols = Vec::with_capacity_in(loc_elems.len(), env.arena);
for arg_expr in loc_elems.iter() {
if let roc_can::expr::Expr::Var(symbol) = arg_expr.value {
arg_symbols.push(symbol);
} else {
arg_symbols.push(env.unique_symbol());
}
}
let arg_symbols = arg_symbols.into_bump_slice();
let elem_layout = layout_cache
.from_var(env.arena, elem_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
let expr = Expr::Array {
elem_layout: elem_layout.clone(),
elems: arg_symbols,
};
let mode = crate::layout::mode_from_var(list_var, env.subs);
let mut stmt = Stmt::Let(
assigned,
expr,
Layout::Builtin(Builtin::List(mode, env.arena.alloc(elem_layout))),
hole,
);
for (arg_expr, symbol) in loc_elems.into_iter().rev().zip(arg_symbols.iter().rev()) {
// if this argument is already a symbol, we don't need to re-define it
if let roc_can::expr::Expr::Var(_) = arg_expr.value {
continue;
}
stmt = with_hole(
env,
arg_expr.value,
procs,
layout_cache,
*symbol,
env.arena.alloc(stmt),
);
}
stmt
}
LetRec(_, _, _, _) => todo!("lets"),
Access {
record_var,
field_var,
field,
loc_expr,
..
} => {
let sorted_fields = crate::layout::sort_record_fields(env.arena, record_var, env.subs);
let mut index = None;
let mut field_layouts = Vec::with_capacity_in(sorted_fields.len(), env.arena);
for (current, (label, field_layout)) in sorted_fields.into_iter().enumerate() {
field_layouts.push(field_layout);
if label == field {
index = Some(current);
}
}
let record_symbol = if let roc_can::expr::Expr::Var(symbol) = loc_expr.value {
symbol
} else {
env.unique_symbol()
};
let expr = Expr::AccessAtIndex {
index: index.expect("field not in its own type") as u64,
field_layouts: field_layouts.into_bump_slice(),
structure: record_symbol,
is_unwrapped: true,
};
let layout = layout_cache
.from_var(env.arena, field_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
let mut stmt = Stmt::Let(assigned, expr, layout, hole);
if let roc_can::expr::Expr::Var(_) = loc_expr.value {
// do nothing
} else {
stmt = with_hole(
env,
loc_expr.value,
procs,
layout_cache,
record_symbol,
env.arena.alloc(stmt),
);
};
stmt
}
Accessor { .. } | Update { .. } => todo!("record access/accessor/update"),
Closure(ann, name, _, loc_args, boxed_body) => {
let (loc_body, ret_var) = *boxed_body;
match procs.insert_anonymous(env, name, ann, loc_args, loc_body, ret_var, layout_cache)
{
Ok(layout) => {
// TODO should the let have layout Pointer?
Stmt::Let(
assigned,
Expr::FunctionPointer(name, layout.clone()),
layout,
hole,
)
}
Err(_error) => Stmt::RuntimeError(
"TODO convert anonymous function error to a RuntimeError string",
),
}
}
Call(boxed, loc_args, _) => {
let (fn_var, loc_expr, ret_var) = *boxed;
/*
Var(symbol) => {
if procs.module_thunks.contains(&symbol) {
let partial_proc = procs.partial_procs.get(&symbol).unwrap();
let fn_var = partial_proc.annotation;
let ret_var = fn_var; // These are the same for a thunk.
// This is a top-level declaration, which will code gen to a 0-arity thunk.
call_by_name(
env,
procs,
fn_var,
ret_var,
symbol,
std::vec::Vec::new(),
layout_cache,
)
} else {
// NOTE Load will always increment the refcount
Expr::Load(symbol)
}
}
*/
// match from_can(env, loc_expr.value, procs, layout_cache) {
match loc_expr.value {
roc_can::expr::Expr::Var(proc_name) if procs.module_thunks.contains(&proc_name) => {
todo!()
}
roc_can::expr::Expr::Var(proc_name) => call_by_name(
env,
procs,
fn_var,
ret_var,
proc_name,
loc_args,
layout_cache,
assigned,
hole,
),
_ => {
// Call by pointer - the closure was anonymous, e.g.
//
// ((\a -> a) 5)
//
// It might even be the anonymous result of a conditional:
//
// ((if x > 0 then \a -> a else \_ -> 0) 5)
//
// It could be named too:
//
// ((if x > 0 then foo else bar) 5)
let mut arg_symbols = Vec::with_capacity_in(loc_args.len(), env.arena);
for _ in 0..loc_args.len() {
arg_symbols.push(env.unique_symbol());
}
let layout = layout_cache
.from_var(env.arena, fn_var, env.subs)
.unwrap_or_else(|err| {
panic!("TODO turn fn_var into a RuntimeError {:?}", err)
});
let arg_layouts = match layout {
Layout::FunctionPointer(args, _) => args,
_ => unreachable!("function has layout that is not function pointer"),
};
let ret_layout = layout_cache
.from_var(env.arena, ret_var, env.subs)
.unwrap_or_else(|err| {
panic!("TODO turn fn_var into a RuntimeError {:?}", err)
});
let function_symbol = env.unique_symbol();
let arg_symbols = arg_symbols.into_bump_slice();
let mut result = Stmt::Let(
assigned,
Expr::FunctionCall {
call_type: CallType::ByPointer(function_symbol),
layout,
args: arg_symbols,
arg_layouts,
},
ret_layout,
arena.alloc(hole),
);
// let ptr = with_hole(env, loc_expr.value, procs, layout_cache, function_symbol);
result = with_hole(
env,
loc_expr.value,
procs,
layout_cache,
function_symbol,
env.arena.alloc(result),
);
for ((_, loc_arg), symbol) in
loc_args.into_iter().rev().zip(arg_symbols.iter().rev())
{
result = with_hole(
env,
loc_arg.value,
procs,
layout_cache,
*symbol,
env.arena.alloc(result),
);
}
result
}
}
}
RunLowLevel { op, args, ret_var } => {
let op = optimize_low_level(env.subs, op, &args);
let mut arg_symbols = Vec::with_capacity_in(args.len(), env.arena);
for (_, arg_expr) in args.iter() {
if let roc_can::expr::Expr::Var(symbol) = arg_expr {
arg_symbols.push(*symbol);
} else {
arg_symbols.push(env.unique_symbol());
}
}
let arg_symbols = arg_symbols.into_bump_slice();
// layout of the return type
let layout = layout_cache
.from_var(env.arena, ret_var, env.subs)
.unwrap_or_else(|err| todo!("TODO turn fn_var into a RuntimeError {:?}", err));
let mut result = Stmt::Let(assigned, Expr::RunLowLevel(op, arg_symbols), layout, hole);
for ((_arg_var, arg_expr), symbol) in
args.into_iter().rev().zip(arg_symbols.iter().rev())
{
// if this argument is already a symbol, we don't need to re-define it
if let roc_can::expr::Expr::Var(_) = arg_expr {
continue;
}
result = with_hole(
env,
arg_expr,
procs,
layout_cache,
*symbol,
env.arena.alloc(result),
);
}
result
}
RuntimeError(e) => Stmt::RuntimeError(env.arena.alloc(format!("{:?}", e))),
}
}
pub fn from_can<'a>(
env: &mut Env<'a, '_>,
can_expr: roc_can::expr::Expr,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
) -> Stmt<'a> {
use roc_can::expr::Expr::*;
match can_expr {
LetRec(defs, cont, _, _) => {
// because Roc is strict, only functions can be recursive!
for def in defs.into_iter() {
if let roc_can::pattern::Pattern::Identifier(symbol) = &def.loc_pattern.value {
// Now that we know for sure it's a closure, get an owned
// version of these variant args so we can use them properly.
match def.loc_expr.value {
Closure(ann, _, _, loc_args, boxed_body) => {
// Extract Procs, but discard the resulting Expr::Load.
// That Load looks up the pointer, which we won't use here!
let (loc_body, ret_var) = *boxed_body;
procs.insert_named(
env,
layout_cache,
*symbol,
ann,
loc_args,
loc_body,
ret_var,
);
continue;
}
_ => unreachable!("recursive value is not a function"),
}
}
unreachable!("recursive value does not have Identifier pattern")
}
from_can(env, cont.value, procs, layout_cache)
}
LetNonRec(def, cont, _, _) => {
if let roc_can::pattern::Pattern::Identifier(symbol) = &def.loc_pattern.value {
if let Closure(_, _, _, _, _) = &def.loc_expr.value {
// Now that we know for sure it's a closure, get an owned
// version of these variant args so we can use them properly.
match def.loc_expr.value {
Closure(ann, _, _, loc_args, boxed_body) => {
// Extract Procs, but discard the resulting Expr::Load.
// That Load looks up the pointer, which we won't use here!
let (loc_body, ret_var) = *boxed_body;
procs.insert_named(
env,
layout_cache,
*symbol,
ann,
loc_args,
loc_body,
ret_var,
);
return from_can(env, cont.value, procs, layout_cache);
}
_ => unreachable!(),
}
}
let rest = from_can(env, cont.value, procs, layout_cache);
return with_hole(
env,
def.loc_expr.value,
procs,
layout_cache,
*symbol,
env.arena.alloc(rest),
);
}
// this may be a destructure pattern
let mono_pattern = from_can_pattern(env, layout_cache, &def.loc_pattern.value);
if let Pattern::Identifier(symbol) = mono_pattern {
let hole = env
.arena
.alloc(from_can(env, cont.value, procs, layout_cache));
with_hole(env, def.loc_expr.value, procs, layout_cache, symbol, hole)
} else {
let context = crate::exhaustive::Context::BadDestruct;
match crate::exhaustive::check(
def.loc_pattern.region,
&[(
Located::at(def.loc_pattern.region, mono_pattern.clone()),
crate::exhaustive::Guard::NoGuard,
)],
context,
) {
Ok(_) => {}
Err(errors) => {
for error in errors {
env.problems.push(MonoProblem::PatternProblem(error))
}
} // TODO make all variables bound in the pattern evaluate to a runtime error
// return Stmt::RuntimeError("TODO non-exhaustive pattern");
}
// convert the continuation
let mut stmt = from_can(env, cont.value, procs, layout_cache);
let outer_symbol = env.unique_symbol();
stmt = store_pattern(env, procs, layout_cache, &mono_pattern, outer_symbol, stmt)
.unwrap();
// convert the def body, store in outer_symbol
with_hole(
env,
def.loc_expr.value,
procs,
layout_cache,
outer_symbol,
env.arena.alloc(stmt),
)
}
}
_ => {
let symbol = env.unique_symbol();
let hole = env.arena.alloc(Stmt::Ret(symbol));
with_hole(env, can_expr, procs, layout_cache, symbol, hole)
}
}
}
fn to_opt_branches<'a>(
env: &mut Env<'a, '_>,
region: Region,
branches: std::vec::Vec<roc_can::expr::WhenBranch>,
layout_cache: &mut LayoutCache<'a>,
) -> std::vec::Vec<(
Pattern<'a>,
Option<Located<roc_can::expr::Expr>>,
roc_can::expr::Expr,
)> {
debug_assert!(!branches.is_empty());
let mut loc_branches = std::vec::Vec::new();
let mut opt_branches = std::vec::Vec::new();
for when_branch in branches {
let exhaustive_guard = if when_branch.guard.is_some() {
Guard::HasGuard
} else {
Guard::NoGuard
};
for loc_pattern in when_branch.patterns {
let mono_pattern = from_can_pattern(env, layout_cache, &loc_pattern.value);
loc_branches.push((
Located::at(loc_pattern.region, mono_pattern.clone()),
exhaustive_guard.clone(),
));
// TODO remove clone?
opt_branches.push((
mono_pattern,
when_branch.guard.clone(),
when_branch.value.value.clone(),
));
}
}
// NOTE exhaustiveness is checked after the construction of all the branches
// In contrast to elm (currently), we still do codegen even if a pattern is non-exhaustive.
// So we not only report exhaustiveness errors, but also correct them
let context = crate::exhaustive::Context::BadCase;
match crate::exhaustive::check(region, &loc_branches, context) {
Ok(_) => {}
Err(errors) => {
use crate::exhaustive::Error::*;
let mut is_not_exhaustive = false;
let mut overlapping_branches = std::vec::Vec::new();
for error in errors {
match &error {
Incomplete(_, _, _) => {
is_not_exhaustive = true;
}
Redundant { index, .. } => {
overlapping_branches.push(index.to_zero_based());
}
}
env.problems.push(MonoProblem::PatternProblem(error))
}
overlapping_branches.sort();
for i in overlapping_branches.into_iter().rev() {
opt_branches.remove(i);
}
if is_not_exhaustive {
opt_branches.push((
Pattern::Underscore,
None,
roc_can::expr::Expr::RuntimeError(
roc_problem::can::RuntimeError::NonExhaustivePattern,
),
));
}
}
}
opt_branches
}
#[allow(clippy::too_many_arguments)]
fn from_can_when<'a>(
env: &mut Env<'a, '_>,
cond_var: Variable,
expr_var: Variable,
region: Region,
cond_symbol: Symbol,
branches: std::vec::Vec<roc_can::expr::WhenBranch>,
layout_cache: &mut LayoutCache<'a>,
procs: &mut Procs<'a>,
join_point: Option<JoinPointId>,
) -> Stmt<'a> {
if branches.is_empty() {
// A when-expression with no branches is a runtime error.
// We can't know what to return!
return Stmt::RuntimeError("Hit a 0-branch when expression");
}
let opt_branches = to_opt_branches(env, region, branches, layout_cache);
let cond_layout = layout_cache
.from_var(env.arena, cond_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn this into a RuntimeError {:?}", err));
let ret_layout = layout_cache
.from_var(env.arena, expr_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn this into a RuntimeError {:?}", err));
let arena = env.arena;
let it = opt_branches
.into_iter()
.map(|(pattern, opt_guard, can_expr)| {
let branch_stmt = match join_point {
None => from_can(env, can_expr, procs, layout_cache),
Some(id) => {
let symbol = env.unique_symbol();
let arguments = bumpalo::vec![in env.arena; symbol].into_bump_slice();
let jump = env.arena.alloc(Stmt::Jump(id, arguments));
with_hole(env, can_expr, procs, layout_cache, symbol, jump)
}
};
use crate::decision_tree::Guard;
if let Some(loc_expr) = opt_guard {
let id = JoinPointId(env.unique_symbol());
let symbol = env.unique_symbol();
let jump = env.arena.alloc(Stmt::Jump(id, env.arena.alloc([symbol])));
let guard_stmt = with_hole(env, loc_expr.value, procs, layout_cache, symbol, jump);
match store_pattern(env, procs, layout_cache, &pattern, cond_symbol, guard_stmt) {
Ok(new_guard_stmt) => (
pattern,
Guard::Guard {
id,
symbol,
stmt: new_guard_stmt,
},
branch_stmt,
),
Err(msg) => (
Pattern::Underscore,
Guard::NoGuard,
Stmt::RuntimeError(env.arena.alloc(msg)),
),
}
} else {
match store_pattern(env, procs, layout_cache, &pattern, cond_symbol, branch_stmt) {
Ok(new_branch_stmt) => (pattern, Guard::NoGuard, new_branch_stmt),
Err(msg) => (
Pattern::Underscore,
Guard::NoGuard,
Stmt::RuntimeError(env.arena.alloc(msg)),
),
}
}
});
let mono_branches = Vec::from_iter_in(it, arena);
crate::decision_tree::optimize_when(
env,
procs,
layout_cache,
cond_symbol,
cond_layout.clone(),
ret_layout,
mono_branches,
)
}
fn substitute(substitutions: &MutMap<Symbol, Symbol>, s: Symbol) -> Option<Symbol> {
match substitutions.get(&s) {
Some(new) => {
debug_assert!(!substitutions.contains_key(new));
Some(*new)
}
None => None,
}
}
fn substitute_in_exprs<'a>(arena: &'a Bump, stmt: &mut Stmt<'a>, from: Symbol, to: Symbol) {
let mut subs = MutMap::default();
subs.insert(from, to);
// TODO clean this up
let ref_stmt = arena.alloc(stmt.clone());
if let Some(new) = substitute_in_stmt_help(arena, ref_stmt, &subs) {
*stmt = new.clone();
}
}
fn substitute_in_stmt_help<'a>(
arena: &'a Bump,
stmt: &'a Stmt<'a>,
subs: &MutMap<Symbol, Symbol>,
) -> Option<&'a Stmt<'a>> {
use Stmt::*;
match stmt {
Let(symbol, expr, layout, cont) => {
let opt_cont = substitute_in_stmt_help(arena, cont, subs);
let opt_expr = substitute_in_expr(arena, expr, subs);
if opt_expr.is_some() || opt_cont.is_some() {
let cont = opt_cont.unwrap_or(cont);
let expr = opt_expr.unwrap_or_else(|| expr.clone());
Some(arena.alloc(Let(*symbol, expr, layout.clone(), cont)))
} else {
None
}
}
Join {
id,
parameters,
remainder,
continuation,
} => {
let opt_remainder = substitute_in_stmt_help(arena, remainder, subs);
let opt_continuation = substitute_in_stmt_help(arena, continuation, subs);
if opt_remainder.is_some() || opt_continuation.is_some() {
let remainder = opt_remainder.unwrap_or(remainder);
let continuation = opt_continuation.unwrap_or_else(|| *continuation);
Some(arena.alloc(Join {
id: *id,
parameters,
remainder,
continuation,
}))
} else {
None
}
}
Cond {
cond_symbol,
cond_layout,
branching_symbol,
branching_layout,
pass,
fail,
ret_layout,
} => {
let opt_pass = substitute_in_stmt_help(arena, pass, subs);
let opt_fail = substitute_in_stmt_help(arena, fail, subs);
if opt_pass.is_some() || opt_fail.is_some() {
let pass = opt_pass.unwrap_or(pass);
let fail = opt_fail.unwrap_or_else(|| *fail);
Some(arena.alloc(Cond {
cond_symbol: *cond_symbol,
cond_layout: cond_layout.clone(),
branching_symbol: *branching_symbol,
branching_layout: branching_layout.clone(),
pass,
fail,
ret_layout: ret_layout.clone(),
}))
} else {
None
}
}
Switch {
cond_symbol,
cond_layout,
branches,
default_branch,
ret_layout,
} => {
let opt_default = substitute_in_stmt_help(arena, default_branch, subs);
let mut did_change = false;
let opt_branches = Vec::from_iter_in(
branches.iter().map(|(label, branch)| {
match substitute_in_stmt_help(arena, branch, subs) {
None => None,
Some(branch) => {
did_change = true;
Some((*label, branch.clone()))
}
}
}),
arena,
);
if opt_default.is_some() || did_change {
let default_branch = opt_default.unwrap_or(default_branch);
let branches = if did_change {
let new = Vec::from_iter_in(
opt_branches.into_iter().zip(branches.iter()).map(
|(opt_branch, branch)| match opt_branch {
None => branch.clone(),
Some(new_branch) => new_branch,
},
),
arena,
);
new.into_bump_slice()
} else {
branches
};
Some(arena.alloc(Switch {
cond_symbol: *cond_symbol,
cond_layout: cond_layout.clone(),
default_branch,
branches,
ret_layout: ret_layout.clone(),
}))
} else {
None
}
}
Ret(s) => match substitute(subs, *s) {
Some(s) => Some(arena.alloc(Ret(s))),
None => None,
},
Inc(symbol, cont) => match substitute_in_stmt_help(arena, cont, subs) {
Some(cont) => Some(arena.alloc(Inc(*symbol, cont))),
None => None,
},
Dec(symbol, cont) => match substitute_in_stmt_help(arena, cont, subs) {
Some(cont) => Some(arena.alloc(Dec(*symbol, cont))),
None => None,
},
Jump(id, args) => {
let mut did_change = false;
let new_args = Vec::from_iter_in(
args.iter().map(|s| match substitute(subs, *s) {
None => *s,
Some(s) => {
did_change = true;
s
}
}),
arena,
);
if did_change {
let args = new_args.into_bump_slice();
Some(arena.alloc(Jump(*id, args)))
} else {
None
}
}
RuntimeError(_) => None,
}
}
fn substitute_in_expr<'a>(
arena: &'a Bump,
expr: &'a Expr<'a>,
subs: &MutMap<Symbol, Symbol>,
) -> Option<Expr<'a>> {
use Expr::*;
match expr {
Literal(_) | FunctionPointer(_, _) | EmptyArray | RuntimeErrorFunction(_) => None,
FunctionCall {
call_type,
args,
arg_layouts,
layout,
} => {
let opt_call_type = match call_type {
CallType::ByName(s) => substitute(subs, *s).map(CallType::ByName),
CallType::ByPointer(s) => substitute(subs, *s).map(CallType::ByPointer),
};
let mut did_change = false;
let new_args = Vec::from_iter_in(
args.iter().map(|s| match substitute(subs, *s) {
None => *s,
Some(s) => {
did_change = true;
s
}
}),
arena,
);
if did_change || opt_call_type.is_some() {
let call_type = opt_call_type.unwrap_or(*call_type);
let args = new_args.into_bump_slice();
Some(FunctionCall {
call_type,
args,
arg_layouts: *arg_layouts,
layout: layout.clone(),
})
} else {
None
}
}
RunLowLevel(op, args) => {
let mut did_change = false;
let new_args = Vec::from_iter_in(
args.iter().map(|s| match substitute(subs, *s) {
None => *s,
Some(s) => {
did_change = true;
s
}
}),
arena,
);
if did_change {
let args = new_args.into_bump_slice();
Some(RunLowLevel(*op, args))
} else {
None
}
}
Tag {
tag_layout,
tag_name,
tag_id,
union_size,
arguments: args,
} => {
let mut did_change = false;
let new_args = Vec::from_iter_in(
args.iter().map(|s| match substitute(subs, *s) {
None => *s,
Some(s) => {
did_change = true;
s
}
}),
arena,
);
if did_change {
let arguments = new_args.into_bump_slice();
Some(Tag {
tag_layout: tag_layout.clone(),
tag_name: tag_name.clone(),
tag_id: *tag_id,
union_size: *union_size,
arguments,
})
} else {
None
}
}
Struct(args) => {
let mut did_change = false;
let new_args = Vec::from_iter_in(
args.iter().map(|s| match substitute(subs, *s) {
None => *s,
Some(s) => {
did_change = true;
s
}
}),
arena,
);
if did_change {
let args = new_args.into_bump_slice();
Some(Struct(args))
} else {
None
}
}
Array {
elems: args,
elem_layout,
} => {
let mut did_change = false;
let new_args = Vec::from_iter_in(
args.iter().map(|s| match substitute(subs, *s) {
None => *s,
Some(s) => {
did_change = true;
s
}
}),
arena,
);
if did_change {
let args = new_args.into_bump_slice();
Some(Array {
elem_layout: elem_layout.clone(),
elems: args,
})
} else {
None
}
}
AccessAtIndex {
index,
structure,
field_layouts,
is_unwrapped,
} => match substitute(subs, *structure) {
Some(structure) => Some(AccessAtIndex {
index: *index,
field_layouts: *field_layouts,
is_unwrapped: *is_unwrapped,
structure,
}),
None => None,
},
}
}
#[allow(clippy::too_many_arguments)]
fn store_pattern<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
can_pat: &Pattern<'a>,
outer_symbol: Symbol,
mut stmt: Stmt<'a>,
) -> Result<Stmt<'a>, &'a str> {
use Pattern::*;
match can_pat {
Identifier(symbol) => {
substitute_in_exprs(env.arena, &mut stmt, *symbol, outer_symbol);
}
Underscore => {
// do nothing
}
IntLiteral(_)
| FloatLiteral(_)
| EnumLiteral { .. }
| BitLiteral { .. }
| StrLiteral(_) => {}
AppliedTag {
union, arguments, ..
} => {
let is_unwrapped = union.alternatives.len() == 1;
let mut arg_layouts = Vec::with_capacity_in(arguments.len(), env.arena);
if !is_unwrapped {
// add an element for the tag discriminant
arg_layouts.push(Layout::Builtin(Builtin::Int64));
}
for (_, layout) in arguments {
arg_layouts.push(layout.clone());
}
for (index, (argument, arg_layout)) in arguments.iter().enumerate().rev() {
let load = Expr::AccessAtIndex {
is_unwrapped,
index: (!is_unwrapped as usize + index) as u64,
field_layouts: arg_layouts.clone().into_bump_slice(),
structure: outer_symbol,
};
match argument {
Identifier(symbol) => {
// store immediately in the given symbol
stmt = Stmt::Let(*symbol, load, arg_layout.clone(), env.arena.alloc(stmt));
}
Underscore => {
// ignore
}
IntLiteral(_)
| FloatLiteral(_)
| EnumLiteral { .. }
| BitLiteral { .. }
| StrLiteral(_) => {}
_ => {
// store the field in a symbol, and continue matching on it
let symbol = env.unique_symbol();
// first recurse, continuing to unpack symbol
stmt = store_pattern(env, procs, layout_cache, argument, symbol, stmt)?;
// then store the symbol
stmt = Stmt::Let(symbol, load, arg_layout.clone(), env.arena.alloc(stmt));
}
}
}
}
RecordDestructure(destructs, Layout::Struct(sorted_fields)) => {
for (index, destruct) in destructs.iter().enumerate().rev() {
stmt = store_record_destruct(
env,
procs,
layout_cache,
destruct,
index as u64,
outer_symbol,
sorted_fields,
stmt,
)?;
}
}
RecordDestructure(_, _) => {
unreachable!("a record destructure must always occur on a struct layout");
}
Shadowed(_region, _ident) => {
return Err(&"TODO");
}
UnsupportedPattern(_region) => {
return Err(&"TODO");
}
}
Ok(stmt)
}
#[allow(clippy::too_many_arguments)]
fn store_record_destruct<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
destruct: &RecordDestruct<'a>,
index: u64,
outer_symbol: Symbol,
sorted_fields: &'a [Layout<'a>],
mut stmt: Stmt<'a>,
) -> Result<Stmt<'a>, &'a str> {
use Pattern::*;
let load = Expr::AccessAtIndex {
index,
field_layouts: sorted_fields,
structure: outer_symbol,
is_unwrapped: true,
};
match &destruct.typ {
DestructType::Required => {
stmt = Stmt::Let(
destruct.symbol,
load,
destruct.layout.clone(),
env.arena.alloc(stmt),
);
}
DestructType::Optional(_expr) => {
todo!("TODO monomorphize optional field destructure's default expr");
}
DestructType::Guard(guard_pattern) => match &guard_pattern {
Identifier(symbol) => {
stmt = Stmt::Let(
*symbol,
load,
destruct.layout.clone(),
env.arena.alloc(stmt),
);
}
Underscore => {
// important that this is special-cased to do nothing: mono record patterns will extract all the
// fields, but those not bound in the source code are guarded with the underscore
// pattern. So given some record `{ x : a, y : b }`, a match
//
// { x } -> ...
//
// is actually
//
// { x, y: _ } -> ...
//
// internally. But `y` is never used, so we must make sure it't not stored/loaded.
}
IntLiteral(_)
| FloatLiteral(_)
| EnumLiteral { .. }
| BitLiteral { .. }
| StrLiteral(_) => {}
_ => {
let symbol = env.unique_symbol();
stmt = store_pattern(env, procs, layout_cache, guard_pattern, symbol, stmt)?;
stmt = Stmt::Let(symbol, load, destruct.layout.clone(), env.arena.alloc(stmt));
}
},
}
Ok(stmt)
}
#[allow(clippy::too_many_arguments)]
fn call_by_name<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
fn_var: Variable,
ret_var: Variable,
proc_name: Symbol,
loc_args: std::vec::Vec<(Variable, Located<roc_can::expr::Expr>)>,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
// Register a pending_specialization for this function
match layout_cache.from_var(env.arena, fn_var, env.subs) {
Ok(layout) => {
// Build the CallByName node
let arena = env.arena;
let mut pattern_vars = Vec::with_capacity_in(loc_args.len(), arena);
let mut field_symbols = Vec::with_capacity_in(loc_args.len(), env.arena);
for (_, arg_expr) in loc_args.iter() {
if let roc_can::expr::Expr::Var(symbol) = arg_expr.value {
field_symbols.push(symbol);
} else {
field_symbols.push(env.unique_symbol());
}
}
let field_symbols = field_symbols.into_bump_slice();
for (var, _) in &loc_args {
match layout_cache.from_var(&env.arena, *var, &env.subs) {
Ok(_) => {
pattern_vars.push(*var);
}
Err(_) => {
// One of this function's arguments code gens to a runtime error,
// so attempting to call it will immediately crash.
return Stmt::RuntimeError("TODO runtime error for invalid layout");
}
}
}
// TODO does this work?
let empty = &[] as &[_];
let (arg_layouts, layout) = if let Layout::FunctionPointer(args, rlayout) = layout {
(args, rlayout)
} else {
(empty, &layout)
};
// If we've already specialized this one, no further work is needed.
if procs.specialized.contains_key(&(proc_name, layout.clone())) {
let call = Expr::FunctionCall {
call_type: CallType::ByName(proc_name),
layout: layout.clone(),
arg_layouts,
args: field_symbols,
};
let mut result = Stmt::Let(assigned, call, layout.clone(), hole);
for ((_, loc_arg), symbol) in
loc_args.into_iter().rev().zip(field_symbols.iter().rev())
{
// if this argument is already a symbol, we don't need to re-define it
if let roc_can::expr::Expr::Var(_) = loc_arg.value {
continue;
}
result = with_hole(
env,
loc_arg.value,
procs,
layout_cache,
*symbol,
env.arena.alloc(result),
);
}
result
} else {
let pending = PendingSpecialization {
pattern_vars,
ret_var,
fn_var,
};
// When requested (that is, when procs.pending_specializations is `Some`),
// store a pending specialization rather than specializing immediately.
//
// We do this so that we can do specialization in two passes: first,
// build the mono_expr with all the specialized calls in place (but
// no specializations performed yet), and then second, *after*
// de-duplicating requested specializations (since multiple modules
// which could be getting monomorphized in parallel might request
// the same specialization independently), we work through the
// queue of pending specializations to complete each specialization
// exactly once.
match &mut procs.pending_specializations {
Some(pending_specializations) => {
// register the pending specialization, so this gets code genned later
add_pending(pending_specializations, proc_name, layout.clone(), pending);
let call = Expr::FunctionCall {
call_type: CallType::ByName(proc_name),
layout: layout.clone(),
arg_layouts,
args: field_symbols,
};
let mut result = Stmt::Let(assigned, call, layout.clone(), hole);
for ((_, loc_arg), symbol) in
loc_args.into_iter().rev().zip(field_symbols.iter().rev())
{
// if this argument is already a symbol, we don't need to re-define it
if let roc_can::expr::Expr::Var(_) = loc_arg.value {
continue;
}
result = with_hole(
env,
loc_arg.value,
procs,
layout_cache,
*symbol,
env.arena.alloc(result),
);
}
result
}
None => {
let opt_partial_proc = procs.partial_procs.get(&proc_name);
match opt_partial_proc {
Some(partial_proc) => {
// TODO should pending_procs hold a Rc<Proc> to avoid this .clone()?
let partial_proc = partial_proc.clone();
// Mark this proc as in-progress, so if we're dealing with
// mutually recursive functions, we don't loop forever.
// (We had a bug around this before this system existed!)
procs
.specialized
.insert((proc_name, layout.clone()), InProgress);
match specialize(
env,
procs,
proc_name,
layout_cache,
pending,
partial_proc,
) {
Ok(proc) => {
procs
.specialized
.insert((proc_name, layout.clone()), Done(proc));
let call = Expr::FunctionCall {
call_type: CallType::ByName(proc_name),
layout: layout.clone(),
arg_layouts,
args: field_symbols,
};
let mut result =
Stmt::Let(assigned, call, layout.clone(), hole);
for ((_, loc_arg), symbol) in loc_args
.into_iter()
.rev()
.zip(field_symbols.iter().rev())
{
// if this argument is already a symbol, we don't need to re-define it
if let roc_can::expr::Expr::Var(_) = loc_arg.value {
continue;
}
result = with_hole(
env,
loc_arg.value,
procs,
layout_cache,
*symbol,
env.arena.alloc(result),
);
}
result
}
Err(error) => {
let error_msg = env.arena.alloc(format!(
"TODO generate a RuntimeError message for {:?}",
error
));
procs.runtime_errors.insert(proc_name, error_msg);
Stmt::RuntimeError(error_msg)
}
}
}
None => {
// This must have been a runtime error.
match procs.runtime_errors.get(&proc_name) {
Some(error) => Stmt::RuntimeError(error),
None => unreachable!("Proc name {:?} is invalid", proc_name),
}
}
}
}
}
}
}
Err(_) => {
// This function code gens to a runtime error,
// so attempting to call it will immediately crash.
Stmt::RuntimeError("")
}
}
}
/// A pattern, including possible problems (e.g. shadowing) so that
/// codegen can generate a runtime error if this pattern is reached.
#[derive(Clone, Debug, PartialEq)]
pub enum Pattern<'a> {
Identifier(Symbol),
Underscore,
IntLiteral(i64),
FloatLiteral(u64),
BitLiteral {
value: bool,
tag_name: TagName,
union: crate::exhaustive::Union,
},
EnumLiteral {
tag_id: u8,
tag_name: TagName,
union: crate::exhaustive::Union,
},
StrLiteral(Box<str>),
RecordDestructure(Vec<'a, RecordDestruct<'a>>, Layout<'a>),
AppliedTag {
tag_name: TagName,
tag_id: u8,
arguments: Vec<'a, (Pattern<'a>, Layout<'a>)>,
layout: Layout<'a>,
union: crate::exhaustive::Union,
},
// Runtime Exceptions
Shadowed(Region, Located<Ident>),
// Example: (5 = 1 + 2) is an unsupported pattern in an assignment; Int patterns aren't allowed in assignments!
UnsupportedPattern(Region),
}
#[derive(Clone, Debug, PartialEq)]
pub struct RecordDestruct<'a> {
pub label: Lowercase,
pub layout: Layout<'a>,
pub symbol: Symbol,
pub typ: DestructType<'a>,
}
#[derive(Clone, Debug, PartialEq)]
pub enum DestructType<'a> {
Required,
Optional(roc_can::expr::Expr),
Guard(Pattern<'a>),
}
#[derive(Clone, Debug, PartialEq)]
pub struct WhenBranch<'a> {
pub patterns: Vec<'a, Pattern<'a>>,
pub value: Expr<'a>,
pub guard: Option<Stmt<'a>>,
}
pub fn from_can_pattern<'a>(
env: &mut Env<'a, '_>,
layout_cache: &mut LayoutCache<'a>,
can_pattern: &roc_can::pattern::Pattern,
) -> Pattern<'a> {
use roc_can::pattern::Pattern::*;
match can_pattern {
Underscore => Pattern::Underscore,
Identifier(symbol) => Pattern::Identifier(*symbol),
IntLiteral(v) => Pattern::IntLiteral(*v),
FloatLiteral(v) => Pattern::FloatLiteral(f64::to_bits(*v)),
StrLiteral(v) => Pattern::StrLiteral(v.clone()),
Shadowed(region, ident) => Pattern::Shadowed(*region, ident.clone()),
UnsupportedPattern(region) => Pattern::UnsupportedPattern(*region),
MalformedPattern(_problem, region) => {
// TODO preserve malformed problem information here?
Pattern::UnsupportedPattern(*region)
}
NumLiteral(var, num) => match num_argument_to_int_or_float(env.subs, *var) {
IntOrFloat::IntType => Pattern::IntLiteral(*num),
IntOrFloat::FloatType => Pattern::FloatLiteral(*num as u64),
},
AppliedTag {
whole_var,
tag_name,
arguments,
..
} => {
use crate::exhaustive::Union;
use crate::layout::UnionVariant::*;
let variant = crate::layout::union_sorted_tags(env.arena, *whole_var, env.subs);
match variant {
Never => unreachable!("there is no pattern of type `[]`"),
Unit => Pattern::EnumLiteral {
tag_id: 0,
tag_name: tag_name.clone(),
union: Union {
render_as: RenderAs::Tag,
alternatives: vec![Ctor {
tag_id: TagId(0),
name: tag_name.clone(),
arity: 0,
}],
},
},
BoolUnion { ttrue, ffalse } => Pattern::BitLiteral {
value: tag_name == &ttrue,
tag_name: tag_name.clone(),
union: Union {
render_as: RenderAs::Tag,
alternatives: vec![
Ctor {
tag_id: TagId(0),
name: ffalse,
arity: 0,
},
Ctor {
tag_id: TagId(1),
name: ttrue,
arity: 0,
},
],
},
},
ByteUnion(tag_names) => {
let tag_id = tag_names
.iter()
.position(|key| key == tag_name)
.expect("tag must be in its own type");
let mut ctors = std::vec::Vec::with_capacity(tag_names.len());
for (i, tag_name) in tag_names.iter().enumerate() {
ctors.push(Ctor {
tag_id: TagId(i as u8),
name: tag_name.clone(),
arity: 0,
})
}
let union = crate::exhaustive::Union {
render_as: RenderAs::Tag,
alternatives: ctors,
};
Pattern::EnumLiteral {
tag_id: tag_id as u8,
tag_name: tag_name.clone(),
union,
}
}
Unwrapped(field_layouts) => {
let union = crate::exhaustive::Union {
render_as: RenderAs::Tag,
alternatives: vec![Ctor {
tag_id: TagId(0),
name: tag_name.clone(),
arity: field_layouts.len(),
}],
};
let mut mono_args = Vec::with_capacity_in(arguments.len(), env.arena);
for ((_, loc_pat), layout) in arguments.iter().zip(field_layouts.iter()) {
mono_args.push((
from_can_pattern(env, layout_cache, &loc_pat.value),
layout.clone(),
));
}
let layout = Layout::Struct(field_layouts.into_bump_slice());
Pattern::AppliedTag {
tag_name: tag_name.clone(),
tag_id: 0,
arguments: mono_args,
union,
layout,
}
}
Wrapped(tags) => {
let mut ctors = std::vec::Vec::with_capacity(tags.len());
for (i, (tag_name, args)) in tags.iter().enumerate() {
ctors.push(Ctor {
tag_id: TagId(i as u8),
name: tag_name.clone(),
// don't include tag discriminant in arity
arity: args.len() - 1,
})
}
let union = crate::exhaustive::Union {
render_as: RenderAs::Tag,
alternatives: ctors,
};
let (tag_id, (_, argument_layouts)) = tags
.iter()
.enumerate()
.find(|(_, (key, _))| key == tag_name)
.expect("tag must be in its own type");
let mut mono_args = Vec::with_capacity_in(arguments.len(), env.arena);
// disregard the tag discriminant layout
let it = argument_layouts[1..].iter();
for ((_, loc_pat), layout) in arguments.iter().zip(it) {
mono_args.push((
from_can_pattern(env, layout_cache, &loc_pat.value),
layout.clone(),
));
}
let mut layouts: Vec<&'a [Layout<'a>]> =
Vec::with_capacity_in(tags.len(), env.arena);
for (_, arg_layouts) in tags.into_iter() {
layouts.push(arg_layouts);
}
let layout = Layout::Union(layouts.into_bump_slice());
Pattern::AppliedTag {
tag_name: tag_name.clone(),
tag_id: tag_id as u8,
arguments: mono_args,
union,
layout,
}
}
}
}
RecordDestructure {
whole_var,
destructs,
..
} => {
let mut mono_destructs = Vec::with_capacity_in(destructs.len(), env.arena);
let mut destructs = destructs.clone();
destructs.sort_by(|a, b| a.value.label.cmp(&b.value.label));
let mut it = destructs.iter();
let mut opt_destruct = it.next();
let sorted_fields = crate::layout::sort_record_fields(env.arena, *whole_var, env.subs);
let mut field_layouts = Vec::with_capacity_in(sorted_fields.len(), env.arena);
for (label, field_layout) in sorted_fields.into_iter() {
if let Some(destruct) = opt_destruct {
if destruct.value.label == label {
opt_destruct = it.next();
mono_destructs.push(from_can_record_destruct(
env,
layout_cache,
&destruct.value,
field_layout.clone(),
));
} else {
// insert underscore pattern
mono_destructs.push(RecordDestruct {
label: label.clone(),
symbol: env.unique_symbol(),
layout: field_layout.clone(),
typ: DestructType::Guard(Pattern::Underscore),
});
}
} else {
// insert underscore pattern
mono_destructs.push(RecordDestruct {
label: label.clone(),
symbol: env.unique_symbol(),
layout: field_layout.clone(),
typ: DestructType::Guard(Pattern::Underscore),
});
}
field_layouts.push(field_layout);
}
Pattern::RecordDestructure(
mono_destructs,
Layout::Struct(field_layouts.into_bump_slice()),
)
}
}
}
fn from_can_record_destruct<'a>(
env: &mut Env<'a, '_>,
layout_cache: &mut LayoutCache<'a>,
can_rd: &roc_can::pattern::RecordDestruct,
field_layout: Layout<'a>,
) -> RecordDestruct<'a> {
RecordDestruct {
label: can_rd.label.clone(),
symbol: can_rd.symbol,
layout: field_layout,
typ: match &can_rd.typ {
roc_can::pattern::DestructType::Required => DestructType::Required,
roc_can::pattern::DestructType::Optional(_, loc_expr) => {
DestructType::Optional(loc_expr.value.clone())
}
roc_can::pattern::DestructType::Guard(_, loc_pattern) => {
DestructType::Guard(from_can_pattern(env, layout_cache, &loc_pattern.value))
}
},
}
}
/// Potentially translate LowLevel operations into more efficient ones based on
/// uniqueness type info.
///
/// For example, turning LowLevel::ListSet to LowLevel::ListSetInPlace if the
/// list is Unique.
fn optimize_low_level(
subs: &Subs,
op: LowLevel,
args: &[(Variable, roc_can::expr::Expr)],
) -> LowLevel {
match op {
LowLevel::ListSet => {
// The first arg is the one with the List in it.
// List.set : List elem, Int, elem -> List elem
let list_arg_var = args[0].0;
let content = subs.get_without_compacting(list_arg_var).content;
match content {
Content::Structure(FlatType::Apply(Symbol::ATTR_ATTR, attr_args)) => {
debug_assert_eq!(attr_args.len(), 2);
// If the first argument (the List) is unique,
// then we can safely upgrade to List.set_in_place
let attr_arg_content = subs.get_without_compacting(attr_args[0]).content;
if attr_arg_content.is_unique(subs) {
LowLevel::ListSetInPlace
} else {
LowLevel::ListSet
}
}
_ => op,
}
}
_ => op,
}
}
pub enum IntOrFloat {
IntType,
FloatType,
}
/// Given the `a` in `Num a`, determines whether it's an int or a float
pub fn num_argument_to_int_or_float(subs: &Subs, var: Variable) -> IntOrFloat {
match subs.get_without_compacting(var).content {
Content::Alias(Symbol::NUM_INTEGER, args, _) => {
debug_assert!(args.is_empty());
IntOrFloat::IntType
}
Content::FlexVar(_) => {
// If this was still a (Num *), assume compiling it to an Int
IntOrFloat::IntType
}
Content::Alias(Symbol::NUM_FLOATINGPOINT, args, _) => {
debug_assert!(args.is_empty());
IntOrFloat::FloatType
}
Content::Structure(FlatType::Apply(Symbol::ATTR_ATTR, attr_args)) => {
debug_assert!(attr_args.len() == 2);
// Recurse on the second argument
num_argument_to_int_or_float(subs, attr_args[1])
}
other => {
panic!(
"Unrecognized Num type argument for var {:?} with Content: {:?}",
var, other
);
}
}
}