roc/crates/compiler/fmt/src/annotation.rs
2024-12-24 14:08:52 -05:00

1471 lines
47 KiB
Rust

use crate::{
collection::{fmt_collection, Braces},
expr::{format_spaces, merge_spaces_conservative},
node::{Node, NodeSequenceBuilder, Nodify, Sp},
pattern::{pattern_lift_spaces_after, snakify_camel_ident},
spaces::{fmt_comments_only, fmt_spaces, NewlineAt, INDENT},
Buf,
};
use bumpalo::{
collections::{String, Vec},
Bump,
};
use roc_parse::ast::{
AbilityImpls, AssignedField, Collection, CommentOrNewline, Expr, ExtractSpaces, FunctionArrow,
ImplementsAbilities, ImplementsAbility, ImplementsClause, Spaceable, Spaces, SpacesAfter,
SpacesBefore, Tag, TypeAnnotation, TypeHeader,
};
use roc_parse::ident::UppercaseIdent;
use roc_region::all::Loc;
/// Does an AST node need parens around it?
///
/// Usually not, but there are a few cases where it may be required
///
/// 1. In a function type, function types are in parens
///
/// a -> b, c -> d
/// (a -> b), c -> d
///
/// 2. In applications, applications are in brackets
/// This is true in patterns, type annotations and expressions
///
/// Just (Just a)
/// List (List a)
/// reverse (reverse l)
///
/// 3. In a chain of binary operators, things like nested defs require parens.
///
/// a + (
/// x = 3
/// x + 1
/// )
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub enum Parens {
NotNeeded,
InCollection,
InFunctionType,
InApply,
InOperator,
InAsPattern,
InApplyLastArg,
InClosurePattern,
}
/// In an AST node, do we show newlines around it
///
/// Sometimes, we only want to show comments, at other times
/// we also want to show newlines. By default the formatter
/// takes care of inserting newlines, but sometimes the user's
/// newlines are taken into account.
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub enum Newlines {
No,
Yes,
}
impl Newlines {
pub fn from_bool(yes: bool) -> Self {
if yes {
Self::Yes
} else {
Self::No
}
}
}
pub trait Formattable {
fn is_multiline(&self) -> bool;
fn format_with_options(&self, buf: &mut Buf, _parens: Parens, _newlines: Newlines, indent: u16);
fn format(&self, buf: &mut Buf, indent: u16) {
self.format_with_options(buf, Parens::NotNeeded, Newlines::No, indent);
}
}
/// A reference to a formattable value is also formattable
impl<'a, T> Formattable for &'a T
where
T: Formattable,
{
fn is_multiline(&self) -> bool {
(*self).is_multiline()
}
fn format_with_options(&self, buf: &mut Buf, parens: Parens, newlines: Newlines, indent: u16) {
(*self).format_with_options(buf, parens, newlines, indent)
}
fn format(&self, buf: &mut Buf, indent: u16) {
(*self).format(buf, indent)
}
}
pub fn is_collection_multiline<T: Formattable>(collection: &Collection<'_, T>) -> bool {
// if there are any comments, they must go on their own line
// because otherwise they'd comment out the closing delimiter
!collection.final_comments().is_empty() ||
// if any of the items in the collection are multiline,
// then the whole collection must be multiline
collection.items.iter().any(Formattable::is_multiline)
}
/// A Located formattable value is also formattable
impl<T> Formattable for Loc<T>
where
T: Formattable,
{
fn is_multiline(&self) -> bool {
self.value.is_multiline()
}
fn format_with_options(&self, buf: &mut Buf, parens: Parens, newlines: Newlines, indent: u16) {
self.value
.format_with_options(buf, parens, newlines, indent)
}
fn format(&self, buf: &mut Buf, indent: u16) {
self.value.format(buf, indent)
}
}
impl<'a> Formattable for UppercaseIdent<'a> {
fn is_multiline(&self) -> bool {
false
}
fn format_with_options(
&self,
buf: &mut Buf,
_parens: Parens,
_newlines: Newlines,
_indent: u16,
) {
buf.push_str((*self).into())
}
}
impl<'a> Formattable for TypeAnnotation<'a> {
fn is_multiline(&self) -> bool {
use roc_parse::ast::TypeAnnotation::*;
match self {
// Return whether these spaces contain any Newlines
SpaceBefore(_, spaces) | SpaceAfter(_, spaces) => {
debug_assert!(!spaces.is_empty());
// "spaces" always contain either a newline or comment, and comments have newlines
true
}
TypeAnnotation::Wildcard
| TypeAnnotation::Inferred
| BoundVariable(_)
| Malformed(_) => false,
Function(args, _arrow, result) => {
result.value.is_multiline()
|| args.iter().any(|loc_arg| loc_arg.value.is_multiline())
}
Apply(_, _, args) => args.iter().any(|loc_arg| loc_arg.value.is_multiline()),
As(lhs, _, _) => lhs.value.is_multiline(),
Where(annot, has_clauses) => {
annot.is_multiline() || has_clauses.iter().any(|has| has.is_multiline())
}
Tuple { elems: fields, ext } => {
match ext {
Some(ann) if ann.value.is_multiline() => return true,
_ => {}
}
is_collection_multiline(fields)
}
Record { fields, ext } => {
match ext {
Some(ann) if ann.value.is_multiline() => return true,
_ => {}
}
is_collection_multiline(fields)
}
TagUnion { tags, ext } => {
match ext {
Some(ann) if ann.value.is_multiline() => return true,
_ => {}
}
!tags.final_comments().is_empty() || tags.iter().any(|tag| tag.value.is_multiline())
}
}
}
fn format_with_options(&self, buf: &mut Buf, parens: Parens, newlines: Newlines, indent: u16) {
fmt_ty_ann(self, buf, indent, parens, newlines, false);
}
}
fn fmt_ty_ann(
me: &TypeAnnotation<'_>,
buf: &mut Buf<'_>,
indent: u16,
parens: Parens,
newlines: Newlines,
newline_at_top: bool,
) {
let me = ann_lift_spaces(buf.text.bump(), me);
let self_is_multiline = me.item.is_multiline();
if !me.before.is_empty() {
buf.ensure_ends_with_newline();
fmt_comments_only(buf, me.before.iter(), NewlineAt::Bottom, indent);
}
if newline_at_top {
buf.ensure_ends_with_newline();
}
match &me.item {
TypeAnnotation::SpaceBefore(_ann, _spaces) | TypeAnnotation::SpaceAfter(_ann, _spaces) => {
unreachable!()
}
TypeAnnotation::Function(args, arrow, ret) => {
let needs_parens = parens != Parens::NotNeeded;
buf.indent(indent);
if needs_parens {
buf.push('(')
}
for (index, argument) in args.iter().enumerate() {
let is_first = index == 0;
if !is_first {
buf.indent(indent);
buf.push_str(",");
if !self_is_multiline {
buf.spaces(1);
}
}
let newline_at_top = !is_first && self_is_multiline;
fmt_ty_ann(
&argument.value,
buf,
indent,
Parens::InFunctionType,
Newlines::Yes,
newline_at_top,
);
}
if self_is_multiline {
buf.newline();
buf.indent(indent);
} else {
buf.spaces(1);
}
match arrow {
FunctionArrow::Pure => buf.push_str("->"),
FunctionArrow::Effectful => buf.push_str("=>"),
}
buf.spaces(1);
ret.value
.format_with_options(buf, Parens::InFunctionType, Newlines::No, indent);
if needs_parens {
buf.push(')')
}
}
TypeAnnotation::Apply(pkg, name, arguments) => {
buf.indent(indent);
let write_parens = parens == Parens::InApply && !arguments.is_empty();
if write_parens {
buf.push('(')
}
if !pkg.is_empty() {
buf.push_str(pkg);
buf.push('.');
}
buf.push_str(name);
let needs_indent = except_last(arguments).any(|a| a.is_multiline())
|| arguments
.last()
.map(|a| {
a.is_multiline()
&& (!a.extract_spaces().before.is_empty()
|| !ty_is_outdentable(&a.value))
})
.unwrap_or_default();
let arg_indent = if needs_indent {
indent + INDENT
} else {
indent
};
for arg in arguments.iter() {
if needs_indent {
let arg = arg.extract_spaces();
fmt_spaces(buf, arg.before.iter(), arg_indent);
buf.ensure_ends_with_newline();
arg.item
.format_with_options(buf, Parens::InApply, Newlines::Yes, arg_indent);
fmt_spaces(buf, arg.after.iter(), arg_indent);
} else {
buf.spaces(1);
arg.format_with_options(buf, Parens::InApply, Newlines::No, arg_indent);
}
}
if write_parens {
buf.push(')')
}
}
TypeAnnotation::BoundVariable(v) => {
buf.indent(indent);
if *v == "implements" {
buf.push_str("(implements)");
} else {
buf.push_str(v);
}
}
TypeAnnotation::Wildcard => {
buf.indent(indent);
buf.push('*')
}
TypeAnnotation::Inferred => {
buf.indent(indent);
buf.push('_')
}
TypeAnnotation::TagUnion { tags, ext } => {
fmt_tag_collection(buf, indent, *tags, newlines);
fmt_ext(ext, buf, indent);
}
TypeAnnotation::Tuple { elems: fields, ext } => {
fmt_ty_collection(buf, indent, Braces::Round, *fields, newlines);
fmt_ext(ext, buf, indent);
}
TypeAnnotation::Record { fields, ext } => {
fmt_ty_field_collection(buf, indent, *fields, newlines);
fmt_ext(ext, buf, indent);
}
TypeAnnotation::As(lhs, spaces, TypeHeader { name, vars }) => {
let write_parens = parens == Parens::InAsPattern || parens == Parens::InApply;
buf.indent(indent);
if write_parens {
buf.push('(')
}
let lhs_indent = buf.cur_line_indent();
lhs.value
.format_with_options(buf, Parens::InAsPattern, Newlines::No, indent);
buf.spaces(1);
format_spaces(buf, spaces, newlines, indent);
buf.indent(lhs_indent + INDENT);
buf.push_str("as");
buf.spaces(1);
buf.push_str(name.value);
for var in *vars {
buf.spaces(1);
var.value.format_with_options(
buf,
Parens::NotNeeded,
Newlines::No,
lhs_indent + INDENT,
);
}
if write_parens {
buf.push(')')
}
}
TypeAnnotation::Where(annot, implements_clauses) => {
annot.format_with_options(buf, parens, newlines, indent);
if implements_clauses
.iter()
.any(|implements| implements.is_multiline())
{
buf.newline();
buf.indent(indent);
} else {
buf.spaces(1);
}
for (i, has) in implements_clauses.iter().enumerate() {
buf.indent(indent);
buf.push_str(if i == 0 {
roc_parse::keyword::WHERE
} else {
","
});
buf.spaces(1);
has.format_with_options(buf, parens, newlines, indent);
}
}
TypeAnnotation::Malformed(raw) => {
buf.indent(indent);
buf.push_str(raw)
}
}
if !me.after.is_empty() {
fmt_comments_only(buf, me.after.iter(), NewlineAt::Bottom, indent);
}
}
fn fmt_ty_field_collection(
buf: &mut Buf<'_>,
indent: u16,
fields: Collection<'_, Loc<AssignedField<'_, TypeAnnotation<'_>>>>,
newlines: Newlines,
) {
let arena = buf.text.bump();
let mut new_items: Vec<'_, NodeSpaces<'_, Node<'_>>> =
Vec::with_capacity_in(fields.len(), arena);
let mut last_after: &[CommentOrNewline<'_>] = &[];
for item in fields.items.iter() {
let lifted = item.value.to_node(arena, Parens::NotNeeded);
let before = merge_spaces_conservative(arena, last_after, lifted.before);
last_after = lifted.after;
new_items.push(NodeSpaces {
before,
item: lifted.item,
after: &[],
});
}
let final_comments = merge_spaces_conservative(arena, last_after, fields.final_comments());
let new_items =
Collection::with_items_and_comments(arena, new_items.into_bump_slice(), final_comments);
fmt_collection(buf, indent, Braces::Curly, new_items, newlines);
}
fn fmt_tag_collection<'a>(
buf: &mut Buf<'_>,
indent: u16,
tags: Collection<'a, Loc<Tag<'a>>>,
newlines: Newlines,
) {
let arena = buf.text.bump();
let mut new_items: Vec<'_, NodeSpaces<'_, Node<'_>>> = Vec::with_capacity_in(tags.len(), arena);
let mut last_after: &[CommentOrNewline<'_>] = &[];
for item in tags.items.iter() {
let lifted = item.value.to_node(arena, Parens::NotNeeded);
let before = merge_spaces_conservative(arena, last_after, lifted.before);
last_after = lifted.after;
new_items.push(NodeSpaces {
before,
item: lifted.item,
after: &[],
});
}
let final_comments = merge_spaces_conservative(arena, last_after, tags.final_comments());
let new_items =
Collection::with_items_and_comments(arena, new_items.into_bump_slice(), final_comments);
fmt_collection(buf, indent, Braces::Square, new_items, newlines);
}
impl<'a> Nodify<'a> for Tag<'a> {
fn to_node<'b>(&'a self, arena: &'b Bump, parens: Parens) -> Spaces<'b, Node<'b>>
where
'a: 'b,
{
match self {
Tag::Apply { name, args } => {
if args.is_empty() {
Spaces {
before: &[],
item: Node::Literal(name.value),
after: &[],
}
} else {
let first = Node::Literal(name.value);
let mut new_args: Vec<'b, (Sp<'b>, Node<'b>)> =
Vec::with_capacity_in(args.len(), arena);
let mut last_after: &[CommentOrNewline<'_>] = &[];
for arg in args.iter() {
let lifted = arg.value.to_node(arena, Parens::InApply);
let before = merge_spaces_conservative(arena, last_after, lifted.before);
last_after = lifted.after;
new_args.push((Sp::with_space(before), lifted.item));
}
Spaces {
before: &[],
item: Node::Sequence(arena.alloc(first), new_args.into_bump_slice()),
after: last_after,
}
}
}
Tag::SpaceBefore(inner, sp) => {
let mut inner = inner.to_node(arena, parens);
inner.before = merge_spaces_conservative(arena, sp, inner.before);
inner
}
Tag::SpaceAfter(inner, sp) => {
let mut inner = inner.to_node(arena, parens);
inner.after = merge_spaces_conservative(arena, inner.after, sp);
inner
}
}
}
}
fn lower<'a, 'b: 'a>(
arena: &'b Bump,
lifted: Spaces<'b, TypeAnnotation<'b>>,
) -> TypeAnnotation<'b> {
if lifted.before.is_empty() && lifted.after.is_empty() {
return lifted.item;
}
if lifted.before.is_empty() {
return TypeAnnotation::SpaceAfter(arena.alloc(lifted.item), lifted.after);
}
if lifted.after.is_empty() {
return TypeAnnotation::SpaceBefore(arena.alloc(lifted.item), lifted.before);
}
TypeAnnotation::SpaceBefore(
arena.alloc(TypeAnnotation::SpaceAfter(
arena.alloc(lifted.item),
lifted.after,
)),
lifted.before,
)
}
fn fmt_ty_collection(
buf: &mut Buf<'_>,
indent: u16,
braces: Braces,
items: Collection<'_, Loc<TypeAnnotation<'_>>>,
newlines: Newlines,
) {
let arena = buf.text.bump();
let mut new_items: Vec<'_, NodeSpaces<'_, Node<'_>>> =
Vec::with_capacity_in(items.len(), arena);
let mut last_after: &[CommentOrNewline<'_>] = &[];
for (i, item) in items.items.iter().enumerate() {
let parens = if i > 0 {
Parens::InCollection
} else {
Parens::NotNeeded
};
let lifted = item.value.to_node(arena, parens);
let before = merge_spaces_conservative(arena, last_after, lifted.before);
last_after = lifted.after;
new_items.push(NodeSpaces {
before,
item: lifted.item,
after: &[],
});
}
let final_comments = merge_spaces_conservative(arena, last_after, items.final_comments());
let new_items =
Collection::with_items_and_comments(arena, new_items.into_bump_slice(), final_comments);
fmt_collection(buf, indent, braces, new_items, newlines)
}
fn fmt_ext(ext: &Option<&Loc<TypeAnnotation<'_>>>, buf: &mut Buf<'_>, indent: u16) {
if let Some(loc_ext_ann) = *ext {
let me = ann_lift_spaces(buf.text.bump(), &loc_ext_ann.value);
let parens_needed = !me.before.is_empty() || ext_needs_parens(me.item);
if parens_needed {
// We need to make sure to not have whitespace before the ext of a type,
// since that would make it parse as something else.
buf.push('(');
loc_ext_ann.value.format(buf, indent + INDENT);
buf.indent(indent);
buf.push(')');
} else {
loc_ext_ann.value.format(buf, indent + INDENT);
}
}
}
fn ext_needs_parens(item: TypeAnnotation<'_>) -> bool {
match item {
TypeAnnotation::Record { .. }
| TypeAnnotation::TagUnion { .. }
| TypeAnnotation::Tuple { .. }
| TypeAnnotation::BoundVariable(..)
| TypeAnnotation::Wildcard
| TypeAnnotation::Inferred => false,
TypeAnnotation::Apply(_module, _func, args) => !args.is_empty(),
_ => true,
}
}
pub fn ty_is_outdentable(mut rhs: &TypeAnnotation) -> bool {
loop {
match rhs {
TypeAnnotation::SpaceBefore(sub_def, spaces) => {
let is_only_newlines = spaces.iter().all(|s| s.is_newline());
if !is_only_newlines || !sub_def.is_multiline() {
return false;
}
rhs = sub_def;
}
TypeAnnotation::SpaceAfter(sub_def, _) => {
rhs = sub_def;
}
TypeAnnotation::Where(ann, _clauses) => {
if !ann.is_multiline() {
return false;
}
rhs = &ann.value;
}
TypeAnnotation::Record { .. }
| TypeAnnotation::TagUnion { .. }
| TypeAnnotation::Tuple { .. } => return rhs.is_multiline(),
_ => return false,
}
}
}
/// Fields are subtly different on the type and term level:
///
/// > type: { x : Int, y : Bool }
/// > term: { x: 100, y: True }
///
/// So we need two instances, each having the specific separator
impl<'a> Formattable for AssignedField<'a, TypeAnnotation<'a>> {
fn is_multiline(&self) -> bool {
is_multiline_assigned_field_help(self)
}
fn format_with_options(&self, buf: &mut Buf, _parens: Parens, newlines: Newlines, indent: u16) {
// we abuse the `Newlines` type to decide between multiline or single-line layout
format_assigned_field_help(self, buf, indent, 1, newlines == Newlines::Yes);
}
}
impl<'a> Formattable for AssignedField<'a, Expr<'a>> {
fn is_multiline(&self) -> bool {
is_multiline_assigned_field_help(self)
}
fn format_with_options(&self, buf: &mut Buf, _parens: Parens, newlines: Newlines, indent: u16) {
// we abuse the `Newlines` type to decide between multiline or single-line layout
format_assigned_field_help(self, buf, indent, 0, newlines == Newlines::Yes);
}
}
impl<'a> Nodify<'a> for AssignedField<'a, TypeAnnotation<'a>> {
fn to_node<'b>(&'a self, arena: &'b Bump, parens: Parens) -> Spaces<'b, Node<'b>>
where
'a: 'b,
{
match self {
AssignedField::RequiredValue(name, sp, value) => {
assigned_field_value_to_node(name.value, arena, sp, &value.value, ":")
}
AssignedField::IgnoredValue(name, sp, value) => {
let mut n = String::with_capacity_in(name.value.len() + 1, arena);
n.push('_');
n.push_str(name.value);
assigned_field_value_to_node(n.into_bump_str(), arena, sp, &value.value, ":")
}
AssignedField::OptionalValue(name, sp, value) => {
assigned_field_value_to_node(name.value, arena, sp, &value.value, "?")
}
AssignedField::LabelOnly(name) => Spaces {
before: &[],
item: Node::Literal(name.value),
after: &[],
},
AssignedField::SpaceBefore(inner, sp) => {
let mut inner = inner.to_node(arena, parens);
inner.before = merge_spaces_conservative(arena, sp, inner.before);
inner
}
AssignedField::SpaceAfter(inner, sp) => {
let mut inner = inner.to_node(arena, parens);
inner.after = merge_spaces_conservative(arena, inner.after, sp);
inner
}
}
}
}
fn assigned_field_value_to_node<'a, 'b>(
name: &'b str,
arena: &'b Bump,
sp: &'a [CommentOrNewline<'a>],
value: &'a TypeAnnotation<'a>,
sep: &'static str,
) -> Spaces<'b, Node<'b>>
where
'a: 'b,
{
let first = Node::Literal(name);
let mut b = NodeSequenceBuilder::new(arena, first, 2);
b.push(Sp::with_space(sp), Node::Literal(sep));
let value_lifted = value.to_node(arena, Parens::NotNeeded);
b.push(Sp::with_space(value_lifted.before), value_lifted.item);
Spaces {
before: &[],
item: b.build(),
after: value_lifted.after,
}
}
fn is_multiline_assigned_field_help<T: Formattable>(afield: &AssignedField<'_, T>) -> bool {
use self::AssignedField::*;
match afield {
RequiredValue(_, spaces, ann)
| OptionalValue(_, spaces, ann)
| IgnoredValue(_, spaces, ann) => !spaces.is_empty() || ann.value.is_multiline(),
LabelOnly(_) => false,
AssignedField::SpaceBefore(_, _) | AssignedField::SpaceAfter(_, _) => true,
}
}
fn format_assigned_field_help<T>(
zelf: &AssignedField<T>,
buf: &mut Buf,
indent: u16,
separator_spaces: usize,
is_multiline: bool,
) where
T: Formattable,
{
use self::AssignedField::*;
match zelf {
RequiredValue(name, spaces, ann) => {
if is_multiline {
buf.newline();
}
buf.indent(indent);
if buf.flags().snakify {
snakify_camel_ident(buf, name.value);
} else {
buf.push_str(name.value);
}
if !spaces.is_empty() {
fmt_spaces(buf, spaces.iter(), indent);
}
buf.spaces(separator_spaces);
buf.indent(indent);
buf.push(':');
buf.spaces(1);
ann.value.format(buf, indent);
}
OptionalValue(name, spaces, ann) => {
if is_multiline {
buf.newline();
}
buf.indent(indent);
if buf.flags().snakify {
snakify_camel_ident(buf, name.value);
} else {
buf.push_str(name.value);
}
if !spaces.is_empty() {
fmt_spaces(buf, spaces.iter(), indent);
}
buf.spaces(separator_spaces);
buf.indent(indent);
buf.push('?');
buf.spaces(1);
ann.value.format(buf, indent);
}
IgnoredValue(name, spaces, ann) => {
if is_multiline {
buf.newline();
}
buf.indent(indent);
buf.push('_');
if buf.flags().snakify {
snakify_camel_ident(buf, name.value);
} else {
buf.push_str(name.value);
}
if !spaces.is_empty() {
fmt_spaces(buf, spaces.iter(), indent);
}
buf.spaces(separator_spaces);
buf.indent(indent);
buf.push(':');
buf.spaces(1);
ann.value.format(buf, indent);
}
LabelOnly(name) => {
if is_multiline {
buf.newline();
}
buf.indent(indent);
if buf.flags().snakify {
snakify_camel_ident(buf, name.value);
} else {
buf.push_str(name.value);
}
}
AssignedField::SpaceBefore(sub_field, spaces) => {
fmt_comments_only(buf, spaces.iter(), NewlineAt::Bottom, indent);
format_assigned_field_help(sub_field, buf, indent, separator_spaces, is_multiline);
}
AssignedField::SpaceAfter(sub_field, spaces) => {
format_assigned_field_help(sub_field, buf, indent, separator_spaces, is_multiline);
fmt_comments_only(buf, spaces.iter(), NewlineAt::Bottom, indent);
}
}
}
impl<'a> Formattable for Tag<'a> {
fn is_multiline(&self) -> bool {
use self::Tag::*;
match self {
Apply { args, .. } => args.iter().any(|arg| arg.value.is_multiline()),
Tag::SpaceBefore(_, _) | Tag::SpaceAfter(_, _) => true,
}
}
fn format_with_options(
&self,
buf: &mut Buf,
_parens: Parens,
_newlines: Newlines,
indent: u16,
) {
let is_multiline = self.is_multiline();
match self {
Tag::Apply { name, args } => {
buf.indent(indent);
buf.push_str(name.value);
if is_multiline {
let arg_indent = indent + INDENT;
for arg in *args {
buf.newline();
arg.value.format_with_options(
buf,
Parens::InApply,
Newlines::No,
arg_indent,
);
}
} else {
for arg in *args {
buf.spaces(1);
arg.format_with_options(buf, Parens::InApply, Newlines::No, indent);
}
}
}
Tag::SpaceBefore(_, _) | Tag::SpaceAfter(_, _) => unreachable!(),
}
}
}
impl<'a> Formattable for ImplementsClause<'a> {
fn is_multiline(&self) -> bool {
// No, always put abilities in an "implements" clause on one line
false
}
fn format_with_options(&self, buf: &mut Buf, parens: Parens, newlines: Newlines, indent: u16) {
buf.push_str(self.var.value.extract_spaces().item);
buf.spaces(1);
buf.push_str(roc_parse::keyword::IMPLEMENTS);
buf.spaces(1);
for (i, ab) in self.abilities.iter().enumerate() {
if i > 0 {
buf.spaces(1);
buf.push('&');
buf.spaces(1);
}
ab.format_with_options(buf, parens, newlines, indent);
}
}
}
impl<'a> Formattable for AbilityImpls<'a> {
fn is_multiline(&self) -> bool {
match self {
AbilityImpls::SpaceBefore(_, _) | AbilityImpls::SpaceAfter(_, _) => true,
AbilityImpls::AbilityImpls(impls) => is_collection_multiline(impls),
}
}
fn format_with_options(&self, buf: &mut Buf, parens: Parens, newlines: Newlines, indent: u16) {
match self {
AbilityImpls::AbilityImpls(impls) => {
if newlines == Newlines::Yes {
buf.newline();
buf.indent(indent);
}
fmt_collection(buf, indent, Braces::Curly, *impls, Newlines::No);
}
AbilityImpls::SpaceBefore(impls, spaces) => {
buf.newline();
buf.indent(indent);
fmt_comments_only(buf, spaces.iter(), NewlineAt::Bottom, indent);
impls.format_with_options(buf, parens, Newlines::No, indent);
}
AbilityImpls::SpaceAfter(impls, spaces) => {
impls.format_with_options(buf, parens, newlines, indent);
fmt_comments_only(buf, spaces.iter(), NewlineAt::Bottom, indent);
}
}
}
}
impl<'a> Formattable for ImplementsAbility<'a> {
fn is_multiline(&self) -> bool {
match self {
ImplementsAbility::SpaceAfter(..) | ImplementsAbility::SpaceBefore(..) => true,
ImplementsAbility::ImplementsAbility { ability, impls } => {
ability.is_multiline() || impls.map(|i| i.is_multiline()).unwrap_or(false)
}
}
}
fn format_with_options(&self, buf: &mut Buf, parens: Parens, newlines: Newlines, indent: u16) {
match self {
ImplementsAbility::ImplementsAbility { ability, impls } => {
if newlines == Newlines::Yes {
buf.newline();
buf.indent(indent);
}
ability.format_with_options(buf, parens, newlines, indent);
if let Some(impls) = impls {
buf.spaces(1);
impls.format_with_options(buf, parens, newlines, indent);
}
}
ImplementsAbility::SpaceBefore(ab, spaces) => {
buf.newline();
buf.indent(indent);
fmt_comments_only(buf, spaces.iter(), NewlineAt::Bottom, indent);
ab.format_with_options(buf, parens, Newlines::No, indent)
}
ImplementsAbility::SpaceAfter(ab, spaces) => {
ab.format_with_options(buf, parens, newlines, indent);
fmt_comments_only(buf, spaces.iter(), NewlineAt::Bottom, indent);
}
}
}
}
impl<'a> Formattable for ImplementsAbilities<'a> {
fn is_multiline(&self) -> bool {
match self {
ImplementsAbilities::SpaceAfter(..) | ImplementsAbilities::SpaceBefore(..) => true,
ImplementsAbilities::Implements(has_abilities) => {
is_collection_multiline(has_abilities)
}
}
}
fn format_with_options(&self, buf: &mut Buf, parens: Parens, newlines: Newlines, indent: u16) {
match self {
ImplementsAbilities::Implements(has_abilities) => {
if newlines == Newlines::Yes {
buf.newline();
}
buf.indent(indent);
buf.push_str(roc_parse::keyword::IMPLEMENTS);
buf.spaces(1);
fmt_collection(buf, indent, Braces::Square, *has_abilities, Newlines::No);
}
ImplementsAbilities::SpaceBefore(has_abilities, spaces) => {
buf.newline();
buf.indent(indent);
fmt_comments_only(buf, spaces.iter(), NewlineAt::Bottom, indent);
has_abilities.format_with_options(buf, parens, Newlines::No, indent)
}
ImplementsAbilities::SpaceAfter(has_abilities, spaces) => {
has_abilities.format_with_options(buf, parens, newlines, indent);
fmt_comments_only(buf, spaces.iter(), NewlineAt::Bottom, indent);
}
}
}
}
pub fn except_last<T>(items: &[T]) -> impl Iterator<Item = &T> {
if items.is_empty() {
items.iter()
} else {
items[..items.len() - 1].iter()
}
}
pub fn ann_lift_spaces<'a, 'b: 'a>(
arena: &'a Bump,
ann: &TypeAnnotation<'b>,
) -> Spaces<'a, TypeAnnotation<'a>> {
match ann {
TypeAnnotation::Apply(module, func, args) => {
if args.is_empty() {
return Spaces {
item: *ann,
before: &[],
after: &[],
};
}
let mut new_args = Vec::with_capacity_in(args.len(), arena);
if !args.is_empty() {
for arg in args.iter().take(args.len() - 1) {
let lifted = ann_lift_spaces(arena, &arg.value);
new_args.push(Loc::at(arg.region, lower(arena, lifted)));
}
}
let after = if let Some(last) = args.last() {
let lifted = ann_lift_spaces(arena, &last.value);
if lifted.before.is_empty() {
new_args.push(Loc::at(last.region, lifted.item));
} else {
new_args.push(Loc::at(
last.region,
TypeAnnotation::SpaceBefore(arena.alloc(lifted.item), lifted.before),
));
}
lifted.after
} else {
&[]
};
Spaces {
before: &[],
item: TypeAnnotation::Apply(module, func, new_args.into_bump_slice()),
after,
}
}
TypeAnnotation::Function(args, purity, res) => {
let new_args = arena.alloc_slice_copy(args);
let before = if let Some(first) = new_args.first_mut() {
let lifted = ann_lift_spaces_before(arena, &first.value);
first.value = lifted.item;
lifted.before
} else {
&[]
};
let new_res = ann_lift_spaces_after(arena, &res.value);
let new_ann = TypeAnnotation::Function(
new_args,
*purity,
arena.alloc(Loc::at_zero(new_res.item)),
);
Spaces {
before,
item: new_ann,
after: new_res.after,
}
}
TypeAnnotation::SpaceBefore(expr, spaces) => {
let mut inner = ann_lift_spaces(arena, expr);
inner.before = merge_spaces_conservative(arena, spaces, inner.before);
inner
}
TypeAnnotation::SpaceAfter(expr, spaces) => {
let mut inner = ann_lift_spaces(arena, expr);
inner.after = merge_spaces_conservative(arena, inner.after, spaces);
inner
}
TypeAnnotation::Tuple { elems, ext } => {
if let Some(ext) = ext {
let lifted = ann_lift_spaces_after(arena, &ext.value);
Spaces {
before: &[],
item: TypeAnnotation::Tuple {
elems: *elems,
ext: Some(arena.alloc(Loc::at_zero(lifted.item))),
},
after: lifted.after,
}
} else {
Spaces {
before: &[],
item: *ann,
after: &[],
}
}
}
TypeAnnotation::Record { fields, ext } => {
if let Some(ext) = ext {
let lifted = ann_lift_spaces_after(arena, &ext.value);
Spaces {
before: &[],
item: TypeAnnotation::Record {
fields: *fields,
ext: Some(arena.alloc(Loc::at_zero(lifted.item))),
},
after: lifted.after,
}
} else {
Spaces {
before: &[],
item: *ann,
after: &[],
}
}
}
TypeAnnotation::TagUnion { ext, tags } => {
if let Some(ext) = ext {
let lifted = ann_lift_spaces_after(arena, &ext.value);
Spaces {
before: &[],
item: TypeAnnotation::TagUnion {
ext: Some(arena.alloc(Loc::at_zero(lifted.item))),
tags: *tags,
},
after: lifted.after,
}
} else {
Spaces {
before: &[],
item: *ann,
after: &[],
}
}
}
TypeAnnotation::BoundVariable(_)
| TypeAnnotation::Inferred
| TypeAnnotation::Wildcard
| TypeAnnotation::Malformed(_) => Spaces {
before: &[],
item: *ann,
after: &[],
},
TypeAnnotation::Where(inner, clauses) => {
let new_inner = ann_lift_spaces_before(arena, &inner.value);
let new_clauses = arena.alloc_slice_copy(clauses);
let after = if let Some(last) = new_clauses.last_mut() {
let lifted = implements_clause_lift_spaces_after(arena, &last.value);
last.value = lifted.item;
lifted.after
} else {
&[]
};
Spaces {
before: new_inner.before,
item: TypeAnnotation::Where(arena.alloc(Loc::at_zero(new_inner.item)), new_clauses),
after,
}
}
TypeAnnotation::As(ann, comments, type_header) => {
let new_ann = ann_lift_spaces_before(arena, &ann.value);
let new_header = type_head_lift_spaces_after(arena, type_header);
Spaces {
before: new_ann.before,
item: TypeAnnotation::As(
arena.alloc(Loc::at_zero(new_ann.item)),
comments,
new_header.item,
),
after: new_header.after,
}
}
}
}
fn implements_clause_lift_spaces_after<'a, 'b: 'a>(
arena: &'a Bump,
value: &ImplementsClause<'b>,
) -> SpacesAfter<'a, ImplementsClause<'a>> {
let new_abilities = arena.alloc_slice_copy(value.abilities);
let after = if let Some(last) = new_abilities.last_mut() {
let lifted = ann_lift_spaces_after(arena, &last.value);
last.value = lifted.item;
lifted.after
} else {
&[]
};
SpacesAfter {
item: ImplementsClause {
var: value.var,
abilities: new_abilities,
},
after,
}
}
pub fn ann_lift_spaces_before<'a, 'b: 'a>(
arena: &'a Bump,
ann: &TypeAnnotation<'b>,
) -> SpacesBefore<'a, TypeAnnotation<'a>> {
let lifted = ann_lift_spaces(arena, ann);
SpacesBefore {
before: lifted.before,
item: lifted.item.maybe_after(arena, lifted.after),
}
}
pub fn ann_lift_spaces_after<'a, 'b: 'a>(
arena: &'a Bump,
ann: &TypeAnnotation<'b>,
) -> SpacesAfter<'a, TypeAnnotation<'a>> {
let lifted = ann_lift_spaces(arena, ann);
SpacesAfter {
item: lifted.item.maybe_before(arena, lifted.before),
after: lifted.after,
}
}
pub fn type_head_lift_spaces_after<'a, 'b: 'a>(
arena: &'a Bump,
header: &TypeHeader<'b>,
) -> SpacesAfter<'a, TypeHeader<'a>> {
let new_vars = arena.alloc_slice_copy(header.vars);
let after = if let Some(last) = new_vars.last_mut() {
let lifted = pattern_lift_spaces_after(arena, &last.value);
last.value = lifted.item;
lifted.after
} else {
&[]
};
SpacesAfter {
item: TypeHeader {
name: header.name,
vars: new_vars,
},
after,
}
}
impl<'a> Nodify<'a> for TypeAnnotation<'a> {
fn to_node<'b>(&'a self, arena: &'b Bump, parens: Parens) -> Spaces<'b, Node<'b>>
where
'a: 'b,
{
match self {
TypeAnnotation::Apply(module, func, args) => {
if args.is_empty() {
return Spaces {
item: Node::TypeAnnotation(*self),
before: &[],
after: &[],
};
}
let mut new_args = Vec::with_capacity_in(args.len(), arena);
if !args.is_empty() {
for arg in args.iter().take(args.len() - 1) {
let lifted = ann_lift_spaces(arena, &arg.value);
new_args.push(Loc::at(arg.region, lower(arena, lifted)));
}
}
let after = if let Some(last) = args.last() {
let lifted = ann_lift_spaces(arena, &last.value);
if lifted.before.is_empty() {
new_args.push(Loc::at(last.region, lifted.item));
} else {
new_args.push(Loc::at(
last.region,
TypeAnnotation::SpaceBefore(arena.alloc(lifted.item), lifted.before),
));
}
lifted.after
} else {
&[]
};
let item = Node::TypeAnnotation(TypeAnnotation::Apply(
module,
func,
new_args.into_bump_slice(),
));
if parens == Parens::InApply {
parens_around_node(
arena,
Spaces {
before: &[],
item,
after,
},
true,
)
} else {
Spaces {
before: &[],
item,
after,
}
}
}
TypeAnnotation::SpaceBefore(expr, spaces) => {
let mut inner = expr.to_node(arena, parens);
inner.before = merge_spaces_conservative(arena, spaces, inner.before);
inner
}
TypeAnnotation::SpaceAfter(expr, spaces) => {
let mut inner = expr.to_node(arena, parens);
inner.after = merge_spaces_conservative(arena, inner.after, spaces);
inner
}
TypeAnnotation::Function(args, purity, res) => {
let new_args = arena.alloc_slice_copy(args);
let before = if let Some(first) = new_args.first_mut() {
let lifted = ann_lift_spaces_before(arena, &first.value);
first.value = lifted.item;
lifted.before
} else {
&[]
};
let new_res = ann_lift_spaces_after(arena, &res.value);
let new_ann = TypeAnnotation::Function(
new_args,
*purity,
arena.alloc(Loc::at_zero(new_res.item)),
);
let inner = Spaces {
before,
item: Node::TypeAnnotation(new_ann),
after: new_res.after,
};
if parens == Parens::InCollection || parens == Parens::InApply {
parens_around_node(arena, inner, true)
} else {
inner
}
}
TypeAnnotation::As(_left, _sp, _right) => {
let lifted = ann_lift_spaces(arena, self);
let item = Spaces {
before: lifted.before,
item: Node::TypeAnnotation(lifted.item),
after: lifted.after,
};
if parens == Parens::InApply || parens == Parens::InAsPattern {
parens_around_node(arena, item, true)
} else {
item
}
}
_ => {
let lifted = ann_lift_spaces(arena, self);
Spaces {
before: lifted.before,
item: Node::TypeAnnotation(lifted.item),
after: lifted.after,
}
}
}
}
}
fn parens_around_node<'a, 'b: 'a>(
arena: &'a Bump,
item: Spaces<'b, Node<'b>>,
allow_spaces_before: bool,
) -> Spaces<'a, Node<'a>> {
Spaces {
before: if allow_spaces_before {
item.before
} else {
&[]
},
item: Node::DelimitedSequence(
Braces::Round,
arena.alloc_slice_copy(&[(
if allow_spaces_before {
Sp::empty()
} else {
item.before.into()
},
item.item,
)]),
Sp::empty(),
),
// We move the comments/newlines to the outer scope, since they tend to migrate there when re-parsed
after: item.after,
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct NodeSpaces<'a, T> {
pub before: &'a [CommentOrNewline<'a>],
pub item: T,
pub after: &'a [CommentOrNewline<'a>],
}
impl<'a, T: Copy> ExtractSpaces<'a> for NodeSpaces<'a, T> {
type Item = T;
fn extract_spaces(&self) -> Spaces<'a, T> {
Spaces {
before: self.before,
item: self.item,
after: self.after,
}
}
fn without_spaces(&self) -> T {
self.item
}
}
impl<'a, V: Formattable> Formattable for NodeSpaces<'a, V> {
fn is_multiline(&self) -> bool {
!self.before.is_empty() || !self.after.is_empty() || self.item.is_multiline()
}
fn format_with_options(
&self,
buf: &mut Buf,
parens: crate::annotation::Parens,
newlines: Newlines,
indent: u16,
) {
fmt_spaces(buf, self.before.iter(), indent);
self.item.format_with_options(buf, parens, newlines, indent);
fmt_spaces(buf, self.after.iter(), indent);
}
}