roc/crates/compiler/exhaustive/src/lib.rs
Brendan Hansknecht bf7be1533b
fix indexing
2023-11-20 21:09:12 -08:00

905 lines
32 KiB
Rust

//! Exhaustiveness checking, based on [Warnings for pattern matching](http://moscova.inria.fr/~maranget/papers/warn/warn.pdf)
//! (Luc Maranget, 2007).
use roc_collections::all::{HumanIndex, MutMap};
use roc_error_macros::internal_error;
use roc_module::{
ident::{Lowercase, TagIdIntType, TagName},
symbol::Symbol,
};
use roc_problem::Severity;
use roc_region::all::Region;
use self::Pattern::*;
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Union {
pub alternatives: Vec<Ctor>,
pub render_as: RenderAs,
}
impl Union {
pub fn newtype_wrapper(name: CtorName, arity: usize) -> Self {
let alternatives = vec![Ctor {
name,
tag_id: TagId(0),
arity,
}];
Union {
alternatives,
render_as: RenderAs::Tag,
}
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum RenderAs {
Tag,
Opaque,
Record(Vec<Lowercase>),
Tuple,
Guard,
}
#[derive(Clone, Debug, PartialEq, Eq, Hash, Copy)]
pub struct TagId(pub TagIdIntType);
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum CtorName {
Tag(TagName),
Opaque(Symbol),
}
impl CtorName {
pub fn is_tag(&self, tag_name: &TagName) -> bool {
match self {
Self::Tag(test) => test == tag_name,
_ => false,
}
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Ctor {
pub name: CtorName,
pub tag_id: TagId,
pub arity: usize,
}
#[derive(Clone, Debug, PartialEq)]
pub enum Pattern {
Anything,
Literal(Literal),
Ctor(Union, TagId, std::vec::Vec<Pattern>),
List(ListArity, std::vec::Vec<Pattern>),
}
/// The arity of list pattern.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ListArity {
/// A list pattern of an exact size.
Exact(usize),
/// A list pattern matching a variable size, where `Slice(before, after)` refers to the number
/// of elements that must be present before and after the variable rest pattern, respectively.
///
/// For example,
/// [..] => Slice(0, 0)
/// [A, .., B] => Slice(1, 1)
/// [A, B, ..] => Slice(2, 0)
/// [.., A, B] => Slice(0, 2)
Slice(usize, usize),
}
impl ListArity {
/// The trivially-exhaustive list pattern `[..]`
const ANY: ListArity = ListArity::Slice(0, 0);
pub fn min_len(&self) -> usize {
match self {
ListArity::Exact(n) => *n,
ListArity::Slice(l, r) => l + r,
}
}
/// Could this list pattern include list pattern arity `other`?
fn covers_arities_of(&self, other: &Self) -> bool {
self.covers_length(other.min_len())
}
pub fn covers_length(&self, length: usize) -> bool {
match self {
ListArity::Exact(l) => {
// [_, _, _] can only cover [_, _, _]
*l == length
}
ListArity::Slice(head, tail) => {
// [_, _, .., _] can cover infinite arities >=3 , including
// [_, _, .., _], [_, .., _, _], [_, _, .., _, _], [_, _, _, .., _, _], and so on
head + tail <= length
}
}
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum Literal {
Int([u8; 16]),
U128([u8; 16]),
Bit(bool),
Byte(u8),
/// Stores the float bits
Float(u64),
Decimal([u8; 16]),
Str(Box<str>),
}
/// Error
#[derive(Clone, Debug, PartialEq)]
pub enum Error {
Incomplete(Region, Context, Vec<Pattern>),
Redundant {
overall_region: Region,
branch_region: Region,
index: HumanIndex,
},
Unmatchable {
overall_region: Region,
branch_region: Region,
index: HumanIndex,
},
}
impl Error {
pub fn severity(&self) -> Severity {
use Severity::*;
match self {
Error::Incomplete(..) => RuntimeError,
Error::Redundant { .. } => Warning,
Error::Unmatchable { .. } => Warning,
}
}
pub fn region(&self) -> Region {
match self {
Error::Incomplete(region, _, _) => *region,
Error::Redundant { branch_region, .. } => *branch_region,
Error::Unmatchable { branch_region, .. } => *branch_region,
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Context {
BadArg,
BadDestruct,
BadCase,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Guard {
HasGuard,
NoGuard,
}
/// Check
pub fn check(
region: Region,
context: Context,
matrix: Vec<Vec<Pattern>>,
) -> Result<(), Vec<Error>> {
let mut errors = Vec::new();
let bad_patterns = is_exhaustive(&matrix, 1);
if !bad_patterns.is_empty() {
// TODO i suspect this is like a concat in in practice? code below can panic
// if this debug_assert! ever fails, the theory is disproven
debug_assert!(bad_patterns.iter().map(|v| v.len()).sum::<usize>() == bad_patterns.len());
let heads = bad_patterns.into_iter().map(|mut v| v.remove(0)).collect();
errors.push(Error::Incomplete(region, context, heads));
return Err(errors);
}
Ok(())
}
/// EXHAUSTIVE PATTERNS
/// INVARIANTS:
///
/// The initial rows "matrix" are all of length 1
/// The initial count of items per row "n" is also 1
/// The resulting rows are examples of missing patterns
fn is_exhaustive(matrix: &RefPatternMatrix, n: usize) -> PatternMatrix {
let ctors = if matrix.is_empty() {
return vec![std::iter::repeat(Anything).take(n).collect()];
} else if n == 0 {
return vec![];
} else {
collect_ctors(matrix)
};
match ctors {
CollectedCtors::NonExhaustiveAny => {
let new_matrix: Vec<_> = matrix
.iter()
.filter_map(|row| specialize_row_by_anything(row))
.collect();
let mut rest = is_exhaustive(&new_matrix, n - 1);
for row in rest.iter_mut() {
row.push(Anything);
}
rest
}
CollectedCtors::Ctors(ctors) => {
debug_assert!(!ctors.is_empty());
let num_seen = ctors.len();
let alts = ctors.iter().next().unwrap().1;
let alt_list = &alts.alternatives;
let num_alts = alt_list.len();
if num_seen < num_alts {
let new_matrix: Vec<_> = matrix
.iter()
.filter_map(|row| specialize_row_by_anything(row))
.collect();
let rest: Vec<Vec<Pattern>> = is_exhaustive(&new_matrix, n - 1);
let last = alt_list
.iter()
.filter_map(|r| is_missing(alts.clone(), &ctors, r));
let mut result = Vec::new();
for last_option in last {
for mut row in rest.clone() {
row.push(last_option.clone());
result.push(row);
}
}
result
} else {
let is_alt_exhaustive = |Ctor { arity, tag_id, .. }| {
let new_matrix: Vec<_> = matrix
.iter()
.filter_map(|r| specialize_row_by_ctor(tag_id, arity, r.to_owned()))
.collect();
let rest: Vec<Vec<Pattern>> = is_exhaustive(&new_matrix, arity + n - 1);
let mut result = Vec::with_capacity(rest.len());
for row in rest {
result.push(recover_ctor(alts.clone(), tag_id, arity, row));
}
result
};
alt_list
.iter()
.cloned()
.flat_map(is_alt_exhaustive)
.collect()
}
}
CollectedCtors::NonExhaustiveList(alt_lists) => {
let is_alt_exhaustive = |arity: ListArity| {
let new_matrix: Vec<_> = matrix
.iter()
.filter_map(|row| specialize_row_by_list(arity, row.to_owned()))
.collect();
let rest = is_exhaustive(&new_matrix, arity.min_len() + n - 1);
rest.into_iter()
.map(move |row_not_covered| recover_list(arity, row_not_covered))
};
alt_lists.into_iter().flat_map(is_alt_exhaustive).collect()
}
}
}
fn is_missing<T>(union: Union, ctors: &MutMap<TagId, T>, ctor: &Ctor) -> Option<Pattern> {
let Ctor { arity, tag_id, .. } = ctor;
if ctors.contains_key(tag_id) {
None
} else {
let anythings = std::iter::repeat(Anything).take(*arity).collect();
Some(Pattern::Ctor(union, *tag_id, anythings))
}
}
fn recover_ctor(
union: Union,
tag_id: TagId,
arity: usize,
mut patterns: Vec<Pattern>,
) -> Vec<Pattern> {
let args = patterns.split_off(patterns.len() - arity);
let mut rest = patterns;
rest.push(Ctor(union, tag_id, args));
rest
}
fn recover_list(arity: ListArity, mut patterns: Vec<Pattern>) -> Vec<Pattern> {
let list_elems = patterns.split_off(patterns.len() - arity.min_len());
let mut rest = patterns;
rest.push(List(arity, list_elems));
rest
}
/// Check if a new row "vector" is useful given previous rows "matrix"
pub fn is_useful(mut old_matrix: PatternMatrix, mut vector: Row) -> bool {
let mut matrix = Vec::with_capacity(old_matrix.len());
// this loop ping-pongs the rows between old_matrix and matrix
'outer: loop {
match vector.pop() {
_ if old_matrix.is_empty() => {
// No rows are the same as the new vector! The vector is useful!
break true;
}
None => {
// There is nothing left in the new vector, but we still have
// rows that match the same things. This is not a useful vector!
break false;
}
Some(first_pattern) => {
// NOTE: if there are bugs in this code, look at the ordering of the row/matrix
match first_pattern {
// keep checking rows that start with this Ctor or Anything
Ctor(_, id, args) => {
specialize_matrix_by_ctor(id, args.len(), &mut old_matrix, &mut matrix);
std::mem::swap(&mut old_matrix, &mut matrix);
vector.extend(args);
}
List(arity, args) => {
// Check if there any specialized constructor of this list pattern
// that is useful.
let spec_list_ctors = build_list_ctors_covering_patterns(
arity,
filter_matrix_list_ctors(&old_matrix),
);
debug_assert!(!spec_list_ctors.is_empty());
if spec_list_ctors.len() == 1 {
specialize_matrix_by_list(
spec_list_ctors[0],
&mut old_matrix,
&mut matrix,
);
std::mem::swap(&mut old_matrix, &mut matrix);
vector.extend(args);
} else {
// TODO turn this into an iteration over the outer loop rather than bouncing
for list_ctor in spec_list_ctors {
let mut old_matrix = old_matrix.clone();
let mut spec_matrix = Vec::with_capacity(old_matrix.len());
specialize_matrix_by_list(
list_ctor,
&mut old_matrix,
&mut spec_matrix,
);
let mut vector = vector.clone();
specialize_row_with_polymorphic_list(
&mut vector,
&args,
arity,
list_ctor,
);
if is_useful(spec_matrix, vector) {
return true;
}
}
return false;
}
}
Anything => {
// check if all alternatives appear in matrix
match is_complete(&old_matrix) {
Complete::No => {
// This Anything is useful because some Ctors are missing.
// But what if a previous row has an Anything?
// If so, this one is not useful.
for mut row in old_matrix.drain(..) {
if let Some(Anything) = row.pop() {
matrix.push(row);
}
}
std::mem::swap(&mut old_matrix, &mut matrix);
}
Complete::Yes(alternatives) => {
// All Ctors are covered, so this Anything is not needed for any
// of those. But what if some of those Ctors have subpatterns
// that make them less general? If so, this actually is useful!
for alternative in alternatives {
let Ctor { arity, tag_id, .. } = alternative;
let mut old_matrix = old_matrix.clone();
let mut matrix = vec![];
specialize_matrix_by_ctor(
tag_id,
arity,
&mut old_matrix,
&mut matrix,
);
let mut vector = vector.clone();
vector.extend(std::iter::repeat(Anything).take(arity));
if is_useful(matrix, vector) {
break 'outer true;
}
}
break false;
}
}
}
Literal(literal) => {
// keep checking rows that start with this Literal or Anything
for mut row in old_matrix.drain(..) {
let head = row.pop();
let patterns = row;
match head {
Some(Literal(lit)) => {
if lit == literal {
matrix.push(patterns);
} else {
// do nothing
}
}
Some(Anything) => matrix.push(patterns),
Some(List(..)) => internal_error!("After type checking, lists and literals should never align in exhaustiveness checking"),
Some(Ctor(_, _, _)) => panic!(
r#"Compiler bug! After type checking, constructors and literals should never align in pattern match exhaustiveness checks."#
),
None => panic!(
"Compiler error! Empty matrices should not get specialized."
),
}
}
std::mem::swap(&mut old_matrix, &mut matrix);
}
}
}
}
}
}
// Specialize rows in the matrix that match a list's constructor(s).
//
// See the docs on [build_list_ctors_covering_patterns] for more information on how list
// constructors are built up.
fn specialize_matrix_by_list(
spec_arity: ListArity,
old_matrix: &mut PatternMatrix,
spec_matrix: &mut PatternMatrix,
) {
for row in old_matrix.drain(..) {
if let Some(spec_row) = specialize_row_by_list(spec_arity, row) {
spec_matrix.push(spec_row);
}
}
}
fn specialize_row_with_polymorphic_list(
row: &mut Vec<Pattern>,
list_element_patterns: &[Pattern],
polymorphic_list_ctor: ListArity,
specialized_list_ctor: ListArity,
) {
let min_len = specialized_list_ctor.min_len();
if list_element_patterns.len() > min_len {
row.extend(list_element_patterns.iter().cloned());
}
let (patterns_before, patterns_after) = match polymorphic_list_ctor {
ListArity::Slice(before, after) => (
&list_element_patterns[..before],
&list_element_patterns[list_element_patterns.len() - after..],
),
ListArity::Exact(_) => (list_element_patterns, &[] as &[Pattern]),
};
let middle_any_patterns_needed =
specialized_list_ctor.min_len() - polymorphic_list_ctor.min_len();
let middle_patterns = std::iter::repeat(Anything).take(middle_any_patterns_needed);
row.extend(
(patterns_before.iter().cloned())
.chain(middle_patterns)
.chain(patterns_after.iter().cloned()),
);
}
// Specialize a row that matches a list's constructor(s).
//
// See the docs on [build_list_ctors_covering_patterns] for more information on how list
// constructors are built up.
fn specialize_row_by_list(spec_arity: ListArity, mut row: Row) -> Option<Row> {
let head = row.pop();
let mut spec_patterns = row;
match head {
Some(List(this_arity, args)) => {
if this_arity.covers_arities_of(&spec_arity) {
// This pattern covers the constructor we are specializing, so add on the
// specialized fields of this pattern relative to the given constructor.
if spec_arity.min_len() != this_arity.min_len() {
// This list pattern covers the list we are specializing, so it must be
// a variable-length slice, i.e. of the form `[before, .., after]`.
//
// Hence, the list we're specializing for must have at least a larger minimum length.
// So we fill the middle part with enough wildcards to reach the length of
// list constructor we're specializing for.
debug_assert!(spec_arity.min_len() > this_arity.min_len());
match this_arity {
ListArity::Exact(_) => internal_error!("exact-sized lists cannot cover lists of other minimum length"),
ListArity::Slice(before, after) => {
let before = &args[..before];
let after = &args[this_arity.min_len() - after..];
let num_extra_wildcards = spec_arity.min_len() - this_arity.min_len();
let extra_wildcards = std::iter::repeat(&Anything).take(num_extra_wildcards);
let new_pats = (before.iter().chain(extra_wildcards).chain(after)).cloned();
spec_patterns.extend(new_pats);
}
}
} else {
debug_assert_eq!(this_arity.min_len(), spec_arity.min_len());
spec_patterns.extend(args);
}
Some(spec_patterns)
} else {
None
}
}
Some(Anything) => {
// The specialized fields for a `Anything` pattern with a list constructor is just
// `Anything` repeated for the number of times we want to see the list pattern.
spec_patterns.extend(std::iter::repeat(Anything).take(spec_arity.min_len()));
Some(spec_patterns)
}
Some(Ctor(..)) => internal_error!("After type checking, lists and constructors should never align in exhaustiveness checking"),
Some(Literal(..)) => internal_error!("After type checking, lists and literals should never align in exhaustiveness checking"),
None => internal_error!("Empty matrices should not get specialized"),
}
}
/// INVARIANT: (length row == N) ==> (length result == arity + N - 1)
fn specialize_matrix_by_ctor(
tag_id: TagId,
arity: usize,
old_matrix: &mut PatternMatrix,
matrix: &mut PatternMatrix,
) {
for row in old_matrix.drain(..) {
if let Some(spec_row) = specialize_row_by_ctor(tag_id, arity, row) {
matrix.push(spec_row);
}
}
}
/// INVARIANT: (length row == N) ==> (length result == arity + N - 1)
fn specialize_row_by_ctor(tag_id: TagId, arity: usize, mut row: Row) -> Option<Row> {
let head = row.pop();
let mut spec_patterns = row;
match head {
Some(Ctor(_, id, args)) => {
if id == tag_id {
spec_patterns.extend(args);
Some(spec_patterns)
} else {
None
}
}
Some(Anything) => {
spec_patterns.extend(std::iter::repeat(Anything).take(arity));
Some(spec_patterns)
}
Some(List(..)) => {
internal_error!(r#"After type checking, a constructor can never align with a list"#)
}
Some(Literal(_)) => internal_error!(
r#"After type checking, a constructor can never align with a literal: that should be a type error!"#
),
None => internal_error!("Empty matrices should not get specialized."),
}
}
/// INVARIANT: (length row == N) ==> (length result == N-1)
fn specialize_row_by_anything(row: &RefRow) -> Option<Row> {
let mut row = row.to_vec();
match row.pop() {
Some(Anything) => Some(row),
_ => None,
}
}
/// ALL CONSTRUCTORS ARE PRESENT?
pub enum Complete {
Yes(Vec<Ctor>),
No,
}
fn is_complete(matrix: &RefPatternMatrix) -> Complete {
let ctors = collect_ctors(matrix);
match ctors {
CollectedCtors::NonExhaustiveAny | CollectedCtors::NonExhaustiveList(_) => Complete::No,
CollectedCtors::Ctors(ctors) => {
let length = ctors.len();
let mut it = ctors.into_iter();
match it.next() {
None => Complete::No,
Some((_, Union { alternatives, .. })) => {
if length == alternatives.len() {
Complete::Yes(alternatives)
} else {
Complete::No
}
}
}
}
}
}
/// COLLECT CTORS
type RefPatternMatrix = [Vec<Pattern>];
type PatternMatrix = Vec<Vec<Pattern>>;
type RefRow = [Pattern];
type Row = Vec<Pattern>;
enum CollectedCtors {
NonExhaustiveAny,
NonExhaustiveList(Vec<ListArity>),
Ctors(MutMap<TagId, Union>),
}
fn collect_ctors(matrix: &RefPatternMatrix) -> CollectedCtors {
if matrix.is_empty() {
return CollectedCtors::NonExhaustiveAny;
}
let first_row = &matrix[0];
if let Some(ctor) = first_row.last() {
match ctor {
Anything => CollectedCtors::NonExhaustiveAny,
Pattern::Literal(_) => CollectedCtors::NonExhaustiveAny,
List(_, _) => {
let list_ctors = build_list_ctors_covering_patterns(
ListArity::ANY,
filter_matrix_list_ctors(matrix),
);
CollectedCtors::NonExhaustiveList(list_ctors)
}
Pattern::Ctor(_, _, _) => {
let mut ctors = MutMap::default();
for row in matrix {
if let Some(Ctor(union, id, _)) = row.last() {
ctors.insert(*id, union.clone());
}
}
CollectedCtors::Ctors(ctors)
}
}
} else {
CollectedCtors::NonExhaustiveAny
}
}
/// Largely derived from Rust's list-pattern exhaustiveness checking algorithm: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_build/thir/pattern/usefulness/index.html
/// Dual-licensed under MIT and Apache licenses.
/// Thank you, Rust contributors.
///
/// Calculates the list constructors that are covered by a given [slice constructor][ListArity::Slice],
/// relative to other list constructors matched by a series of patterns.
///
/// This is relevant for both exhaustiveness and redundancy checking; to understand the motivation,
/// let's start with the exhaustiveness checking case.
///
/// # Exhaustiveness Checking
///
/// All list constructors are exausted by the pattern [..], which actually represents the infinite
/// series of constructors
/// []
/// [_]
/// [_, _]
/// ...
///
/// But we don't need to enumerate that infinite series to check if a series of list patterns is exhaustive -
/// we only need to enumerate a finite number of constructors, up to the largest exact-size list
/// pattern not covered by the patterns, or the largest slice pattern covered by the patterns.
///
/// ## Exact-sized patterns
///
/// Say we have patterns
/// [_] -> ..
/// [_, _] -> ..
/// To exhaustiveness-check these patterns, we only need to build the subset of `[..]` constructors
/// []
/// [_]
/// [_, _]
/// [_, _, _, ..]
/// to cover all list constructors that may or may not be matched by the patterns (in this case
/// not, because `[]` is not matched, and the last constructor `[_, _, _, ..]` is not matched).
///
/// We include `[_, _, _, ..]` here because during exhaustiveness checking, we specialize list
/// patterns **by exact size**, not by ranges. That means that is we stopped enumerating the
/// constructors needed at `[_, _, ..]`, when specializing the list patterns against `[_, _, ..]`,
/// we would see that the last pattern `[_, _] -> ..` exhausts it.
///
/// So, in the presence of exact-size constructors, we want to include a slice constructor that is
/// larger than all other exact-size list pattern.
///
/// ## Slice patterns
///
/// Say we have patterns
/// [1] -> ..
/// [2, ..] -> ..
/// now it's enough to just build
/// []
/// [_, ..]
/// as possible constructors, since the last constructor `[_, ..]` will specialize both patterns to
/// [1] -> ..
/// [2] -> ..
/// and if these patterns are exhaustive w.r.t. their arguments (`1` and `2`, which they are not,
/// since number literals are not exhaustive), then the whole pattern must be exhaustive, since the
/// largest slice constructor `[_, ..]` will cover the remaining infinite number of list constructors.
///
/// You can see that this holds with slice constructors that match elements at their head and tail
/// as well:
/// [{}, ..] -> ..
/// [.., {}] -> ..
/// Here again it's enough to just build the constructors [] and [_, ..] to match against -
/// notice that above slices of arity `1`, the patterns above do not provide any more information,
/// since they match any additional elements at the tail and head, respectively.
///
/// So, if they are exhaustive at arity `1`, they must be exhaustive at any higher arity.
///
/// In fact, in this case, if we are matching against `List {}`, the second pattern redundant!
///
/// # Redundancy checking
///
/// Redundancy checking (in general, and for list patterns) is the same as exhaustiveness checking,
/// except that instead of checking whether `[..]` is covered by all patterns, we want to check if
/// the list constructor of a pattern introduces any more information than previous patterns we've
/// seen.
///
/// Let's say we're redundancy checking the pattern marked by `*`
/// [] -> ..
/// [_] -> ..
/// (*) [.., _] -> ..
///
/// The list constructors this pattern introduces are the infinite series [_], [_, _], ...
/// But the only ones relevant, relevant to the patterns we've already seen, are
/// [_]
/// [_, _]
/// (Notice that the enumeration algorithm is the same as for `[..]` in the presence of exact-size
/// slices, just that the starting size differs - due to the tail matched by this pattern)
///
/// During checking we'll see that the `[_, _]` pattern is not already covered, so `[.., _]` is in
/// fact not redundant.
///
/// On the other hand, suppose we have
/// [] -> ..
/// [_, ..] -> ..
/// (*) [.., _] -> ..
///
/// Again enumerating the relevant constructors of `[.., _]` relative to the other patterns, we find
/// them to be
/// []
/// [.., _]
/// the first is already matched by the first pattern `[] -> ..`, and the latter specialized to
/// `[_]`, which in fact is covered by the second pattern `[_, ..] -> ..`. So the pattern marked by (*)
/// is indeed redundant.
///
/// # All together
///
/// So the idea to cover the infinite # of list constructors enumerated by a [slice][ListArity::Slice],
/// while specializing to the constructors that the user has provided, is as follows:
/// - Build [exact][ListArity::Exact] constructor variants for everything up to the max slice
/// constructor size, L.
/// - Then, the infinite # of list constructors is covered by the [0..L) exact-size constructors, and
/// the last slice constructor, that covers size [L..∞).
///
/// If we might only see [exact][ListArity::Exact] constructors along the way, we want to pick the
/// max slice size L that is larger than all of those exact size constructors.
///
/// But for slice constructors, we can just pick the largest slice, since that will cover slices of
/// that size, and any larger size.
///
/// Putting that together, we calculate L via
///
/// L = max(max_exact_len + 1, max_prefix_len + max_suffix_len)
fn build_list_ctors_covering_patterns(
list_arity: ListArity,
list_pattern_arities: impl IntoIterator<Item = ListArity>,
) -> std::vec::Vec<ListArity> {
match list_arity {
ListArity::Exact(_) => {
// Exact-size lists can only cover themselves..
vec![list_arity]
}
ListArity::Slice(prefix_len, suffix_len) => {
let min_len = prefix_len + suffix_len;
let mut max_exact_len = 0;
let mut max_prefix_len = prefix_len;
let mut max_suffix_len = suffix_len;
for arity in list_pattern_arities {
match arity {
ListArity::Exact(n) => max_exact_len = max_exact_len.max(n),
ListArity::Slice(prefix, suffix) => {
max_prefix_len = max_prefix_len.max(prefix);
max_suffix_len = max_suffix_len.max(suffix);
}
}
}
let (inf_cover_prefix, inf_cover_suffix) = {
if max_exact_len + 1 >= max_prefix_len + max_suffix_len {
max_prefix_len = max_exact_len + 1 - max_suffix_len;
}
(max_prefix_len, max_suffix_len)
};
let l = inf_cover_prefix + inf_cover_suffix;
let exact_size_lists = (min_len..l) // exclusive
.map(ListArity::Exact);
exact_size_lists
.chain([ListArity::Slice(inf_cover_prefix, inf_cover_suffix)])
.collect()
}
}
}
fn filter_matrix_list_ctors(matrix: &RefPatternMatrix) -> impl Iterator<Item = ListArity> + '_ {
matrix.iter().filter_map(|ctor| match ctor.last() {
Some(List(ar, _)) => Some(*ar),
_ => None,
})
}