roc/crates/roc_std/src/roc_list.rs
2023-12-12 10:45:53 +01:00

938 lines
29 KiB
Rust

#![deny(unsafe_op_in_unsafe_fn)]
use core::{
cell::Cell,
cmp::{self, Ordering},
ffi::c_void,
fmt::Debug,
hash::Hash,
intrinsics::copy_nonoverlapping,
iter::FromIterator,
mem::{self, ManuallyDrop},
ops::{Deref, DerefMut},
ptr::{self, NonNull},
};
use std::ops::Range;
use crate::{roc_alloc, roc_dealloc, roc_realloc, storage::Storage};
#[cfg(feature = "serde")]
use core::marker::PhantomData;
#[cfg(feature = "serde")]
use serde::{
de::{Deserializer, Visitor},
ser::{SerializeSeq, Serializer},
Deserialize, Serialize,
};
#[repr(C)]
pub struct RocList<T> {
elements: Option<NonNull<ManuallyDrop<T>>>,
length: usize,
// This technically points to directly after the refcount.
// This is an optimization that enables use one code path for regular lists and slices for geting the refcount ptr.
capacity_or_ref_ptr: usize,
}
impl<T> RocList<T> {
#[inline(always)]
fn alloc_alignment() -> u32 {
mem::align_of::<T>().max(mem::align_of::<Storage>()) as u32
}
pub fn empty() -> Self {
Self {
elements: None,
length: 0,
capacity_or_ref_ptr: 0,
}
}
/// Create an empty RocList with enough space preallocated to store
/// the requested number of elements.
pub fn with_capacity(num_elems: usize) -> Self {
Self {
elements: Some(Self::elems_with_capacity(num_elems)),
length: 0,
capacity_or_ref_ptr: num_elems,
}
}
pub fn iter(&self) -> impl Iterator<Item = &T> {
self.into_iter()
}
/// Used for both roc_alloc and roc_realloc - given the number of elements,
/// returns the number of bytes needed to allocate, taking into account both the
/// size of the elements as well as the size of Storage.
fn alloc_bytes(num_elems: usize) -> usize {
next_multiple_of(mem::size_of::<Storage>(), mem::align_of::<T>())
+ (num_elems * mem::size_of::<T>())
}
fn elems_with_capacity(num_elems: usize) -> NonNull<ManuallyDrop<T>> {
let alloc_ptr = unsafe { roc_alloc(Self::alloc_bytes(num_elems), Self::alloc_alignment()) };
Self::elems_from_allocation(NonNull::new(alloc_ptr).unwrap_or_else(|| {
todo!("Call roc_panic with the info that an allocation failed.");
}))
}
fn elems_from_allocation(allocation: NonNull<c_void>) -> NonNull<ManuallyDrop<T>> {
let offset = Self::alloc_alignment() - core::mem::size_of::<*const u8>() as u32;
let alloc_ptr = allocation.as_ptr();
unsafe {
let elem_ptr = Self::elem_ptr_from_alloc_ptr(alloc_ptr).cast::<ManuallyDrop<T>>();
// Initialize the reference count.
let rc_ptr = alloc_ptr.offset(offset as isize);
rc_ptr
.cast::<Storage>()
.write(Storage::new_reference_counted());
// The original alloc pointer was non-null, and this one is the alloc pointer
// with `alignment` bytes added to it, so it should be non-null too.
NonNull::new_unchecked(elem_ptr)
}
}
pub fn len(&self) -> usize {
self.length & (isize::MAX as usize)
}
pub fn is_seamless_slice(&self) -> bool {
((self.length | self.capacity_or_ref_ptr) as isize) < 0
}
pub fn capacity(&self) -> usize {
if !self.is_seamless_slice() {
self.capacity_or_ref_ptr
} else {
self.len()
}
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
pub fn is_unique(&self) -> bool {
if let Some(storage) = self.storage() {
storage.is_unique()
} else {
// If there is no storage, this list is empty.
// An empty list is always unique.
true
}
}
pub fn is_readonly(&self) -> bool {
if let Some(storage) = self.storage() {
storage.is_readonly()
} else {
false
}
}
pub fn as_mut_ptr(&mut self) -> *mut T {
self.as_mut_slice().as_mut_ptr()
}
pub fn as_ptr(&self) -> *const T {
self.as_slice().as_ptr()
}
/// Marks a list as readonly. This means that it will be leaked.
/// For constants passed in from platform to application, this may be reasonable.
///
/// # Safety
///
/// A value can be read-only in Roc for 3 reasons:
/// 1. The value is stored in read-only memory like a constant in the app.
/// 2. Our refcounting maxes out. When that happens, we saturate to read-only.
/// 3. This function is called
///
/// Any value that is set to read-only will be leaked.
/// There is no way to tell how many references it has and if it is safe to free.
/// As such, only values that should have a static lifetime for the entire application run
/// should be considered for marking read-only.
pub unsafe fn set_readonly(&self) {
if let Some((_, storage)) = self.elements_and_storage() {
storage.set(Storage::Readonly);
}
}
/// Note that there is no way to convert directly to a Vec.
///
/// This is because RocList values are not allocated using the system allocator, so
/// handing off any heap-allocated bytes to a Vec would not work because its Drop
/// implementation would try to free those bytes using the wrong allocator.
///
/// Instead, if you want a Rust Vec, you need to do a fresh allocation and copy the
/// bytes over - in other words, calling this `as_slice` method and then calling `to_vec`
/// on that.
pub fn as_slice(&self) -> &[T] {
self
}
/// Note that there is no way to convert directly to a Vec.
///
/// This is because RocList values are not allocated using the system allocator, so
/// handing off any heap-allocated bytes to a Vec would not work because its Drop
/// implementation would try to free those bytes using the wrong allocator.
///
/// Instead, if you want a Rust Vec, you need to do a fresh allocation and copy the
/// bytes over - in other words, calling this `as_slice` method and then calling `to_vec`
/// on that.
pub fn as_mut_slice(&mut self) -> &mut [T] {
&mut *self
}
#[inline(always)]
fn elements_and_storage(&self) -> Option<(NonNull<ManuallyDrop<T>>, &Cell<Storage>)> {
let elements = self.elements?;
let offset = match mem::align_of::<T>() {
16 => 1,
8 | 4 | 2 | 1 => 0,
other => unreachable!("invalid alignment {other}"),
};
let storage = unsafe { &*self.ptr_to_allocation().cast::<Cell<Storage>>().add(offset) };
Some((elements, storage))
}
pub(crate) fn storage(&self) -> Option<Storage> {
self.elements_and_storage()
.map(|(_, storage)| storage.get())
}
/// Useful for doing memcpy on the elements. Returns NULL if list is empty.
pub(crate) fn ptr_to_first_elem(&self) -> *const T {
unsafe { core::mem::transmute(self.elements) }
}
/// Useful for doing memcpy on the underlying allocation. Returns NULL if list is empty.
pub(crate) fn ptr_to_allocation(&self) -> *mut c_void {
let alignment = Self::alloc_alignment() as usize;
if self.is_seamless_slice() {
((self.capacity_or_ref_ptr << 1) - alignment) as *mut _
} else {
unsafe { self.ptr_to_first_elem().cast::<u8>().sub(alignment) as *mut _ }
}
}
#[allow(unused)]
pub(crate) fn ptr_to_refcount(&self) -> *mut c_void {
if self.is_seamless_slice() {
((self.capacity_or_ref_ptr << 1) - std::mem::size_of::<usize>()) as *mut _
} else {
unsafe { self.ptr_to_first_elem().cast::<usize>().sub(1) as *mut _ }
}
}
unsafe fn elem_ptr_from_alloc_ptr(alloc_ptr: *mut c_void) -> *mut c_void {
unsafe {
alloc_ptr
.cast::<u8>()
.add(Self::alloc_alignment() as usize)
.cast()
}
}
pub fn append(&mut self, value: T) {
self.push(value)
}
pub fn push(&mut self, value: T) {
if self.capacity() <= self.len() {
// reserve space for (at least!) one more element
self.reserve(1);
}
let elements = self.elements.unwrap().as_ptr();
let append_ptr = unsafe { elements.add(self.len()) };
unsafe {
// Write the element into the slot, without dropping it.
ptr::write(append_ptr, ManuallyDrop::new(value));
}
// It's important that the length is increased one by one, to
// make sure that we don't drop uninitialized elements, even when
// a incrementing the reference count panics.
self.length += 1;
}
/// # Safety
///
/// - `bytes` must be allocated for `cap` elements
/// - `bytes` must be initialized for `len` elements
/// - `bytes` must be preceded by a correctly-aligned refcount (usize)
/// - `cap` >= `len`
pub unsafe fn from_raw_parts(bytes: *mut T, len: usize, cap: usize) -> Self {
Self {
elements: NonNull::new(bytes.cast()),
length: len,
capacity_or_ref_ptr: cap,
}
}
}
impl<T> RocList<T>
where
T: Clone,
{
pub fn from_slice(slice: &[T]) -> Self {
let mut list = Self::empty();
list.extend_from_slice(slice);
list
}
pub fn extend_from_slice(&mut self, slice: &[T]) {
// TODO: Can we do better for ZSTs? Alignment might be a problem.
if slice.is_empty() {
return;
}
let new_len = self.len() + slice.len();
let non_null_elements = if let Some((elements, storage)) = self.elements_and_storage() {
// Decrement the list's refence count.
let mut copy = storage.get();
let is_unique = copy.decrease();
if is_unique {
// If we have enough capacity, we can add to the existing elements in-place.
if self.capacity() >= slice.len() {
elements
} else {
// There wasn't enough capacity, so we need a new allocation.
// Since this is a unique RocList, we can use realloc here.
let new_ptr = unsafe {
roc_realloc(
storage.as_ptr().cast(),
Self::alloc_bytes(new_len),
Self::alloc_bytes(self.capacity()),
Self::alloc_alignment(),
)
};
self.capacity_or_ref_ptr = new_len;
Self::elems_from_allocation(NonNull::new(new_ptr).unwrap_or_else(|| {
todo!("Reallocation failed");
}))
}
} else {
if !copy.is_readonly() {
// Write the decremented reference count back.
storage.set(copy);
}
// Allocate new memory.
self.capacity_or_ref_ptr = slice.len();
let new_elements = Self::elems_with_capacity(slice.len());
// Copy the old elements to the new allocation.
unsafe {
copy_nonoverlapping(elements.as_ptr(), new_elements.as_ptr(), self.len());
}
// Clear the seamless slice bit since we now have clear ownership.
self.length = self.len();
new_elements
}
} else {
self.capacity_or_ref_ptr = slice.len();
Self::elems_with_capacity(slice.len())
};
self.elements = Some(non_null_elements);
let elements = self.elements.unwrap().as_ptr();
let append_ptr = unsafe { elements.add(self.len()) };
// Use .cloned() to increment the elements' reference counts, if needed.
for (i, new_elem) in slice.iter().cloned().enumerate() {
let dst = unsafe { append_ptr.add(i) };
unsafe {
// Write the element into the slot, without dropping it.
ptr::write(dst, ManuallyDrop::new(new_elem));
}
// It's important that the length is increased one by one, to
// make sure that we don't drop uninitialized elements, even when
// a incrementing the reference count panics.
self.length += 1;
}
}
}
impl<T> RocList<T> {
#[track_caller]
pub fn slice_range(&self, range: Range<usize>) -> Self {
match self.try_slice_range(range) {
Some(x) => x,
None => panic!("slice index out of range"),
}
}
pub fn try_slice_range(&self, range: Range<usize>) -> Option<Self> {
if self.as_slice().get(range.start..range.end).is_none() {
None
} else {
// increment the refcount
std::mem::forget(self.clone());
let element_ptr = self.as_slice()[range.start..]
.as_ptr()
.cast::<ManuallyDrop<T>>();
let capacity_or_ref_ptr =
(self.ptr_to_first_elem() as usize) >> 1 | isize::MIN as usize;
let roc_list = RocList {
elements: NonNull::new(element_ptr as *mut ManuallyDrop<T>),
length: range.end - range.start,
capacity_or_ref_ptr,
};
Some(roc_list)
}
}
/// Increase a RocList's capacity by at least the requested number of elements (possibly more).
///
/// May return a new RocList, if the provided one was not unique.
pub fn reserve(&mut self, num_elems: usize) {
let new_len = num_elems + self.len();
let new_elems;
let old_elements_ptr;
match self.elements_and_storage() {
Some((elements, storage)) => {
if storage.get().is_unique() && !self.is_seamless_slice() {
unsafe {
let old_alloc = self.ptr_to_allocation();
// Try to reallocate in-place.
let new_alloc = roc_realloc(
old_alloc,
Self::alloc_bytes(new_len),
Self::alloc_bytes(self.capacity()),
Self::alloc_alignment(),
);
if new_alloc == old_alloc {
// We successfully reallocated in-place; we're done!
return;
} else {
// We got back a different allocation; copy the existing elements
// into it. We don't need to increment their refcounts because
// The existing allocation that references to them is now gone and
// no longer referencing them.
new_elems = Self::elems_from_allocation(
NonNull::new(new_alloc).unwrap_or_else(|| {
todo!("Reallocation failed");
}),
);
}
// Note that realloc automatically deallocates the old allocation,
// so we don't need to call roc_dealloc here.
}
} else {
// Make a new allocation
new_elems = Self::elems_with_capacity(new_len);
old_elements_ptr = elements.as_ptr();
unsafe {
// Copy the old elements to the new allocation.
copy_nonoverlapping(old_elements_ptr, new_elems.as_ptr(), self.len());
}
// Decrease the current allocation's reference count.
let mut new_storage = storage.get();
if !new_storage.is_readonly() {
let needs_dealloc = new_storage.decrease();
if needs_dealloc {
// Unlike in Drop, do *not* decrement the refcounts of all the elements!
// The new allocation is referencing them, so instead of incrementing them all
// all just to decrement them again here, we neither increment nor decrement them.
unsafe {
roc_dealloc(self.ptr_to_allocation(), Self::alloc_alignment());
}
} else {
// Write the storage back.
storage.set(new_storage);
}
}
}
}
None => {
// This is an empty list, so `reserve` is the same as `with_capacity`.
self.update_to(Self::with_capacity(new_len));
return;
}
}
self.update_to(Self {
elements: Some(new_elems),
length: self.len(),
capacity_or_ref_ptr: new_len,
});
}
/// Replace self with a new version, without letting `drop` run in between.
fn update_to(&mut self, mut updated: Self) {
// We want to replace `self` with `updated` in a way that makes sure
// `self`'s `drop` never runs. This is the proper way to do that:
// swap them, and then forget the "updated" one (which is now pointing
// to the original allocation).
mem::swap(self, &mut updated);
mem::forget(updated);
}
}
impl<T> Deref for RocList<T> {
type Target = [T];
fn deref(&self) -> &Self::Target {
if let Some(elements) = self.elements {
let elements = ptr::slice_from_raw_parts(elements.as_ptr().cast::<T>(), self.len());
unsafe { &*elements }
} else {
&[]
}
}
}
impl<T> DerefMut for RocList<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
if let Some(elements) = self.elements {
let ptr = elements.as_ptr().cast::<T>();
let elements = ptr::slice_from_raw_parts_mut(ptr, self.length);
unsafe { &mut *elements }
} else {
&mut []
}
}
}
impl<T> Default for RocList<T> {
fn default() -> Self {
Self::empty()
}
}
impl<T, U> PartialEq<RocList<U>> for RocList<T>
where
T: PartialEq<U>,
{
fn eq(&self, other: &RocList<U>) -> bool {
self.as_slice() == other.as_slice()
}
}
impl<T> Eq for RocList<T> where T: Eq {}
impl<T, U> PartialOrd<RocList<U>> for RocList<T>
where
T: PartialOrd<U>,
{
fn partial_cmp(&self, other: &RocList<U>) -> Option<cmp::Ordering> {
// If one is longer than the other, use that as the ordering.
match self.len().partial_cmp(&other.len()) {
Some(Ordering::Equal) => {}
ord => return ord,
}
// If they're the same length, compare their elements
for index in 0..self.len() {
match self[index].partial_cmp(&other[index]) {
Some(Ordering::Equal) => {}
ord => return ord,
}
}
// Capacity is ignored for ordering purposes.
Some(Ordering::Equal)
}
}
impl<T> Ord for RocList<T>
where
T: Ord,
{
fn cmp(&self, other: &Self) -> Ordering {
// If one is longer than the other, use that as the ordering.
match self.len().cmp(&other.len()) {
Ordering::Equal => {}
ord => return ord,
}
// If they're the same length, compare their elements
for index in 0..self.len() {
match self[index].cmp(&other[index]) {
Ordering::Equal => {}
ord => return ord,
}
}
// Capacity is ignored for ordering purposes.
Ordering::Equal
}
}
impl<T> Debug for RocList<T>
where
T: Debug,
{
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
self.deref().fmt(f)
}
}
impl<T> Clone for RocList<T> {
fn clone(&self) -> Self {
// Increment the reference count
if let Some((_, storage)) = self.elements_and_storage() {
let mut new_storage = storage.get();
if !new_storage.is_readonly() {
new_storage.increment_reference_count();
storage.set(new_storage);
}
}
Self {
elements: self.elements,
length: self.length,
capacity_or_ref_ptr: self.capacity_or_ref_ptr,
}
}
}
impl<T> Drop for RocList<T> {
fn drop(&mut self) {
if let Some((elements, storage)) = self.elements_and_storage() {
// Decrease the list's reference count.
let mut new_storage = storage.get();
if !new_storage.is_readonly() {
let needs_dealloc = new_storage.decrease();
if needs_dealloc {
unsafe {
// Drop the stored elements.
for index in 0..self.len() {
ManuallyDrop::drop(&mut *elements.as_ptr().add(index));
}
// Release the memory.
roc_dealloc(self.ptr_to_allocation(), Self::alloc_alignment());
}
} else {
// Write the storage back.
storage.set(new_storage);
}
}
}
}
}
impl<T> From<&[T]> for RocList<T>
where
T: Clone,
{
fn from(slice: &[T]) -> Self {
Self::from_slice(slice)
}
}
impl<T, const SIZE: usize> From<[T; SIZE]> for RocList<T> {
fn from(array: [T; SIZE]) -> Self {
Self::from_iter(array)
}
}
impl<'a, T> IntoIterator for &'a RocList<T> {
type Item = &'a T;
type IntoIter = core::slice::Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.as_slice().iter()
}
}
impl<T: Hash> Hash for RocList<T> {
fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
// This is the same as Rust's Vec implementation, which
// just delegates to the slice implementation. It's a bit surprising
// that Hash::hash_slice doesn't automatically incorporate the length,
// but the slice implementation indeed does explicitly call self.len().hash(state);
//
// To verify, click the "source" links for:
// Vec: https://doc.rust-lang.org/std/vec/struct.Vec.html#impl-Hash
// slice: https://doc.rust-lang.org/std/primitive.slice.html#impl-Hash
self.len().hash(state);
Hash::hash_slice(self.as_slice(), state);
}
}
impl<T> FromIterator<T> for RocList<T> {
fn from_iter<I>(into: I) -> Self
where
I: IntoIterator<Item = T>,
{
let iter = into.into_iter();
if core::mem::size_of::<T>() == 0 {
let count = iter.count();
return Self {
elements: Some(Self::elems_with_capacity(count)),
length: count,
capacity_or_ref_ptr: count,
};
}
let mut list = {
let (min_len, maybe_max_len) = iter.size_hint();
let init_capacity = maybe_max_len.unwrap_or(min_len);
Self::with_capacity(init_capacity)
};
let mut elements = list.elements.unwrap().as_ptr();
for new_elem in iter {
// If the size_hint didn't give us a max, we may need to grow. 1.5x seems to be good, based on:
// https://archive.ph/Z2R8w and https://github.com/facebook/folly/blob/1f2706/folly/docs/FBVector.md
if list.length == list.capacity() {
list.reserve(list.capacity() / 2);
elements = list.elements.unwrap().as_ptr();
}
unsafe {
elements
.add(list.length)
.write(ptr::read(&ManuallyDrop::new(new_elem)));
}
list.length += 1;
}
list
}
}
#[cfg(feature = "serde")]
impl<T: Serialize> Serialize for RocList<T> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut seq = serializer.serialize_seq(Some(self.len()))?;
for item in self {
seq.serialize_element(item)?;
}
seq.end()
}
}
#[cfg(feature = "serde")]
impl<'de, T> Deserialize<'de> for RocList<T>
where
// TODO: I'm not sure about requiring clone here. Is that fine? Is that
// gonna mean lots of extra allocations?
T: Deserialize<'de> + core::clone::Clone,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
deserializer.deserialize_seq(RocListVisitor::new())
}
}
// This is a RocList that is checked to ensure it is unique or readonly such that it can be sent between threads safely.
#[repr(transparent)]
pub struct SendSafeRocList<T>(RocList<T>);
unsafe impl<T> Send for SendSafeRocList<T> where T: Send {}
impl<T> Clone for SendSafeRocList<T>
where
T: Clone,
{
fn clone(&self) -> Self {
if self.0.is_readonly() {
SendSafeRocList(self.0.clone())
} else {
// To keep self send safe, this must copy.
SendSafeRocList(RocList::from_slice(&self.0))
}
}
}
impl<T> From<RocList<T>> for SendSafeRocList<T>
where
T: Clone,
{
fn from(l: RocList<T>) -> Self {
if l.is_unique() || l.is_readonly() {
SendSafeRocList(l)
} else {
// This is not unique, do a deep copy.
// TODO: look into proper into_iter that takes ownership.
// Then this won't need clone and will skip and refcount inc and dec for each element.
SendSafeRocList(RocList::from_slice(&l))
}
}
}
impl<T> From<SendSafeRocList<T>> for RocList<T> {
fn from(l: SendSafeRocList<T>) -> Self {
l.0
}
}
#[cfg(feature = "serde")]
struct RocListVisitor<T> {
marker: PhantomData<T>,
}
#[cfg(feature = "serde")]
impl<T> RocListVisitor<T> {
fn new() -> Self {
RocListVisitor {
marker: PhantomData,
}
}
}
#[cfg(feature = "serde")]
impl<'de, T> Visitor<'de> for RocListVisitor<T>
where
T: Deserialize<'de> + core::clone::Clone,
{
type Value = RocList<T>;
fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(formatter, "a list of strings")
}
fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
where
A: serde::de::SeqAccess<'de>,
{
let mut out = match seq.size_hint() {
Some(hint) => RocList::with_capacity(hint),
None => RocList::empty(),
};
while let Some(next) = seq.next_element()? {
// TODO: it would be ideal to call `out.push` here, but we haven't
// implemented that yet! I think this is also why we need Clone.
out.extend_from_slice(&[next])
}
Ok(out)
}
}
const fn next_multiple_of(lhs: usize, rhs: usize) -> usize {
match lhs % rhs {
0 => lhs,
r => lhs + (rhs - r),
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::RocDec;
#[no_mangle]
pub unsafe extern "C" fn roc_alloc(size: usize, _alignment: u32) -> *mut c_void {
unsafe { libc::malloc(size) }
}
#[no_mangle]
pub unsafe extern "C" fn roc_realloc(
c_ptr: *mut c_void,
new_size: usize,
_old_size: usize,
_alignment: u32,
) -> *mut c_void {
unsafe { libc::realloc(c_ptr, new_size) }
}
#[no_mangle]
pub unsafe extern "C" fn roc_dealloc(c_ptr: *mut c_void, _alignment: u32) {
unsafe { libc::free(c_ptr) }
}
#[test]
fn compare_list_dec() {
// RocDec is special because it's alignment is 16
let a = RocList::from_slice(&[RocDec::from(1), RocDec::from(2)]);
let b = RocList::from_slice(&[RocDec::from(1), RocDec::from(2)]);
assert_eq!(a, b);
}
#[test]
fn clone_list_dec() {
// RocDec is special because it's alignment is 16
let a = RocList::from_slice(&[RocDec::from(1), RocDec::from(2)]);
let b = a.clone();
assert_eq!(a, b);
drop(a);
drop(b);
}
#[test]
fn compare_list_str() {
let a = RocList::from_slice(&[crate::RocStr::from("ab")]);
let b = RocList::from_slice(&[crate::RocStr::from("ab")]);
assert_eq!(a, b);
drop(a);
drop(b);
}
#[test]
fn readonly_list_is_sendsafe() {
let x = RocList::from_slice(&[1, 2, 3, 4, 5]);
unsafe { x.set_readonly() };
assert!(x.is_readonly());
let y = x.clone();
let z = y.clone();
let safe_x = SendSafeRocList::from(x);
let new_x = RocList::from(safe_x);
assert!(new_x.is_readonly());
assert!(y.is_readonly());
assert!(z.is_readonly());
assert_eq!(new_x.as_slice(), &[1, 2, 3, 4, 5]);
let ptr = new_x.ptr_to_allocation();
drop(y);
drop(z);
drop(new_x);
// free the underlying memory
unsafe { crate::roc_dealloc(ptr, std::mem::align_of::<usize>() as u32) }
}
}