Rename Red Knot (#17820)

This commit is contained in:
Micha Reiser 2025-05-03 19:49:15 +02:00 committed by GitHub
parent e6a798b962
commit b51c4f82ea
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
1564 changed files with 1598 additions and 1578 deletions

View file

@ -0,0 +1,427 @@
# Constructor
When classes are instantiated, Python calls the metaclass's `__call__` method. The metaclass of most
Python classes is the class `builtins.type`.
`type.__call__` calls the `__new__` method of the class, which is responsible for creating the
instance. `__init__` is then called on the constructed instance with the same arguments that were
passed to `__new__`.
Both `__new__` and `__init__` are looked up using the descriptor protocol, i.e., `__get__` is called
if these attributes are descriptors. `__new__` is always treated as a static method, i.e., `cls` is
passed as the first argument. `__init__` has no special handling; it is fetched as a bound method
and called just like any other dunder method.
`type.__call__` does other things too, but this is not yet handled by us.
Since every class has `object` in it's MRO, the default implementations are `object.__new__` and
`object.__init__`. They have some special behavior, namely:
- If neither `__new__` nor `__init__` are defined anywhere in the MRO of class (except for
`object`), no arguments are accepted and `TypeError` is raised if any are passed.
- If `__new__` is defined but `__init__` is not, `object.__init__` will allow arbitrary arguments!
As of today there are a number of behaviors that we do not support:
- `__new__` is assumed to return an instance of the class on which it is called
- User defined `__call__` on metaclass is ignored
## Creating an instance of the `object` class itself
Test the behavior of the `object` class itself. As implementation has to ignore `object` own methods
as defined in typeshed due to behavior not expressible in typeshed (see above how `__init__` behaves
differently depending on whether `__new__` is defined or not), we have to test the behavior of
`object` itself.
```py
reveal_type(object()) # revealed: object
# error: [too-many-positional-arguments] "Too many positional arguments to class `object`: expected 0, got 1"
reveal_type(object(1)) # revealed: object
```
## No init or new
```py
class Foo: ...
reveal_type(Foo()) # revealed: Foo
# error: [too-many-positional-arguments] "Too many positional arguments to bound method `__init__`: expected 0, got 1"
reveal_type(Foo(1)) # revealed: Foo
```
## `__new__` present on the class itself
```py
class Foo:
def __new__(cls, x: int) -> "Foo":
return object.__new__(cls)
reveal_type(Foo(1)) # revealed: Foo
# error: [missing-argument] "No argument provided for required parameter `x` of function `__new__`"
reveal_type(Foo()) # revealed: Foo
# error: [too-many-positional-arguments] "Too many positional arguments to function `__new__`: expected 1, got 2"
reveal_type(Foo(1, 2)) # revealed: Foo
```
## `__new__` present on a superclass
If the `__new__` method is defined on a superclass, we can still infer the signature of the
constructor from it.
```py
from typing_extensions import Self
class Base:
def __new__(cls, x: int) -> Self: ...
class Foo(Base): ...
reveal_type(Foo(1)) # revealed: Foo
# error: [missing-argument] "No argument provided for required parameter `x` of function `__new__`"
reveal_type(Foo()) # revealed: Foo
# error: [too-many-positional-arguments] "Too many positional arguments to function `__new__`: expected 1, got 2"
reveal_type(Foo(1, 2)) # revealed: Foo
```
## Conditional `__new__`
```py
def _(flag: bool) -> None:
class Foo:
if flag:
def __new__(cls, x: int): ...
else:
def __new__(cls, x: int, y: int = 1): ...
reveal_type(Foo(1)) # revealed: Foo
# error: [invalid-argument-type] "Argument to this function is incorrect: Expected `int`, found `Literal["1"]`"
reveal_type(Foo("1")) # revealed: Foo
# error: [missing-argument] "No argument provided for required parameter `x` of function `__new__`"
reveal_type(Foo()) # revealed: Foo
# error: [too-many-positional-arguments] "Too many positional arguments to function `__new__`: expected 1, got 2"
reveal_type(Foo(1, 2)) # revealed: Foo
```
## A descriptor in place of `__new__`
```py
class SomeCallable:
def __call__(self, cls, x: int) -> "Foo":
obj = object.__new__(cls)
obj.x = x
return obj
class Descriptor:
def __get__(self, instance, owner) -> SomeCallable:
return SomeCallable()
class Foo:
__new__: Descriptor = Descriptor()
reveal_type(Foo(1)) # revealed: Foo
# error: [missing-argument] "No argument provided for required parameter `x` of bound method `__call__`"
reveal_type(Foo()) # revealed: Foo
```
## A callable instance in place of `__new__`
### Bound
```py
class Callable:
def __call__(self, cls, x: int) -> "Foo":
return object.__new__(cls)
class Foo:
__new__ = Callable()
reveal_type(Foo(1)) # revealed: Foo
# error: [missing-argument] "No argument provided for required parameter `x` of bound method `__call__`"
reveal_type(Foo()) # revealed: Foo
```
### Possibly Unbound
#### Possibly unbound `__new__` method
```py
def _(flag: bool) -> None:
class Foo:
if flag:
def __new__(cls):
return object.__new__(cls)
# error: [call-possibly-unbound-method]
reveal_type(Foo()) # revealed: Foo
# error: [call-possibly-unbound-method]
# error: [too-many-positional-arguments]
reveal_type(Foo(1)) # revealed: Foo
```
#### Possibly unbound `__call__` on `__new__` callable
```py
def _(flag: bool) -> None:
class Callable:
if flag:
def __call__(self, cls, x: int) -> "Foo":
return object.__new__(cls)
class Foo:
__new__ = Callable()
# error: [call-non-callable] "Object of type `Callable` is not callable (possibly unbound `__call__` method)"
reveal_type(Foo(1)) # revealed: Foo
# TODO should be - error: [missing-argument] "No argument provided for required parameter `x` of bound method `__call__`"
# but we currently infer the signature of `__call__` as unknown, so it accepts any arguments
# error: [call-non-callable] "Object of type `Callable` is not callable (possibly unbound `__call__` method)"
reveal_type(Foo()) # revealed: Foo
```
## `__init__` present on the class itself
If the class has an `__init__` method, we can infer the signature of the constructor from it.
```py
class Foo:
def __init__(self, x: int): ...
reveal_type(Foo(1)) # revealed: Foo
# error: [missing-argument] "No argument provided for required parameter `x` of bound method `__init__`"
reveal_type(Foo()) # revealed: Foo
# error: [too-many-positional-arguments] "Too many positional arguments to bound method `__init__`: expected 1, got 2"
reveal_type(Foo(1, 2)) # revealed: Foo
```
## `__init__` present on a superclass
If the `__init__` method is defined on a superclass, we can still infer the signature of the
constructor from it.
```py
class Base:
def __init__(self, x: int): ...
class Foo(Base): ...
reveal_type(Foo(1)) # revealed: Foo
# error: [missing-argument] "No argument provided for required parameter `x` of bound method `__init__`"
reveal_type(Foo()) # revealed: Foo
# error: [too-many-positional-arguments] "Too many positional arguments to bound method `__init__`: expected 1, got 2"
reveal_type(Foo(1, 2)) # revealed: Foo
```
## Conditional `__init__`
```py
def _(flag: bool) -> None:
class Foo:
if flag:
def __init__(self, x: int): ...
else:
def __init__(self, x: int, y: int = 1): ...
reveal_type(Foo(1)) # revealed: Foo
# error: [invalid-argument-type] "Argument to this function is incorrect: Expected `int`, found `Literal["1"]`"
reveal_type(Foo("1")) # revealed: Foo
# error: [missing-argument] "No argument provided for required parameter `x` of bound method `__init__`"
reveal_type(Foo()) # revealed: Foo
# error: [too-many-positional-arguments] "Too many positional arguments to bound method `__init__`: expected 1, got 2"
reveal_type(Foo(1, 2)) # revealed: Foo
```
## A descriptor in place of `__init__`
```py
class SomeCallable:
# TODO: at runtime `__init__` is checked to return `None` and
# a `TypeError` is raised if it doesn't. However, apparently
# this is not true when the descriptor is used as `__init__`.
# However, we may still want to check this.
def __call__(self, x: int) -> str:
return "a"
class Descriptor:
def __get__(self, instance, owner) -> SomeCallable:
return SomeCallable()
class Foo:
__init__: Descriptor = Descriptor()
reveal_type(Foo(1)) # revealed: Foo
# error: [missing-argument] "No argument provided for required parameter `x` of bound method `__call__`"
reveal_type(Foo()) # revealed: Foo
```
## A callable instance in place of `__init__`
### Bound
```py
class Callable:
def __call__(self, x: int) -> None:
pass
class Foo:
__init__ = Callable()
reveal_type(Foo(1)) # revealed: Foo
# error: [missing-argument] "No argument provided for required parameter `x` of bound method `__call__`"
reveal_type(Foo()) # revealed: Foo
```
### Possibly Unbound
```py
def _(flag: bool) -> None:
class Callable:
if flag:
def __call__(self, x: int) -> None:
pass
class Foo:
__init__ = Callable()
# error: [call-non-callable] "Object of type `Callable` is not callable (possibly unbound `__call__` method)"
reveal_type(Foo(1)) # revealed: Foo
# TODO should be - error: [missing-argument] "No argument provided for required parameter `x` of bound method `__call__`"
# but we currently infer the signature of `__call__` as unknown, so it accepts any arguments
# error: [call-non-callable] "Object of type `Callable` is not callable (possibly unbound `__call__` method)"
reveal_type(Foo()) # revealed: Foo
```
## `__new__` and `__init__` both present
### Identical signatures
A common case is to have `__new__` and `__init__` with identical signatures (except for the first
argument). We report errors for both `__new__` and `__init__` if the arguments are incorrect.
At runtime `__new__` is called first and will fail without executing `__init__` if the arguments are
incorrect. However, we decided that it is better to report errors for both methods, since after
fixing the `__new__` method, the user may forget to fix the `__init__` method.
```py
class Foo:
def __new__(cls, x: int) -> "Foo":
return object.__new__(cls)
def __init__(self, x: int): ...
# error: [missing-argument] "No argument provided for required parameter `x` of function `__new__`"
# error: [missing-argument] "No argument provided for required parameter `x` of bound method `__init__`"
reveal_type(Foo()) # revealed: Foo
reveal_type(Foo(1)) # revealed: Foo
```
### Compatible signatures
But they can also be compatible, but not identical. We should correctly report errors only for the
mthod that would fail.
```py
class Foo:
def __new__(cls, *args, **kwargs):
return object.__new__(cls)
def __init__(self, x: int) -> None:
self.x = x
# error: [missing-argument] "No argument provided for required parameter `x` of bound method `__init__`"
reveal_type(Foo()) # revealed: Foo
reveal_type(Foo(1)) # revealed: Foo
# error: [too-many-positional-arguments] "Too many positional arguments to bound method `__init__`: expected 1, got 2"
reveal_type(Foo(1, 2)) # revealed: Foo
```
### Incompatible signatures
```py
import abc
class Foo:
def __new__(cls) -> "Foo":
return object.__new__(cls)
def __init__(self, x):
self.x = 42
# error: [missing-argument] "No argument provided for required parameter `x` of bound method `__init__`"
reveal_type(Foo()) # revealed: Foo
# error: [too-many-positional-arguments] "Too many positional arguments to function `__new__`: expected 0, got 1"
reveal_type(Foo(42)) # revealed: Foo
class Foo2:
def __new__(cls, x) -> "Foo2":
return object.__new__(cls)
def __init__(self):
pass
# error: [missing-argument] "No argument provided for required parameter `x` of function `__new__`"
reveal_type(Foo2()) # revealed: Foo2
# error: [too-many-positional-arguments] "Too many positional arguments to bound method `__init__`: expected 0, got 1"
reveal_type(Foo2(42)) # revealed: Foo2
class Foo3(metaclass=abc.ABCMeta):
def __new__(cls) -> "Foo3":
return object.__new__(cls)
def __init__(self, x):
self.x = 42
# error: [missing-argument] "No argument provided for required parameter `x` of bound method `__init__`"
reveal_type(Foo3()) # revealed: Foo3
# error: [too-many-positional-arguments] "Too many positional arguments to function `__new__`: expected 0, got 1"
reveal_type(Foo3(42)) # revealed: Foo3
class Foo4(metaclass=abc.ABCMeta):
def __new__(cls, x) -> "Foo4":
return object.__new__(cls)
def __init__(self):
pass
# error: [missing-argument] "No argument provided for required parameter `x` of function `__new__`"
reveal_type(Foo4()) # revealed: Foo4
# error: [too-many-positional-arguments] "Too many positional arguments to bound method `__init__`: expected 0, got 1"
reveal_type(Foo4(42)) # revealed: Foo4
```
### Lookup of `__new__`
The `__new__` method is always invoked on the class itself, never on the metaclass. This is
different from how other dunder methods like `__lt__` are implicitly called (always on the
meta-type, never on the type itself).
```py
from typing_extensions import Literal
class Meta(type):
def __new__(mcls, name, bases, namespace, /, **kwargs):
return super().__new__(mcls, name, bases, namespace)
def __lt__(cls, other) -> Literal[True]:
return True
class C(metaclass=Meta): ...
# No error is raised here, since we don't implicitly call `Meta.__new__`
reveal_type(C()) # revealed: C
# Meta.__lt__ is implicitly called here:
reveal_type(C < C) # revealed: Literal[True]
```