Rename Red Knot (#17820)

This commit is contained in:
Micha Reiser 2025-05-03 19:49:15 +02:00 committed by GitHub
parent e6a798b962
commit b51c4f82ea
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
1564 changed files with 1598 additions and 1578 deletions

View file

@ -0,0 +1,35 @@
# Generic builtins
## Variadic keyword arguments with a custom `dict`
When we define `dict` in a custom typeshed, we must take care to define it as a generic class in the
same way as in the real typeshed.
```toml
[environment]
typeshed = "/typeshed"
```
`/typeshed/stdlib/builtins.pyi`:
```pyi
class object: ...
class int: ...
class dict[K, V, Extra]: ...
```
`/typeshed/stdlib/typing_extensions.pyi`:
```pyi
def reveal_type(obj, /): ...
```
If we don't, then we won't be able to infer the types of variadic keyword arguments correctly.
```py
def f(**kwargs):
reveal_type(kwargs) # revealed: Unknown
def g(**kwargs: int):
reveal_type(kwargs) # revealed: Unknown
```

View file

@ -0,0 +1,443 @@
# Generic classes: Legacy syntax
## Defining a generic class
At its simplest, to define a generic class using the legacy syntax, you inherit from the
`typing.Generic` special form, which is "specialized" with the generic class's type variables.
```py
from ty_extensions import generic_context
from typing import Generic, TypeVar
T = TypeVar("T")
S = TypeVar("S")
class SingleTypevar(Generic[T]): ...
class MultipleTypevars(Generic[T, S]): ...
reveal_type(generic_context(SingleTypevar)) # revealed: tuple[T]
reveal_type(generic_context(MultipleTypevars)) # revealed: tuple[T, S]
```
You cannot use the same typevar more than once.
```py
# TODO: error
class RepeatedTypevar(Generic[T, T]): ...
```
You can only specialize `typing.Generic` with typevars (TODO: or param specs or typevar tuples).
```py
# error: [invalid-argument-type] "`Literal[int]` is not a valid argument to `typing.Generic`"
class GenericOfType(Generic[int]): ...
```
You can also define a generic class by inheriting from some _other_ generic class, and specializing
it with typevars.
```py
class InheritedGeneric(MultipleTypevars[T, S]): ...
class InheritedGenericPartiallySpecialized(MultipleTypevars[T, int]): ...
class InheritedGenericFullySpecialized(MultipleTypevars[str, int]): ...
reveal_type(generic_context(InheritedGeneric)) # revealed: tuple[T, S]
reveal_type(generic_context(InheritedGenericPartiallySpecialized)) # revealed: tuple[T]
reveal_type(generic_context(InheritedGenericFullySpecialized)) # revealed: None
```
If you don't specialize a generic base class, we use the default specialization, which maps each
typevar to its default value or `Any`. Since that base class is fully specialized, it does not make
the inheriting class generic.
```py
class InheritedGenericDefaultSpecialization(MultipleTypevars): ...
reveal_type(generic_context(InheritedGenericDefaultSpecialization)) # revealed: None
```
When inheriting from a generic class, you can optionally inherit from `typing.Generic` as well. But
if you do, you have to mention all of the typevars that you use in your other base classes.
```py
class ExplicitInheritedGeneric(MultipleTypevars[T, S], Generic[T, S]): ...
# error: [invalid-generic-class] "`Generic` base class must include all type variables used in other base classes"
class ExplicitInheritedGenericMissingTypevar(MultipleTypevars[T, S], Generic[T]): ...
class ExplicitInheritedGenericPartiallySpecialized(MultipleTypevars[T, int], Generic[T]): ...
class ExplicitInheritedGenericPartiallySpecializedExtraTypevar(MultipleTypevars[T, int], Generic[T, S]): ...
# error: [invalid-generic-class] "`Generic` base class must include all type variables used in other base classes"
class ExplicitInheritedGenericPartiallySpecializedMissingTypevar(MultipleTypevars[T, int], Generic[S]): ...
reveal_type(generic_context(ExplicitInheritedGeneric)) # revealed: tuple[T, S]
reveal_type(generic_context(ExplicitInheritedGenericPartiallySpecialized)) # revealed: tuple[T]
reveal_type(generic_context(ExplicitInheritedGenericPartiallySpecializedExtraTypevar)) # revealed: tuple[T, S]
```
## Specializing generic classes explicitly
The type parameter can be specified explicitly:
```py
from typing import Generic, TypeVar
T = TypeVar("T")
class C(Generic[T]):
x: T
reveal_type(C[int]()) # revealed: C[int]
```
The specialization must match the generic types:
```py
# error: [too-many-positional-arguments] "Too many positional arguments to class `C`: expected 1, got 2"
reveal_type(C[int, int]()) # revealed: Unknown
```
If the type variable has an upper bound, the specialized type must satisfy that bound:
```py
from typing import Union
BoundedT = TypeVar("BoundedT", bound=int)
BoundedByUnionT = TypeVar("BoundedByUnionT", bound=Union[int, str])
class Bounded(Generic[BoundedT]): ...
class BoundedByUnion(Generic[BoundedByUnionT]): ...
class IntSubclass(int): ...
reveal_type(Bounded[int]()) # revealed: Bounded[int]
reveal_type(Bounded[IntSubclass]()) # revealed: Bounded[IntSubclass]
# TODO: update this diagnostic to talk about type parameters and specializations
# error: [invalid-argument-type] "Argument to this function is incorrect: Expected `int`, found `str`"
reveal_type(Bounded[str]()) # revealed: Unknown
# TODO: update this diagnostic to talk about type parameters and specializations
# error: [invalid-argument-type] "Argument to this function is incorrect: Expected `int`, found `int | str`"
reveal_type(Bounded[int | str]()) # revealed: Unknown
reveal_type(BoundedByUnion[int]()) # revealed: BoundedByUnion[int]
reveal_type(BoundedByUnion[IntSubclass]()) # revealed: BoundedByUnion[IntSubclass]
reveal_type(BoundedByUnion[str]()) # revealed: BoundedByUnion[str]
reveal_type(BoundedByUnion[int | str]()) # revealed: BoundedByUnion[int | str]
```
If the type variable is constrained, the specialized type must satisfy those constraints:
```py
ConstrainedT = TypeVar("ConstrainedT", int, str)
class Constrained(Generic[ConstrainedT]): ...
reveal_type(Constrained[int]()) # revealed: Constrained[int]
# TODO: error: [invalid-argument-type]
# TODO: revealed: Constrained[Unknown]
reveal_type(Constrained[IntSubclass]()) # revealed: Constrained[IntSubclass]
reveal_type(Constrained[str]()) # revealed: Constrained[str]
# TODO: error: [invalid-argument-type]
# TODO: revealed: Unknown
reveal_type(Constrained[int | str]()) # revealed: Constrained[int | str]
# TODO: update this diagnostic to talk about type parameters and specializations
# error: [invalid-argument-type] "Argument to this function is incorrect: Expected `int | str`, found `object`"
reveal_type(Constrained[object]()) # revealed: Unknown
```
## Inferring generic class parameters
We can infer the type parameter from a type context:
```py
from typing import Generic, TypeVar
T = TypeVar("T")
class C(Generic[T]):
x: T
c: C[int] = C()
# TODO: revealed: C[int]
reveal_type(c) # revealed: C[Unknown]
```
The typevars of a fully specialized generic class should no longer be visible:
```py
# TODO: revealed: int
reveal_type(c.x) # revealed: Unknown
```
If the type parameter is not specified explicitly, and there are no constraints that let us infer a
specific type, we infer the typevar's default type:
```py
DefaultT = TypeVar("DefaultT", default=int)
class D(Generic[DefaultT]): ...
reveal_type(D()) # revealed: D[int]
```
If a typevar does not provide a default, we use `Unknown`:
```py
reveal_type(C()) # revealed: C[Unknown]
```
## Inferring generic class parameters from constructors
If the type of a constructor parameter is a class typevar, we can use that to infer the type
parameter. The types inferred from a type context and from a constructor parameter must be
consistent with each other.
### `__new__` only
```py
from typing import Generic, TypeVar
T = TypeVar("T")
class C(Generic[T]):
def __new__(cls, x: T) -> "C[T]":
return object.__new__(cls)
reveal_type(C(1)) # revealed: C[Literal[1]]
# error: [invalid-assignment] "Object of type `C[Literal["five"]]` is not assignable to `C[int]`"
wrong_innards: C[int] = C("five")
```
### `__init__` only
```py
from typing import Generic, TypeVar
T = TypeVar("T")
class C(Generic[T]):
def __init__(self, x: T) -> None: ...
reveal_type(C(1)) # revealed: C[Literal[1]]
# error: [invalid-assignment] "Object of type `C[Literal["five"]]` is not assignable to `C[int]`"
wrong_innards: C[int] = C("five")
```
### Identical `__new__` and `__init__` signatures
```py
from typing import Generic, TypeVar
T = TypeVar("T")
class C(Generic[T]):
def __new__(cls, x: T) -> "C[T]":
return object.__new__(cls)
def __init__(self, x: T) -> None: ...
reveal_type(C(1)) # revealed: C[Literal[1]]
# error: [invalid-assignment] "Object of type `C[Literal["five"]]` is not assignable to `C[int]`"
wrong_innards: C[int] = C("five")
```
### Compatible `__new__` and `__init__` signatures
```py
from typing import Generic, TypeVar
T = TypeVar("T")
class C(Generic[T]):
def __new__(cls, *args, **kwargs) -> "C[T]":
return object.__new__(cls)
def __init__(self, x: T) -> None: ...
reveal_type(C(1)) # revealed: C[Literal[1]]
# error: [invalid-assignment] "Object of type `C[Literal["five"]]` is not assignable to `C[int]`"
wrong_innards: C[int] = C("five")
class D(Generic[T]):
def __new__(cls, x: T) -> "D[T]":
return object.__new__(cls)
def __init__(self, *args, **kwargs) -> None: ...
reveal_type(D(1)) # revealed: D[Literal[1]]
# error: [invalid-assignment] "Object of type `D[Literal["five"]]` is not assignable to `D[int]`"
wrong_innards: D[int] = D("five")
```
### Both present, `__new__` inherited from a generic base class
If either method comes from a generic base class, we don't currently use its inferred specialization
to specialize the class.
```py
from typing import Generic, TypeVar
T = TypeVar("T")
U = TypeVar("U")
V = TypeVar("V")
class C(Generic[T, U]):
def __new__(cls, *args, **kwargs) -> "C[T, U]":
return object.__new__(cls)
class D(C[V, int]):
def __init__(self, x: V) -> None: ...
reveal_type(D(1)) # revealed: D[Literal[1]]
```
### `__init__` is itself generic
```py
from typing import Generic, TypeVar
S = TypeVar("S")
T = TypeVar("T")
class C(Generic[T]):
def __init__(self, x: T, y: S) -> None: ...
reveal_type(C(1, 1)) # revealed: C[Literal[1]]
reveal_type(C(1, "string")) # revealed: C[Literal[1]]
reveal_type(C(1, True)) # revealed: C[Literal[1]]
# error: [invalid-assignment] "Object of type `C[Literal["five"]]` is not assignable to `C[int]`"
wrong_innards: C[int] = C("five", 1)
```
## Generic subclass
When a generic subclass fills its superclass's type parameter with one of its own, the actual types
propagate through:
```py
from typing import Generic, TypeVar
T = TypeVar("T")
class Base(Generic[T]):
x: T | None = None
class ExplicitlyGenericSub(Base[T], Generic[T]): ...
class ImplicitlyGenericSub(Base[T]): ...
reveal_type(Base[int].x) # revealed: int | None
reveal_type(ExplicitlyGenericSub[int].x) # revealed: int | None
reveal_type(ImplicitlyGenericSub[int].x) # revealed: int | None
```
## Generic methods
Generic classes can contain methods that are themselves generic. The generic methods can refer to
the typevars of the enclosing generic class, and introduce new (distinct) typevars that are only in
scope for the method.
```py
from typing import Generic, TypeVar
T = TypeVar("T")
U = TypeVar("U")
class C(Generic[T]):
def method(self, u: U) -> U:
return u
c: C[int] = C[int]()
reveal_type(c.method("string")) # revealed: Literal["string"]
```
## Cyclic class definitions
### F-bounded quantification
A class can use itself as the type parameter of one of its superclasses. (This is also known as the
[curiously recurring template pattern][crtp] or [F-bounded quantification][f-bound].)
#### In a stub file
Here, `Sub` is not a generic class, since it fills its superclass's type parameter (with itself).
```pyi
from typing import Generic, TypeVar
T = TypeVar("T")
class Base(Generic[T]): ...
class Sub(Base[Sub]): ...
reveal_type(Sub) # revealed: Literal[Sub]
```
#### With string forward references
A similar case can work in a non-stub file, if forward references are stringified:
```py
from typing import Generic, TypeVar
T = TypeVar("T")
class Base(Generic[T]): ...
class Sub(Base["Sub"]): ...
reveal_type(Sub) # revealed: Literal[Sub]
```
#### Without string forward references
In a non-stub file, without stringified forward references, this raises a `NameError`:
```py
from typing import Generic, TypeVar
T = TypeVar("T")
class Base(Generic[T]): ...
# error: [unresolved-reference]
class Sub(Base[Sub]): ...
```
### Cyclic inheritance as a generic parameter
```pyi
from typing import Generic, TypeVar
T = TypeVar("T")
class Derived(list[Derived[T]], Generic[T]): ...
```
### Direct cyclic inheritance
Inheritance that would result in a cyclic MRO is detected as an error.
```py
from typing import Generic, TypeVar
T = TypeVar("T")
# error: [unresolved-reference]
class C(C, Generic[T]): ...
# error: [unresolved-reference]
class D(D[int], Generic[T]): ...
```
[crtp]: https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
[f-bound]: https://en.wikipedia.org/wiki/Bounded_quantification#F-bounded_quantification

View file

@ -0,0 +1,272 @@
# Generic functions: Legacy syntax
## Typevar must be used at least twice
If you're only using a typevar for a single parameter, you don't need the typevar — just use
`object` (or the typevar's upper bound):
```py
from typing import TypeVar
T = TypeVar("T")
# TODO: error, should be (x: object)
def typevar_not_needed(x: T) -> None:
pass
BoundedT = TypeVar("BoundedT", bound=int)
# TODO: error, should be (x: int)
def bounded_typevar_not_needed(x: BoundedT) -> None:
pass
```
Typevars are only needed if you use them more than once. For instance, to specify that two
parameters must both have the same type:
```py
def two_params(x: T, y: T) -> T:
return x
```
or to specify that a return value is the same as a parameter:
```py
def return_value(x: T) -> T:
return x
```
Each typevar must also appear _somewhere_ in the parameter list:
```py
def absurd() -> T:
# There's no way to construct a T!
raise ValueError("absurd")
```
## Inferring generic function parameter types
If the type of a generic function parameter is a typevar, then we can infer what type that typevar
is bound to at each call site.
```py
from typing import TypeVar
T = TypeVar("T")
def f(x: T) -> T:
return x
reveal_type(f(1)) # revealed: Literal[1]
reveal_type(f(1.0)) # revealed: float
reveal_type(f(True)) # revealed: Literal[True]
reveal_type(f("string")) # revealed: Literal["string"]
```
## Inferring “deep” generic parameter types
The matching up of call arguments and discovery of constraints on typevars can be a recursive
process for arbitrarily-nested generic types in parameters.
```py
from typing import TypeVar
T = TypeVar("T")
def f(x: list[T]) -> T:
return x[0]
# TODO: revealed: float
reveal_type(f([1.0, 2.0])) # revealed: Unknown
```
## Inferring a bound typevar
<!-- snapshot-diagnostics -->
```py
from typing import TypeVar
from typing_extensions import reveal_type
T = TypeVar("T", bound=int)
def f(x: T) -> T:
return x
reveal_type(f(1)) # revealed: Literal[1]
reveal_type(f(True)) # revealed: Literal[True]
# error: [invalid-argument-type]
reveal_type(f("string")) # revealed: Unknown
```
## Inferring a constrained typevar
<!-- snapshot-diagnostics -->
```py
from typing import TypeVar
from typing_extensions import reveal_type
T = TypeVar("T", int, None)
def f(x: T) -> T:
return x
reveal_type(f(1)) # revealed: int
reveal_type(f(True)) # revealed: int
reveal_type(f(None)) # revealed: None
# error: [invalid-argument-type]
reveal_type(f("string")) # revealed: Unknown
```
## Typevar constraints
If a type parameter has an upper bound, that upper bound constrains which types can be used for that
typevar. This effectively adds the upper bound as an intersection to every appearance of the typevar
in the function.
```py
from typing import TypeVar
T = TypeVar("T", bound=int)
def good_param(x: T) -> None:
reveal_type(x) # revealed: T
```
If the function is annotated as returning the typevar, this means that the upper bound is _not_
assignable to that typevar, since return types are contravariant. In `bad`, we can infer that
`x + 1` has type `int`. But `T` might be instantiated with a narrower type than `int`, and so the
return value is not guaranteed to be compatible for all `T: int`.
```py
def good_return(x: T) -> T:
return x
def bad_return(x: T) -> T:
# error: [invalid-return-type] "Return type does not match returned value: Expected `T`, found `int`"
return x + 1
```
## All occurrences of the same typevar have the same type
If a typevar appears multiple times in a function signature, all occurrences have the same type.
```py
from typing import TypeVar
T = TypeVar("T")
S = TypeVar("S")
def different_types(cond: bool, t: T, s: S) -> T:
if cond:
return t
else:
# error: [invalid-return-type] "Return type does not match returned value: Expected `T`, found `S`"
return s
def same_types(cond: bool, t1: T, t2: T) -> T:
if cond:
return t1
else:
return t2
```
## All occurrences of the same constrained typevar have the same type
The above is true even when the typevars are constrained. Here, both `int` and `str` have `__add__`
methods that are compatible with the return type, so the `return` expression is always well-typed:
```py
from typing import TypeVar
T = TypeVar("T", int, str)
def same_constrained_types(t1: T, t2: T) -> T:
# TODO: no error
# error: [unsupported-operator] "Operator `+` is unsupported between objects of type `T` and `T`"
return t1 + t2
```
This is _not_ the same as a union type, because of this additional constraint that the two
occurrences have the same type. In `unions_are_different`, `t1` and `t2` might have different types,
and an `int` and a `str` cannot be added together:
```py
def unions_are_different(t1: int | str, t2: int | str) -> int | str:
# error: [unsupported-operator] "Operator `+` is unsupported between objects of type `int | str` and `int | str`"
return t1 + t2
```
## Typevar inference is a unification problem
When inferring typevar assignments in a generic function call, we cannot simply solve constraints
eagerly for each parameter in turn. We must solve a unification problem involving all of the
parameters simultaneously.
```py
from typing import TypeVar
T = TypeVar("T")
def two_params(x: T, y: T) -> T:
return x
reveal_type(two_params("a", "b")) # revealed: Literal["a", "b"]
reveal_type(two_params("a", 1)) # revealed: Literal["a", 1]
```
When one of the parameters is a union, we attempt to find the smallest specialization that satisfies
all of the constraints.
```py
def union_param(x: T | None) -> T:
if x is None:
raise ValueError
return x
reveal_type(union_param("a")) # revealed: Literal["a"]
reveal_type(union_param(1)) # revealed: Literal[1]
reveal_type(union_param(None)) # revealed: Unknown
```
```py
def union_and_nonunion_params(x: T | int, y: T) -> T:
return y
reveal_type(union_and_nonunion_params(1, "a")) # revealed: Literal["a"]
reveal_type(union_and_nonunion_params("a", "a")) # revealed: Literal["a"]
reveal_type(union_and_nonunion_params(1, 1)) # revealed: Literal[1]
reveal_type(union_and_nonunion_params(3, 1)) # revealed: Literal[1]
reveal_type(union_and_nonunion_params("a", 1)) # revealed: Literal["a", 1]
```
```py
S = TypeVar("S")
def tuple_param(x: T | S, y: tuple[T, S]) -> tuple[T, S]:
return y
reveal_type(tuple_param("a", ("a", 1))) # revealed: tuple[Literal["a"], Literal[1]]
reveal_type(tuple_param(1, ("a", 1))) # revealed: tuple[Literal["a"], Literal[1]]
```
## Inferring nested generic function calls
We can infer type assignments in nested calls to multiple generic functions. If they use the same
type variable, we do not confuse the two; `T@f` and `T@g` have separate types in each example below.
```py
from typing import TypeVar
T = TypeVar("T")
def f(x: T) -> tuple[T, int]:
return (x, 1)
def g(x: T) -> T | None:
return x
reveal_type(f(g("a"))) # revealed: tuple[Literal["a"] | None, int]
reveal_type(g(f("a"))) # revealed: tuple[Literal["a"], int] | None
```

View file

@ -0,0 +1,126 @@
# Legacy type variables
The tests in this file focus on how type variables are defined using the legacy notation. Most
_uses_ of type variables are tested in other files in this directory; we do not duplicate every test
for both type variable syntaxes.
Unless otherwise specified, all quotations come from the [Generics] section of the typing spec.
## Type variables
### Defining legacy type variables
> Generics can be parameterized by using a factory available in `typing` called `TypeVar`.
This was the only way to create type variables prior to PEP 695/Python 3.12. It is still available
in newer Python releases.
```py
from typing import TypeVar
T = TypeVar("T")
reveal_type(type(T)) # revealed: Literal[TypeVar]
reveal_type(T) # revealed: typing.TypeVar
reveal_type(T.__name__) # revealed: Literal["T"]
```
### Directly assigned to a variable
> A `TypeVar()` expression must always directly be assigned to a variable (it should not be used as
> part of a larger expression).
```py
from typing import TypeVar
T = TypeVar("T")
# TODO: no error
# error: [invalid-legacy-type-variable]
U: TypeVar = TypeVar("U")
# error: [invalid-legacy-type-variable] "A legacy `typing.TypeVar` must be immediately assigned to a variable"
TestList = list[TypeVar("W")]
```
### `TypeVar` parameter must match variable name
> The argument to `TypeVar()` must be a string equal to the variable name to which it is assigned.
```py
from typing import TypeVar
# error: [invalid-legacy-type-variable] "The name of a legacy `typing.TypeVar` (`Q`) must match the name of the variable it is assigned to (`T`)"
T = TypeVar("Q")
```
### No redefinition
> Type variables must not be redefined.
```py
from typing import TypeVar
T = TypeVar("T")
# TODO: error
T = TypeVar("T")
```
### Type variables with a default
Note that the `__default__` property is only available in Python ≥3.13.
```toml
[environment]
python-version = "3.13"
```
```py
from typing import TypeVar
T = TypeVar("T", default=int)
reveal_type(T.__default__) # revealed: int
reveal_type(T.__bound__) # revealed: None
reveal_type(T.__constraints__) # revealed: tuple[()]
S = TypeVar("S")
reveal_type(S.__default__) # revealed: NoDefault
```
### Type variables with an upper bound
```py
from typing import TypeVar
T = TypeVar("T", bound=int)
reveal_type(T.__bound__) # revealed: int
reveal_type(T.__constraints__) # revealed: tuple[()]
S = TypeVar("S")
reveal_type(S.__bound__) # revealed: None
```
### Type variables with constraints
```py
from typing import TypeVar
T = TypeVar("T", int, str)
reveal_type(T.__constraints__) # revealed: tuple[int, str]
S = TypeVar("S")
reveal_type(S.__constraints__) # revealed: tuple[()]
```
### Cannot have only one constraint
> `TypeVar` supports constraining parametric types to a fixed set of possible types...There should
> be at least two constraints, if any; specifying a single constraint is disallowed.
```py
from typing import TypeVar
# TODO: error: [invalid-type-variable-constraints]
T = TypeVar("T", int)
```
[generics]: https://typing.python.org/en/latest/spec/generics.html

View file

@ -0,0 +1,367 @@
# Generic classes: PEP 695 syntax
```toml
[environment]
python-version = "3.13"
```
## Defining a generic class
At its simplest, to define a generic class using PEP 695 syntax, you add a list of typevars after
the class name.
```py
from ty_extensions import generic_context
class SingleTypevar[T]: ...
class MultipleTypevars[T, S]: ...
reveal_type(generic_context(SingleTypevar)) # revealed: tuple[T]
reveal_type(generic_context(MultipleTypevars)) # revealed: tuple[T, S]
```
You cannot use the same typevar more than once.
```py
# error: [invalid-syntax] "duplicate type parameter"
class RepeatedTypevar[T, T]: ...
```
You can only use typevars (TODO: or param specs or typevar tuples) in the class's generic context.
```py
# TODO: error
class GenericOfType[int]: ...
```
You can also define a generic class by inheriting from some _other_ generic class, and specializing
it with typevars. With PEP 695 syntax, you must explicitly list all of the typevars that you use in
your base classes.
```py
class InheritedGeneric[U, V](MultipleTypevars[U, V]): ...
class InheritedGenericPartiallySpecialized[U](MultipleTypevars[U, int]): ...
class InheritedGenericFullySpecialized(MultipleTypevars[str, int]): ...
reveal_type(generic_context(InheritedGeneric)) # revealed: tuple[U, V]
reveal_type(generic_context(InheritedGenericPartiallySpecialized)) # revealed: tuple[U]
reveal_type(generic_context(InheritedGenericFullySpecialized)) # revealed: None
```
If you don't specialize a generic base class, we use the default specialization, which maps each
typevar to its default value or `Any`. Since that base class is fully specialized, it does not make
the inheriting class generic.
```py
class InheritedGenericDefaultSpecialization(MultipleTypevars): ...
reveal_type(generic_context(InheritedGenericDefaultSpecialization)) # revealed: None
```
You cannot use PEP-695 syntax and the legacy syntax in the same class definition.
```py
from typing import Generic, TypeVar
T = TypeVar("T")
# error: [invalid-generic-class] "Cannot both inherit from `Generic` and use PEP 695 type variables"
class BothGenericSyntaxes[U](Generic[T]): ...
```
## Specializing generic classes explicitly
The type parameter can be specified explicitly:
```py
class C[T]:
x: T
reveal_type(C[int]()) # revealed: C[int]
```
The specialization must match the generic types:
```py
# error: [too-many-positional-arguments] "Too many positional arguments to class `C`: expected 1, got 2"
reveal_type(C[int, int]()) # revealed: Unknown
```
If the type variable has an upper bound, the specialized type must satisfy that bound:
```py
class Bounded[T: int]: ...
class BoundedByUnion[T: int | str]: ...
class IntSubclass(int): ...
reveal_type(Bounded[int]()) # revealed: Bounded[int]
reveal_type(Bounded[IntSubclass]()) # revealed: Bounded[IntSubclass]
# TODO: update this diagnostic to talk about type parameters and specializations
# error: [invalid-argument-type] "Argument to this function is incorrect: Expected `int`, found `str`"
reveal_type(Bounded[str]()) # revealed: Unknown
# TODO: update this diagnostic to talk about type parameters and specializations
# error: [invalid-argument-type] "Argument to this function is incorrect: Expected `int`, found `int | str`"
reveal_type(Bounded[int | str]()) # revealed: Unknown
reveal_type(BoundedByUnion[int]()) # revealed: BoundedByUnion[int]
reveal_type(BoundedByUnion[IntSubclass]()) # revealed: BoundedByUnion[IntSubclass]
reveal_type(BoundedByUnion[str]()) # revealed: BoundedByUnion[str]
reveal_type(BoundedByUnion[int | str]()) # revealed: BoundedByUnion[int | str]
```
If the type variable is constrained, the specialized type must satisfy those constraints:
```py
class Constrained[T: (int, str)]: ...
reveal_type(Constrained[int]()) # revealed: Constrained[int]
# TODO: error: [invalid-argument-type]
# TODO: revealed: Constrained[Unknown]
reveal_type(Constrained[IntSubclass]()) # revealed: Constrained[IntSubclass]
reveal_type(Constrained[str]()) # revealed: Constrained[str]
# TODO: error: [invalid-argument-type]
# TODO: revealed: Unknown
reveal_type(Constrained[int | str]()) # revealed: Constrained[int | str]
# TODO: update this diagnostic to talk about type parameters and specializations
# error: [invalid-argument-type] "Argument to this function is incorrect: Expected `int | str`, found `object`"
reveal_type(Constrained[object]()) # revealed: Unknown
```
## Inferring generic class parameters
We can infer the type parameter from a type context:
```py
class C[T]:
x: T
c: C[int] = C()
# TODO: revealed: C[int]
reveal_type(c) # revealed: C[Unknown]
```
The typevars of a fully specialized generic class should no longer be visible:
```py
# TODO: revealed: int
reveal_type(c.x) # revealed: Unknown
```
If the type parameter is not specified explicitly, and there are no constraints that let us infer a
specific type, we infer the typevar's default type:
```py
class D[T = int]: ...
reveal_type(D()) # revealed: D[int]
```
If a typevar does not provide a default, we use `Unknown`:
```py
reveal_type(C()) # revealed: C[Unknown]
```
## Inferring generic class parameters from constructors
If the type of a constructor parameter is a class typevar, we can use that to infer the type
parameter. The types inferred from a type context and from a constructor parameter must be
consistent with each other.
### `__new__` only
```py
class C[T]:
def __new__(cls, x: T) -> "C[T]":
return object.__new__(cls)
reveal_type(C(1)) # revealed: C[Literal[1]]
# error: [invalid-assignment] "Object of type `C[Literal["five"]]` is not assignable to `C[int]`"
wrong_innards: C[int] = C("five")
```
### `__init__` only
```py
class C[T]:
def __init__(self, x: T) -> None: ...
reveal_type(C(1)) # revealed: C[Literal[1]]
# error: [invalid-assignment] "Object of type `C[Literal["five"]]` is not assignable to `C[int]`"
wrong_innards: C[int] = C("five")
```
### Identical `__new__` and `__init__` signatures
```py
class C[T]:
def __new__(cls, x: T) -> "C[T]":
return object.__new__(cls)
def __init__(self, x: T) -> None: ...
reveal_type(C(1)) # revealed: C[Literal[1]]
# error: [invalid-assignment] "Object of type `C[Literal["five"]]` is not assignable to `C[int]`"
wrong_innards: C[int] = C("five")
```
### Compatible `__new__` and `__init__` signatures
```py
class C[T]:
def __new__(cls, *args, **kwargs) -> "C[T]":
return object.__new__(cls)
def __init__(self, x: T) -> None: ...
reveal_type(C(1)) # revealed: C[Literal[1]]
# error: [invalid-assignment] "Object of type `C[Literal["five"]]` is not assignable to `C[int]`"
wrong_innards: C[int] = C("five")
class D[T]:
def __new__(cls, x: T) -> "D[T]":
return object.__new__(cls)
def __init__(self, *args, **kwargs) -> None: ...
reveal_type(D(1)) # revealed: D[Literal[1]]
# error: [invalid-assignment] "Object of type `D[Literal["five"]]` is not assignable to `D[int]`"
wrong_innards: D[int] = D("five")
```
### Both present, `__new__` inherited from a generic base class
If either method comes from a generic base class, we don't currently use its inferred specialization
to specialize the class.
```py
class C[T, U]:
def __new__(cls, *args, **kwargs) -> "C[T, U]":
return object.__new__(cls)
class D[V](C[V, int]):
def __init__(self, x: V) -> None: ...
reveal_type(D(1)) # revealed: D[Literal[1]]
```
### `__init__` is itself generic
```py
class C[T]:
def __init__[S](self, x: T, y: S) -> None: ...
reveal_type(C(1, 1)) # revealed: C[Literal[1]]
reveal_type(C(1, "string")) # revealed: C[Literal[1]]
reveal_type(C(1, True)) # revealed: C[Literal[1]]
# error: [invalid-assignment] "Object of type `C[Literal["five"]]` is not assignable to `C[int]`"
wrong_innards: C[int] = C("five", 1)
```
## Generic subclass
When a generic subclass fills its superclass's type parameter with one of its own, the actual types
propagate through:
```py
class Base[T]:
x: T | None = None
class Sub[U](Base[U]): ...
reveal_type(Base[int].x) # revealed: int | None
reveal_type(Sub[int].x) # revealed: int | None
```
## Generic methods
Generic classes can contain methods that are themselves generic. The generic methods can refer to
the typevars of the enclosing generic class, and introduce new (distinct) typevars that are only in
scope for the method.
```py
class C[T]:
def method[U](self, u: U) -> U:
return u
# error: [unresolved-reference]
def cannot_use_outside_of_method(self, u: U): ...
# TODO: error
def cannot_shadow_class_typevar[T](self, t: T): ...
c: C[int] = C[int]()
reveal_type(c.method("string")) # revealed: Literal["string"]
```
## Cyclic class definitions
### F-bounded quantification
A class can use itself as the type parameter of one of its superclasses. (This is also known as the
[curiously recurring template pattern][crtp] or [F-bounded quantification][f-bound].)
#### In a stub file
Here, `Sub` is not a generic class, since it fills its superclass's type parameter (with itself).
```pyi
class Base[T]: ...
class Sub(Base[Sub]): ...
reveal_type(Sub) # revealed: Literal[Sub]
```
#### With string forward references
A similar case can work in a non-stub file, if forward references are stringified:
```py
class Base[T]: ...
class Sub(Base["Sub"]): ...
reveal_type(Sub) # revealed: Literal[Sub]
```
#### Without string forward references
In a non-stub file, without stringified forward references, this raises a `NameError`:
```py
class Base[T]: ...
# error: [unresolved-reference]
class Sub(Base[Sub]): ...
```
### Cyclic inheritance as a generic parameter
```pyi
class Derived[T](list[Derived[T]]): ...
```
### Direct cyclic inheritance
Inheritance that would result in a cyclic MRO is detected as an error.
```py
# error: [cyclic-class-definition]
class C[T](C): ...
# error: [cyclic-class-definition]
class D[T](D[int]): ...
```
[crtp]: https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
[f-bound]: https://en.wikipedia.org/wiki/Bounded_quantification#F-bounded_quantification

View file

@ -0,0 +1,289 @@
# Generic functions: PEP 695 syntax
```toml
[environment]
python-version = "3.12"
```
## Typevar must be used at least twice
If you're only using a typevar for a single parameter, you don't need the typevar — just use
`object` (or the typevar's upper bound):
```py
# TODO: error, should be (x: object)
def typevar_not_needed[T](x: T) -> None:
pass
# TODO: error, should be (x: int)
def bounded_typevar_not_needed[T: int](x: T) -> None:
pass
```
Typevars are only needed if you use them more than once. For instance, to specify that two
parameters must both have the same type:
```py
def two_params[T](x: T, y: T) -> T:
return x
```
or to specify that a return value is the same as a parameter:
```py
def return_value[T](x: T) -> T:
return x
```
Each typevar must also appear _somewhere_ in the parameter list:
```py
def absurd[T]() -> T:
# There's no way to construct a T!
raise ValueError("absurd")
```
## Inferring generic function parameter types
If the type of a generic function parameter is a typevar, then we can infer what type that typevar
is bound to at each call site.
```py
def f[T](x: T) -> T:
return x
reveal_type(f(1)) # revealed: Literal[1]
reveal_type(f(1.0)) # revealed: float
reveal_type(f(True)) # revealed: Literal[True]
reveal_type(f("string")) # revealed: Literal["string"]
```
## Inferring “deep” generic parameter types
The matching up of call arguments and discovery of constraints on typevars can be a recursive
process for arbitrarily-nested generic types in parameters.
```py
def f[T](x: list[T]) -> T:
return x[0]
# TODO: revealed: float
reveal_type(f([1.0, 2.0])) # revealed: Unknown
```
## Inferring a bound typevar
<!-- snapshot-diagnostics -->
```py
from typing_extensions import reveal_type
def f[T: int](x: T) -> T:
return x
reveal_type(f(1)) # revealed: Literal[1]
reveal_type(f(True)) # revealed: Literal[True]
# error: [invalid-argument-type]
reveal_type(f("string")) # revealed: Unknown
```
## Inferring a constrained typevar
<!-- snapshot-diagnostics -->
```py
from typing_extensions import reveal_type
def f[T: (int, None)](x: T) -> T:
return x
reveal_type(f(1)) # revealed: int
reveal_type(f(True)) # revealed: int
reveal_type(f(None)) # revealed: None
# error: [invalid-argument-type]
reveal_type(f("string")) # revealed: Unknown
```
## Typevar constraints
If a type parameter has an upper bound, that upper bound constrains which types can be used for that
typevar. This effectively adds the upper bound as an intersection to every appearance of the typevar
in the function.
```py
def good_param[T: int](x: T) -> None:
reveal_type(x) # revealed: T
```
If the function is annotated as returning the typevar, this means that the upper bound is _not_
assignable to that typevar, since return types are contravariant. In `bad`, we can infer that
`x + 1` has type `int`. But `T` might be instantiated with a narrower type than `int`, and so the
return value is not guaranteed to be compatible for all `T: int`.
```py
def good_return[T: int](x: T) -> T:
return x
def bad_return[T: int](x: T) -> T:
# error: [invalid-return-type] "Return type does not match returned value: Expected `T`, found `int`"
return x + 1
```
## All occurrences of the same typevar have the same type
If a typevar appears multiple times in a function signature, all occurrences have the same type.
```py
def different_types[T, S](cond: bool, t: T, s: S) -> T:
if cond:
return t
else:
# error: [invalid-return-type] "Return type does not match returned value: Expected `T`, found `S`"
return s
def same_types[T](cond: bool, t1: T, t2: T) -> T:
if cond:
return t1
else:
return t2
```
## All occurrences of the same constrained typevar have the same type
The above is true even when the typevars are constrained. Here, both `int` and `str` have `__add__`
methods that are compatible with the return type, so the `return` expression is always well-typed:
```py
def same_constrained_types[T: (int, str)](t1: T, t2: T) -> T:
# TODO: no error
# error: [unsupported-operator] "Operator `+` is unsupported between objects of type `T` and `T`"
return t1 + t2
```
This is _not_ the same as a union type, because of this additional constraint that the two
occurrences have the same type. In `unions_are_different`, `t1` and `t2` might have different types,
and an `int` and a `str` cannot be added together:
```py
def unions_are_different(t1: int | str, t2: int | str) -> int | str:
# error: [unsupported-operator] "Operator `+` is unsupported between objects of type `int | str` and `int | str`"
return t1 + t2
```
## Typevar inference is a unification problem
When inferring typevar assignments in a generic function call, we cannot simply solve constraints
eagerly for each parameter in turn. We must solve a unification problem involving all of the
parameters simultaneously.
```py
def two_params[T](x: T, y: T) -> T:
return x
reveal_type(two_params("a", "b")) # revealed: Literal["a", "b"]
reveal_type(two_params("a", 1)) # revealed: Literal["a", 1]
```
When one of the parameters is a union, we attempt to find the smallest specialization that satisfies
all of the constraints.
```py
def union_param[T](x: T | None) -> T:
if x is None:
raise ValueError
return x
reveal_type(union_param("a")) # revealed: Literal["a"]
reveal_type(union_param(1)) # revealed: Literal[1]
reveal_type(union_param(None)) # revealed: Unknown
```
```py
def union_and_nonunion_params[T](x: T | int, y: T) -> T:
return y
reveal_type(union_and_nonunion_params(1, "a")) # revealed: Literal["a"]
reveal_type(union_and_nonunion_params("a", "a")) # revealed: Literal["a"]
reveal_type(union_and_nonunion_params(1, 1)) # revealed: Literal[1]
reveal_type(union_and_nonunion_params(3, 1)) # revealed: Literal[1]
reveal_type(union_and_nonunion_params("a", 1)) # revealed: Literal["a", 1]
```
```py
def tuple_param[T, S](x: T | S, y: tuple[T, S]) -> tuple[T, S]:
return y
reveal_type(tuple_param("a", ("a", 1))) # revealed: tuple[Literal["a"], Literal[1]]
reveal_type(tuple_param(1, ("a", 1))) # revealed: tuple[Literal["a"], Literal[1]]
```
## Inferring nested generic function calls
We can infer type assignments in nested calls to multiple generic functions. If they use the same
type variable, we do not confuse the two; `T@f` and `T@g` have separate types in each example below.
```py
def f[T](x: T) -> tuple[T, int]:
return (x, 1)
def g[T](x: T) -> T | None:
return x
reveal_type(f(g("a"))) # revealed: tuple[Literal["a"] | None, int]
reveal_type(g(f("a"))) # revealed: tuple[Literal["a"], int] | None
```
## Protocols as TypeVar bounds
Protocol types can be used as TypeVar bounds, just like nominal types.
```py
from typing import Any, Protocol
from ty_extensions import static_assert, is_assignable_to
class SupportsClose(Protocol):
def close(self) -> None: ...
class ClosableFullyStaticProtocol(Protocol):
x: int
def close(self) -> None: ...
class ClosableNonFullyStaticProtocol(Protocol):
x: Any
def close(self) -> None: ...
class ClosableFullyStaticNominal:
x: int
def close(self) -> None: ...
class ClosableNonFullyStaticNominal:
x: int
def close(self) -> None: ...
class NotClosableProtocol(Protocol): ...
class NotClosableNominal: ...
def close_and_return[T: SupportsClose](x: T) -> T:
x.close()
return x
def f(
a: SupportsClose,
b: ClosableFullyStaticProtocol,
c: ClosableNonFullyStaticProtocol,
d: ClosableFullyStaticNominal,
e: ClosableNonFullyStaticNominal,
f: NotClosableProtocol,
g: NotClosableNominal,
):
reveal_type(close_and_return(a)) # revealed: SupportsClose
reveal_type(close_and_return(b)) # revealed: ClosableFullyStaticProtocol
reveal_type(close_and_return(c)) # revealed: ClosableNonFullyStaticProtocol
reveal_type(close_and_return(d)) # revealed: ClosableFullyStaticNominal
reveal_type(close_and_return(e)) # revealed: ClosableNonFullyStaticNominal
# error: [invalid-argument-type] "does not satisfy upper bound"
reveal_type(close_and_return(f)) # revealed: Unknown
# error: [invalid-argument-type] "does not satisfy upper bound"
reveal_type(close_and_return(g)) # revealed: Unknown
```

View file

@ -0,0 +1,630 @@
# PEP 695 Generics
```toml
[environment]
python-version = "3.12"
```
[PEP 695] and Python 3.12 introduced new, more ergonomic syntax for type variables.
## Type variables
### Defining PEP 695 type variables
PEP 695 introduces a new syntax for defining type variables. The resulting type variables are
instances of `typing.TypeVar`, just like legacy type variables.
```py
def f[T]():
reveal_type(type(T)) # revealed: Literal[TypeVar]
reveal_type(T) # revealed: typing.TypeVar
reveal_type(T.__name__) # revealed: Literal["T"]
```
### Type variables with a default
Note that the `__default__` property is only available in Python ≥3.13.
```toml
[environment]
python-version = "3.13"
```
```py
def f[T = int]():
reveal_type(T.__default__) # revealed: int
reveal_type(T.__bound__) # revealed: None
reveal_type(T.__constraints__) # revealed: tuple[()]
def g[S]():
reveal_type(S.__default__) # revealed: NoDefault
```
### Type variables with an upper bound
```py
def f[T: int]():
reveal_type(T.__bound__) # revealed: int
reveal_type(T.__constraints__) # revealed: tuple[()]
def g[S]():
reveal_type(S.__bound__) # revealed: None
```
### Type variables with constraints
```py
def f[T: (int, str)]():
reveal_type(T.__constraints__) # revealed: tuple[int, str]
reveal_type(T.__bound__) # revealed: None
def g[S]():
reveal_type(S.__constraints__) # revealed: tuple[()]
```
### Cannot have only one constraint
> `TypeVar` supports constraining parametric types to a fixed set of possible types...There should
> be at least two constraints, if any; specifying a single constraint is disallowed.
```py
# error: [invalid-type-variable-constraints] "TypeVar must have at least two constrained types"
def f[T: (int,)]():
pass
```
## Invalid uses
Note that many of the invalid uses of legacy typevars do not apply to PEP 695 typevars, since the
PEP 695 syntax is only allowed places where typevars are allowed.
## Displaying typevars
We use a suffix when displaying the typevars of a generic function or class. This helps distinguish
different uses of the same typevar.
```py
def f[T](x: T, y: T) -> None:
# TODO: revealed: T@f
reveal_type(x) # revealed: T
class C[T]:
def m(self, x: T) -> None:
# TODO: revealed: T@c
reveal_type(x) # revealed: T
```
## Fully static typevars
We consider a typevar to be fully static unless it has a non-fully-static bound or constraint. This
is true even though a fully static typevar might be specialized to a gradual form like `Any`. (This
is similar to how you can assign an expression whose type is not fully static to a target whose type
is.)
```py
from ty_extensions import is_fully_static, static_assert
from typing import Any
def unbounded_unconstrained[T](t: T) -> None:
static_assert(is_fully_static(T))
def bounded[T: int](t: T) -> None:
static_assert(is_fully_static(T))
def bounded_by_gradual[T: Any](t: T) -> None:
static_assert(not is_fully_static(T))
def constrained[T: (int, str)](t: T) -> None:
static_assert(is_fully_static(T))
def constrained_by_gradual[T: (int, Any)](t: T) -> None:
static_assert(not is_fully_static(T))
```
## Subtyping and assignability
(Note: for simplicity, all of the prose in this section refers to _subtyping_ involving fully static
typevars. Unless otherwise noted, all of the claims also apply to _assignability_ involving gradual
typevars.)
We can make no assumption about what type an unbounded, unconstrained, fully static typevar will be
specialized to. Properties are true of the typevar only if they are true for every valid
specialization. Thus, the typevar is a subtype of itself and of `object`, but not of any other type
(including other typevars).
```py
from ty_extensions import is_assignable_to, is_subtype_of, static_assert
class Super: ...
class Base(Super): ...
class Sub(Base): ...
class Unrelated: ...
def unbounded_unconstrained[T, U](t: T, u: U) -> None:
static_assert(is_assignable_to(T, T))
static_assert(is_assignable_to(T, object))
static_assert(not is_assignable_to(T, Super))
static_assert(is_assignable_to(U, U))
static_assert(is_assignable_to(U, object))
static_assert(not is_assignable_to(U, Super))
static_assert(not is_assignable_to(T, U))
static_assert(not is_assignable_to(U, T))
static_assert(is_subtype_of(T, T))
static_assert(is_subtype_of(T, object))
static_assert(not is_subtype_of(T, Super))
static_assert(is_subtype_of(U, U))
static_assert(is_subtype_of(U, object))
static_assert(not is_subtype_of(U, Super))
static_assert(not is_subtype_of(T, U))
static_assert(not is_subtype_of(U, T))
```
A bounded typevar is assignable to its bound, and a bounded, fully static typevar is a subtype of
its bound. (A typevar with a non-fully-static bound is itself non-fully-static, and therefore does
not participate in subtyping.) A fully static bound is not assignable to, nor a subtype of, the
typevar, since the typevar might be specialized to a smaller type. (This is true even if the bound
is a final class, since the typevar can still be specialized to `Never`.)
```py
from typing import Any
from typing_extensions import final
def bounded[T: Super](t: T) -> None:
static_assert(is_assignable_to(T, Super))
static_assert(not is_assignable_to(T, Sub))
static_assert(not is_assignable_to(Super, T))
static_assert(not is_assignable_to(Sub, T))
static_assert(is_subtype_of(T, Super))
static_assert(not is_subtype_of(T, Sub))
static_assert(not is_subtype_of(Super, T))
static_assert(not is_subtype_of(Sub, T))
def bounded_by_gradual[T: Any](t: T) -> None:
static_assert(is_assignable_to(T, Any))
static_assert(is_assignable_to(Any, T))
static_assert(is_assignable_to(T, Super))
static_assert(not is_assignable_to(Super, T))
static_assert(is_assignable_to(T, Sub))
static_assert(not is_assignable_to(Sub, T))
static_assert(not is_subtype_of(T, Any))
static_assert(not is_subtype_of(Any, T))
static_assert(not is_subtype_of(T, Super))
static_assert(not is_subtype_of(Super, T))
static_assert(not is_subtype_of(T, Sub))
static_assert(not is_subtype_of(Sub, T))
@final
class FinalClass: ...
def bounded_final[T: FinalClass](t: T) -> None:
static_assert(is_assignable_to(T, FinalClass))
static_assert(not is_assignable_to(FinalClass, T))
static_assert(is_subtype_of(T, FinalClass))
static_assert(not is_subtype_of(FinalClass, T))
```
Two distinct fully static typevars are not subtypes of each other, even if they have the same
bounds, since there is (still) no guarantee that they will be specialized to the same type. This is
true even if both typevars are bounded by the same final class, since you can specialize the
typevars to `Never` in addition to that final class.
```py
def two_bounded[T: Super, U: Super](t: T, u: U) -> None:
static_assert(not is_assignable_to(T, U))
static_assert(not is_assignable_to(U, T))
static_assert(not is_subtype_of(T, U))
static_assert(not is_subtype_of(U, T))
def two_final_bounded[T: FinalClass, U: FinalClass](t: T, u: U) -> None:
static_assert(not is_assignable_to(T, U))
static_assert(not is_assignable_to(U, T))
static_assert(not is_subtype_of(T, U))
static_assert(not is_subtype_of(U, T))
```
A constrained fully static typevar is assignable to the union of its constraints, but not to any of
the constraints individually. None of the constraints are subtypes of the typevar, though the
intersection of all of its constraints is a subtype of the typevar.
```py
from ty_extensions import Intersection
def constrained[T: (Base, Unrelated)](t: T) -> None:
static_assert(not is_assignable_to(T, Super))
static_assert(not is_assignable_to(T, Base))
static_assert(not is_assignable_to(T, Sub))
static_assert(not is_assignable_to(T, Unrelated))
static_assert(is_assignable_to(T, Super | Unrelated))
static_assert(is_assignable_to(T, Base | Unrelated))
static_assert(not is_assignable_to(T, Sub | Unrelated))
static_assert(not is_assignable_to(Super, T))
static_assert(not is_assignable_to(Unrelated, T))
static_assert(not is_assignable_to(Super | Unrelated, T))
static_assert(is_assignable_to(Intersection[Base, Unrelated], T))
static_assert(not is_subtype_of(T, Super))
static_assert(not is_subtype_of(T, Base))
static_assert(not is_subtype_of(T, Sub))
static_assert(not is_subtype_of(T, Unrelated))
static_assert(is_subtype_of(T, Super | Unrelated))
static_assert(is_subtype_of(T, Base | Unrelated))
static_assert(not is_subtype_of(T, Sub | Unrelated))
static_assert(not is_subtype_of(Super, T))
static_assert(not is_subtype_of(Unrelated, T))
static_assert(not is_subtype_of(Super | Unrelated, T))
static_assert(is_subtype_of(Intersection[Base, Unrelated], T))
def constrained_by_gradual[T: (Base, Any)](t: T) -> None:
static_assert(is_assignable_to(T, Super))
static_assert(is_assignable_to(T, Base))
static_assert(not is_assignable_to(T, Sub))
static_assert(not is_assignable_to(T, Unrelated))
static_assert(is_assignable_to(T, Any))
static_assert(is_assignable_to(T, Super | Any))
static_assert(is_assignable_to(T, Super | Unrelated))
static_assert(not is_assignable_to(Super, T))
static_assert(is_assignable_to(Base, T))
static_assert(not is_assignable_to(Unrelated, T))
static_assert(is_assignable_to(Any, T))
static_assert(not is_assignable_to(Super | Any, T))
static_assert(is_assignable_to(Base | Any, T))
static_assert(not is_assignable_to(Super | Unrelated, T))
static_assert(is_assignable_to(Intersection[Base, Unrelated], T))
static_assert(is_assignable_to(Intersection[Base, Any], T))
static_assert(not is_subtype_of(T, Super))
static_assert(not is_subtype_of(T, Base))
static_assert(not is_subtype_of(T, Sub))
static_assert(not is_subtype_of(T, Unrelated))
static_assert(not is_subtype_of(T, Any))
static_assert(not is_subtype_of(T, Super | Any))
static_assert(not is_subtype_of(T, Super | Unrelated))
static_assert(not is_subtype_of(Super, T))
static_assert(not is_subtype_of(Base, T))
static_assert(not is_subtype_of(Unrelated, T))
static_assert(not is_subtype_of(Any, T))
static_assert(not is_subtype_of(Super | Any, T))
static_assert(not is_subtype_of(Base | Any, T))
static_assert(not is_subtype_of(Super | Unrelated, T))
static_assert(not is_subtype_of(Intersection[Base, Unrelated], T))
static_assert(not is_subtype_of(Intersection[Base, Any], T))
```
Two distinct fully static typevars are not subtypes of each other, even if they have the same
constraints, and even if any of the constraints are final. There must always be at least two
distinct constraints, meaning that there is (still) no guarantee that they will be specialized to
the same type.
```py
def two_constrained[T: (int, str), U: (int, str)](t: T, u: U) -> None:
static_assert(not is_assignable_to(T, U))
static_assert(not is_assignable_to(U, T))
static_assert(not is_subtype_of(T, U))
static_assert(not is_subtype_of(U, T))
@final
class AnotherFinalClass: ...
def two_final_constrained[T: (FinalClass, AnotherFinalClass), U: (FinalClass, AnotherFinalClass)](t: T, u: U) -> None:
static_assert(not is_assignable_to(T, U))
static_assert(not is_assignable_to(U, T))
static_assert(not is_subtype_of(T, U))
static_assert(not is_subtype_of(U, T))
```
## Singletons and single-valued types
(Note: for simplicity, all of the prose in this section refers to _singleton_ types, but all of the
claims also apply to _single-valued_ types.)
An unbounded, unconstrained typevar is not a singleton, because it can be specialized to a
non-singleton type.
```py
from ty_extensions import is_singleton, is_single_valued, static_assert
def unbounded_unconstrained[T](t: T) -> None:
static_assert(not is_singleton(T))
static_assert(not is_single_valued(T))
```
A bounded typevar is not a singleton, even if its bound is a singleton, since it can still be
specialized to `Never`.
```py
def bounded[T: None](t: T) -> None:
static_assert(not is_singleton(T))
static_assert(not is_single_valued(T))
```
A constrained typevar is a singleton if all of its constraints are singletons. (Note that you cannot
specialize a constrained typevar to a subtype of a constraint.)
```py
from typing_extensions import Literal
def constrained_non_singletons[T: (int, str)](t: T) -> None:
static_assert(not is_singleton(T))
static_assert(not is_single_valued(T))
def constrained_singletons[T: (Literal[True], Literal[False])](t: T) -> None:
static_assert(is_singleton(T))
def constrained_single_valued[T: (Literal[True], tuple[()])](t: T) -> None:
static_assert(is_single_valued(T))
```
## Unions involving typevars
The union of an unbounded unconstrained typevar with any other type cannot be simplified, since
there is no guarantee what type the typevar will be specialized to.
```py
from typing import Any
class Super: ...
class Base(Super): ...
class Sub(Base): ...
class Unrelated: ...
def unbounded_unconstrained[T](t: T) -> None:
def _(x: T | Super) -> None:
reveal_type(x) # revealed: T | Super
def _(x: T | Base) -> None:
reveal_type(x) # revealed: T | Base
def _(x: T | Sub) -> None:
reveal_type(x) # revealed: T | Sub
def _(x: T | Unrelated) -> None:
reveal_type(x) # revealed: T | Unrelated
def _(x: T | Any) -> None:
reveal_type(x) # revealed: T | Any
```
The union of a bounded typevar with its bound is that bound. (The typevar is guaranteed to be
specialized to a subtype of the bound.) The union of a bounded typevar with a subtype of its bound
cannot be simplified. (The typevar might be specialized to a different subtype of the bound.)
```py
def bounded[T: Base](t: T) -> None:
def _(x: T | Super) -> None:
reveal_type(x) # revealed: Super
def _(x: T | Base) -> None:
reveal_type(x) # revealed: Base
def _(x: T | Sub) -> None:
reveal_type(x) # revealed: T | Sub
def _(x: T | Unrelated) -> None:
reveal_type(x) # revealed: T | Unrelated
def _(x: T | Any) -> None:
reveal_type(x) # revealed: T | Any
```
The union of a constrained typevar with a type depends on how that type relates to the constraints.
If all of the constraints are a subtype of that type, the union simplifies to that type. Inversely,
if the type is a subtype of every constraint, the union simplifies to the typevar. Otherwise, the
union cannot be simplified.
```py
def constrained[T: (Base, Sub)](t: T) -> None:
def _(x: T | Super) -> None:
reveal_type(x) # revealed: Super
def _(x: T | Base) -> None:
reveal_type(x) # revealed: Base
def _(x: T | Sub) -> None:
reveal_type(x) # revealed: T
def _(x: T | Unrelated) -> None:
reveal_type(x) # revealed: T | Unrelated
def _(x: T | Any) -> None:
reveal_type(x) # revealed: T | Any
```
## Intersections involving typevars
The intersection of an unbounded unconstrained typevar with any other type cannot be simplified,
since there is no guarantee what type the typevar will be specialized to.
```py
from ty_extensions import Intersection
from typing import Any
class Super: ...
class Base(Super): ...
class Sub(Base): ...
class Unrelated: ...
def unbounded_unconstrained[T](t: T) -> None:
def _(x: Intersection[T, Super]) -> None:
reveal_type(x) # revealed: T & Super
def _(x: Intersection[T, Base]) -> None:
reveal_type(x) # revealed: T & Base
def _(x: Intersection[T, Sub]) -> None:
reveal_type(x) # revealed: T & Sub
def _(x: Intersection[T, Unrelated]) -> None:
reveal_type(x) # revealed: T & Unrelated
def _(x: Intersection[T, Any]) -> None:
reveal_type(x) # revealed: T & Any
```
The intersection of a bounded typevar with its bound or a supertype of its bound is the typevar
itself. (The typevar might be specialized to a subtype of the bound.) The intersection of a bounded
typevar with a subtype of its bound cannot be simplified. (The typevar might be specialized to a
different subtype of the bound.) The intersection of a bounded typevar with a type that is disjoint
from its bound is `Never`.
```py
def bounded[T: Base](t: T) -> None:
def _(x: Intersection[T, Super]) -> None:
reveal_type(x) # revealed: T
def _(x: Intersection[T, Base]) -> None:
reveal_type(x) # revealed: T
def _(x: Intersection[T, Sub]) -> None:
reveal_type(x) # revealed: T & Sub
def _(x: Intersection[T, None]) -> None:
reveal_type(x) # revealed: Never
def _(x: Intersection[T, Any]) -> None:
reveal_type(x) # revealed: T & Any
```
Constrained typevars can be modeled using a hypothetical `OneOf` connector, where the typevar must
be specialized to _one_ of its constraints. The typevar is not the _union_ of those constraints,
since that would allow the typevar to take on values from _multiple_ constraints simultaneously. The
`OneOf` connector would not be a “type” according to a strict reading of the typing spec, since it
would not represent a single set of runtime objects; it would instead represent a _set of_ sets of
runtime objects. This is one reason we have not actually added this connector to our data model yet.
Nevertheless, describing constrained typevars this way helps explain how we simplify intersections
involving them.
This means that when intersecting a constrained typevar with a type `T`, constraints that are
supertypes of `T` can be simplified to `T`, since intersection distributes over `OneOf`. Moreover,
constraints that are disjoint from `T` are no longer valid specializations of the typevar, since
`Never` is an identity for `OneOf`. After these simplifications, if only one constraint remains, we
can simplify the intersection as a whole to that constraint.
```py
def constrained[T: (Base, Sub, Unrelated)](t: T) -> None:
def _(x: Intersection[T, Base]) -> None:
# With OneOf this would be OneOf[Base, Sub]
reveal_type(x) # revealed: T & Base
def _(x: Intersection[T, Unrelated]) -> None:
reveal_type(x) # revealed: Unrelated
def _(x: Intersection[T, Sub]) -> None:
reveal_type(x) # revealed: Sub
def _(x: Intersection[T, None]) -> None:
reveal_type(x) # revealed: Never
def _(x: Intersection[T, Any]) -> None:
reveal_type(x) # revealed: T & Any
```
We can simplify the intersection similarly when removing a type from a constrained typevar, since
this is modeled internally as an intersection with a negation.
```py
from ty_extensions import Not
def remove_constraint[T: (int, str, bool)](t: T) -> None:
def _(x: Intersection[T, Not[int]]) -> None:
reveal_type(x) # revealed: str & ~int
def _(x: Intersection[T, Not[str]]) -> None:
# With OneOf this would be OneOf[int, bool]
reveal_type(x) # revealed: T & ~str
def _(x: Intersection[T, Not[bool]]) -> None:
reveal_type(x) # revealed: T & ~bool
def _(x: Intersection[T, Not[int], Not[str]]) -> None:
reveal_type(x) # revealed: Never
def _(x: Intersection[T, Not[None]]) -> None:
reveal_type(x) # revealed: T
def _(x: Intersection[T, Not[Any]]) -> None:
reveal_type(x) # revealed: T & Any
```
The intersection of a typevar with any other type is assignable to (and if fully static, a subtype
of) itself.
```py
from ty_extensions import is_assignable_to, is_subtype_of, static_assert, Not
def intersection_is_assignable[T](t: T) -> None:
static_assert(is_assignable_to(Intersection[T, None], T))
static_assert(is_assignable_to(Intersection[T, Not[None]], T))
static_assert(is_subtype_of(Intersection[T, None], T))
static_assert(is_subtype_of(Intersection[T, Not[None]], T))
```
## Narrowing
We can use narrowing expressions to eliminate some of the possibilities of a constrained typevar:
```py
class P: ...
class Q: ...
class R: ...
def f[T: (P, Q)](t: T) -> None:
if isinstance(t, P):
reveal_type(t) # revealed: P
p: P = t
else:
reveal_type(t) # revealed: Q & ~P
q: Q = t
if isinstance(t, Q):
reveal_type(t) # revealed: Q
q: Q = t
else:
reveal_type(t) # revealed: P & ~Q
p: P = t
def g[T: (P, Q, R)](t: T) -> None:
if isinstance(t, P):
reveal_type(t) # revealed: P
p: P = t
elif isinstance(t, Q):
reveal_type(t) # revealed: Q & ~P
q: Q = t
else:
reveal_type(t) # revealed: R & ~P & ~Q
r: R = t
if isinstance(t, P):
reveal_type(t) # revealed: P
p: P = t
elif isinstance(t, Q):
reveal_type(t) # revealed: Q & ~P
q: Q = t
elif isinstance(t, R):
reveal_type(t) # revealed: R & ~P & ~Q
r: R = t
else:
reveal_type(t) # revealed: Never
```
If the constraints are disjoint, simplification does eliminate the redundant negative:
```py
def h[T: (P, None)](t: T) -> None:
if t is None:
reveal_type(t) # revealed: None
p: None = t
else:
reveal_type(t) # revealed: P
p: P = t
```
[pep 695]: https://peps.python.org/pep-0695/

View file

@ -0,0 +1,277 @@
# Variance: PEP 695 syntax
```toml
[environment]
python-version = "3.12"
```
Type variables have a property called _variance_ that affects the subtyping and assignability
relations. Much more detail can be found in the [spec]. To summarize, each typevar is either
**covariant**, **contravariant**, **invariant**, or **bivariant**. (Note that bivariance is not
currently mentioned in the typing spec, but is a fourth case that we must consider.)
For all of the examples below, we will consider a typevar `T`, a generic class using that typevar
`C[T]`, and two types `A` and `B`.
## Covariance
With a covariant typevar, subtyping is in "alignment": if `A <: B`, then `C[A] <: C[B]`.
Types that "produce" data on demand are covariant in their typevar. If you expect a sequence of
`int`s, someone can safely provide a sequence of `bool`s, since each `bool` element that you would
get from the sequence is a valid `int`.
```py
from ty_extensions import is_assignable_to, is_equivalent_to, is_gradual_equivalent_to, is_subtype_of, static_assert, Unknown
from typing import Any
class A: ...
class B(A): ...
class C[T]:
def receive(self) -> T:
raise ValueError
# TODO: no error
# error: [static-assert-error]
static_assert(is_assignable_to(C[B], C[A]))
static_assert(not is_assignable_to(C[A], C[B]))
static_assert(is_assignable_to(C[A], C[Any]))
static_assert(is_assignable_to(C[B], C[Any]))
static_assert(is_assignable_to(C[Any], C[A]))
static_assert(is_assignable_to(C[Any], C[B]))
# TODO: no error
# error: [static-assert-error]
static_assert(is_subtype_of(C[B], C[A]))
static_assert(not is_subtype_of(C[A], C[B]))
static_assert(not is_subtype_of(C[A], C[Any]))
static_assert(not is_subtype_of(C[B], C[Any]))
static_assert(not is_subtype_of(C[Any], C[A]))
static_assert(not is_subtype_of(C[Any], C[B]))
static_assert(is_equivalent_to(C[A], C[A]))
static_assert(is_equivalent_to(C[B], C[B]))
static_assert(not is_equivalent_to(C[B], C[A]))
static_assert(not is_equivalent_to(C[A], C[B]))
static_assert(not is_equivalent_to(C[A], C[Any]))
static_assert(not is_equivalent_to(C[B], C[Any]))
static_assert(not is_equivalent_to(C[Any], C[A]))
static_assert(not is_equivalent_to(C[Any], C[B]))
static_assert(is_gradual_equivalent_to(C[A], C[A]))
static_assert(is_gradual_equivalent_to(C[B], C[B]))
static_assert(is_gradual_equivalent_to(C[Any], C[Any]))
static_assert(is_gradual_equivalent_to(C[Any], C[Unknown]))
static_assert(not is_gradual_equivalent_to(C[B], C[A]))
static_assert(not is_gradual_equivalent_to(C[A], C[B]))
static_assert(not is_gradual_equivalent_to(C[A], C[Any]))
static_assert(not is_gradual_equivalent_to(C[B], C[Any]))
static_assert(not is_gradual_equivalent_to(C[Any], C[A]))
static_assert(not is_gradual_equivalent_to(C[Any], C[B]))
```
## Contravariance
With a contravariant typevar, subtyping is in "opposition": if `A <: B`, then `C[B] <: C[A]`.
Types that "consume" data are contravariant in their typevar. If you expect a consumer that receives
`bool`s, someone can safely provide a consumer that expects to receive `int`s, since each `bool`
that you pass into the consumer is a valid `int`.
```py
from ty_extensions import is_assignable_to, is_equivalent_to, is_gradual_equivalent_to, is_subtype_of, static_assert, Unknown
from typing import Any
class A: ...
class B(A): ...
class C[T]:
def send(self, value: T): ...
static_assert(not is_assignable_to(C[B], C[A]))
# TODO: no error
# error: [static-assert-error]
static_assert(is_assignable_to(C[A], C[B]))
static_assert(is_assignable_to(C[A], C[Any]))
static_assert(is_assignable_to(C[B], C[Any]))
static_assert(is_assignable_to(C[Any], C[A]))
static_assert(is_assignable_to(C[Any], C[B]))
static_assert(not is_subtype_of(C[B], C[A]))
# TODO: no error
# error: [static-assert-error]
static_assert(is_subtype_of(C[A], C[B]))
static_assert(not is_subtype_of(C[A], C[Any]))
static_assert(not is_subtype_of(C[B], C[Any]))
static_assert(not is_subtype_of(C[Any], C[A]))
static_assert(not is_subtype_of(C[Any], C[B]))
static_assert(is_equivalent_to(C[A], C[A]))
static_assert(is_equivalent_to(C[B], C[B]))
static_assert(not is_equivalent_to(C[B], C[A]))
static_assert(not is_equivalent_to(C[A], C[B]))
static_assert(not is_equivalent_to(C[A], C[Any]))
static_assert(not is_equivalent_to(C[B], C[Any]))
static_assert(not is_equivalent_to(C[Any], C[A]))
static_assert(not is_equivalent_to(C[Any], C[B]))
static_assert(is_gradual_equivalent_to(C[A], C[A]))
static_assert(is_gradual_equivalent_to(C[B], C[B]))
static_assert(is_gradual_equivalent_to(C[Any], C[Any]))
static_assert(is_gradual_equivalent_to(C[Any], C[Unknown]))
static_assert(not is_gradual_equivalent_to(C[B], C[A]))
static_assert(not is_gradual_equivalent_to(C[A], C[B]))
static_assert(not is_gradual_equivalent_to(C[A], C[Any]))
static_assert(not is_gradual_equivalent_to(C[B], C[Any]))
static_assert(not is_gradual_equivalent_to(C[Any], C[A]))
static_assert(not is_gradual_equivalent_to(C[Any], C[B]))
```
## Invariance
With an invariant typevar, _no_ specializations of the generic class are subtypes of each other.
This often occurs for types that are both producers _and_ consumers, like a mutable `list`.
Iterating over the elements in a list would work with a covariant typevar, just like with the
"producer" type above. Appending elements to a list would work with a contravariant typevar, just
like with the "consumer" type above. However, a typevar cannot be both covariant and contravariant
at the same time!
If you expect a mutable list of `int`s, it's not safe for someone to provide you with a mutable list
of `bool`s, since you might try to add an element to the list: if you try to add an `int`, the list
would no longer only contain elements that are subtypes of `bool`.
Conversely, if you expect a mutable list of `bool`s, it's not safe for someone to provide you with a
mutable list of `int`s, since you might try to extract elements from the list: you expect every
element that you extract to be a subtype of `bool`, but the list can contain any `int`.
In the end, if you expect a mutable list, you must always be given a list of exactly that type,
since we can't know in advance which of the allowed methods you'll want to use.
```py
from ty_extensions import is_assignable_to, is_equivalent_to, is_gradual_equivalent_to, is_subtype_of, static_assert, Unknown
from typing import Any
class A: ...
class B(A): ...
class C[T]:
def send(self, value: T): ...
def receive(self) -> T:
raise ValueError
static_assert(not is_assignable_to(C[B], C[A]))
static_assert(not is_assignable_to(C[A], C[B]))
static_assert(is_assignable_to(C[A], C[Any]))
static_assert(is_assignable_to(C[B], C[Any]))
static_assert(is_assignable_to(C[Any], C[A]))
static_assert(is_assignable_to(C[Any], C[B]))
static_assert(not is_subtype_of(C[B], C[A]))
static_assert(not is_subtype_of(C[A], C[B]))
static_assert(not is_subtype_of(C[A], C[Any]))
static_assert(not is_subtype_of(C[B], C[Any]))
static_assert(not is_subtype_of(C[Any], C[A]))
static_assert(not is_subtype_of(C[Any], C[B]))
static_assert(is_equivalent_to(C[A], C[A]))
static_assert(is_equivalent_to(C[B], C[B]))
static_assert(not is_equivalent_to(C[B], C[A]))
static_assert(not is_equivalent_to(C[A], C[B]))
static_assert(not is_equivalent_to(C[A], C[Any]))
static_assert(not is_equivalent_to(C[B], C[Any]))
static_assert(not is_equivalent_to(C[Any], C[A]))
static_assert(not is_equivalent_to(C[Any], C[B]))
static_assert(is_gradual_equivalent_to(C[A], C[A]))
static_assert(is_gradual_equivalent_to(C[B], C[B]))
static_assert(is_gradual_equivalent_to(C[Any], C[Any]))
static_assert(is_gradual_equivalent_to(C[Any], C[Unknown]))
static_assert(not is_gradual_equivalent_to(C[B], C[A]))
static_assert(not is_gradual_equivalent_to(C[A], C[B]))
static_assert(not is_gradual_equivalent_to(C[A], C[Any]))
static_assert(not is_gradual_equivalent_to(C[B], C[Any]))
static_assert(not is_gradual_equivalent_to(C[Any], C[A]))
static_assert(not is_gradual_equivalent_to(C[Any], C[B]))
```
## Bivariance
With a bivariant typevar, _all_ specializations of the generic class are subtypes of (and in fact,
equivalent to) each other.
This is a bit of pathological case, which really only happens when the class doesn't use the typevar
at all. (If it did, it would have to be covariant, contravariant, or invariant, depending on _how_
the typevar was used.)
```py
from ty_extensions import is_assignable_to, is_equivalent_to, is_gradual_equivalent_to, is_subtype_of, static_assert, Unknown
from typing import Any
class A: ...
class B(A): ...
class C[T]:
pass
# TODO: no error
# error: [static-assert-error]
static_assert(is_assignable_to(C[B], C[A]))
# TODO: no error
# error: [static-assert-error]
static_assert(is_assignable_to(C[A], C[B]))
static_assert(is_assignable_to(C[A], C[Any]))
static_assert(is_assignable_to(C[B], C[Any]))
static_assert(is_assignable_to(C[Any], C[A]))
static_assert(is_assignable_to(C[Any], C[B]))
# TODO: no error
# error: [static-assert-error]
static_assert(is_subtype_of(C[B], C[A]))
# TODO: no error
# error: [static-assert-error]
static_assert(is_subtype_of(C[A], C[B]))
static_assert(not is_subtype_of(C[A], C[Any]))
static_assert(not is_subtype_of(C[B], C[Any]))
static_assert(not is_subtype_of(C[Any], C[A]))
static_assert(not is_subtype_of(C[Any], C[B]))
static_assert(is_equivalent_to(C[A], C[A]))
static_assert(is_equivalent_to(C[B], C[B]))
# TODO: no error
# error: [static-assert-error]
static_assert(is_equivalent_to(C[B], C[A]))
# TODO: no error
# error: [static-assert-error]
static_assert(is_equivalent_to(C[A], C[B]))
static_assert(not is_equivalent_to(C[A], C[Any]))
static_assert(not is_equivalent_to(C[B], C[Any]))
static_assert(not is_equivalent_to(C[Any], C[A]))
static_assert(not is_equivalent_to(C[Any], C[B]))
static_assert(is_gradual_equivalent_to(C[A], C[A]))
static_assert(is_gradual_equivalent_to(C[B], C[B]))
static_assert(is_gradual_equivalent_to(C[Any], C[Any]))
static_assert(is_gradual_equivalent_to(C[Any], C[Unknown]))
# TODO: no error
# error: [static-assert-error]
static_assert(is_gradual_equivalent_to(C[B], C[A]))
# TODO: no error
# error: [static-assert-error]
static_assert(is_gradual_equivalent_to(C[A], C[B]))
# TODO: no error
# error: [static-assert-error]
static_assert(is_gradual_equivalent_to(C[A], C[Any]))
# TODO: no error
# error: [static-assert-error]
static_assert(is_gradual_equivalent_to(C[B], C[Any]))
# TODO: no error
# error: [static-assert-error]
static_assert(is_gradual_equivalent_to(C[Any], C[A]))
# TODO: no error
# error: [static-assert-error]
static_assert(is_gradual_equivalent_to(C[Any], C[B]))
```
[spec]: https://typing.python.org/en/latest/spec/generics.html#variance

View file

@ -0,0 +1,291 @@
# Scoping rules for type variables
```toml
[environment]
python-version = "3.12"
```
Most of these tests come from the [Scoping rules for type variables][scoping] section of the typing
spec.
## Typevar used outside of generic function or class
Typevars may only be used in generic function or class definitions.
```py
from typing import TypeVar
T = TypeVar("T")
# TODO: error
x: T
class C:
# TODO: error
x: T
def f() -> None:
# TODO: error
x: T
```
## Legacy typevar used multiple times
> A type variable used in a generic function could be inferred to represent different types in the
> same code block.
This only applies to typevars defined using the legacy syntax, since the PEP 695 syntax creates a
new distinct typevar for each occurrence.
```py
from typing import TypeVar
T = TypeVar("T")
def f1(x: T) -> T:
return x
def f2(x: T) -> T:
return x
f1(1)
f2("a")
```
## Typevar inferred multiple times
> A type variable used in a generic function could be inferred to represent different types in the
> same code block.
This also applies to a single generic function being used multiple times, instantiating the typevar
to a different type each time.
```py
def f[T](x: T) -> T:
return x
reveal_type(f(1)) # revealed: Literal[1]
reveal_type(f("a")) # revealed: Literal["a"]
```
## Methods can mention class typevars
> A type variable used in a method of a generic class that coincides with one of the variables that
> parameterize this class is always bound to that variable.
```py
class C[T]:
def m1(self, x: T) -> T:
return x
def m2(self, x: T) -> T:
return x
c: C[int] = C[int]()
c.m1(1)
c.m2(1)
# error: [invalid-argument-type] "Argument to this function is incorrect: Expected `int`, found `Literal["string"]`"
c.m2("string")
```
## Functions on generic classes are descriptors
This repeats the tests in the [Functions as descriptors](./call/methods.md) test suite, but on a
generic class. This ensures that we are carrying any specializations through the entirety of the
descriptor protocol, which is how `self` parameters are bound to instance methods.
```py
from inspect import getattr_static
class C[T]:
def f(self, x: T) -> str:
return "a"
reveal_type(getattr_static(C[int], "f")) # revealed: def f(self, x: int) -> str
reveal_type(getattr_static(C[int], "f").__get__) # revealed: <method-wrapper `__get__` of `f[int]`>
reveal_type(getattr_static(C[int], "f").__get__(None, C[int])) # revealed: def f(self, x: int) -> str
# revealed: bound method C[int].f(x: int) -> str
reveal_type(getattr_static(C[int], "f").__get__(C[int](), C[int]))
reveal_type(C[int].f) # revealed: def f(self, x: int) -> str
reveal_type(C[int]().f) # revealed: bound method C[int].f(x: int) -> str
bound_method = C[int]().f
reveal_type(bound_method.__self__) # revealed: C[int]
reveal_type(bound_method.__func__) # revealed: def f(self, x: int) -> str
reveal_type(C[int]().f(1)) # revealed: str
reveal_type(bound_method(1)) # revealed: str
C[int].f(1) # error: [missing-argument]
reveal_type(C[int].f(C[int](), 1)) # revealed: str
class D[U](C[U]):
pass
reveal_type(D[int]().f) # revealed: bound method D[int].f(x: int) -> str
```
## Methods can mention other typevars
> A type variable used in a method that does not match any of the variables that parameterize the
> class makes this method a generic function in that variable.
```py
from typing import TypeVar, Generic
T = TypeVar("T")
S = TypeVar("S")
class Legacy(Generic[T]):
def m(self, x: T, y: S) -> S:
return y
legacy: Legacy[int] = Legacy()
reveal_type(legacy.m(1, "string")) # revealed: Literal["string"]
```
With PEP 695 syntax, it is clearer that the method uses a separate typevar:
```py
class C[T]:
def m[S](self, x: T, y: S) -> S:
return y
c: C[int] = C()
reveal_type(c.m(1, "string")) # revealed: Literal["string"]
```
## Unbound typevars
> Unbound type variables should not appear in the bodies of generic functions, or in the class
> bodies apart from method definitions.
This is true with the legacy syntax:
```py
from typing import TypeVar, Generic
T = TypeVar("T")
S = TypeVar("S")
def f(x: T) -> None:
x: list[T] = []
# TODO: invalid-assignment error
y: list[S] = []
class C(Generic[T]):
# TODO: error: cannot use S if it's not in the current generic context
x: list[S] = []
# This is not an error, as shown in the previous test
def m(self, x: S) -> S:
return x
```
This is true with PEP 695 syntax, as well, though we must use the legacy syntax to define the
unbound typevars:
`pep695.py`:
```py
from typing import TypeVar
S = TypeVar("S")
def f[T](x: T) -> None:
x: list[T] = []
# TODO: invalid assignment error
y: list[S] = []
class C[T]:
# TODO: error: cannot use S if it's not in the current generic context
x: list[S] = []
def m1(self, x: S) -> S:
return x
def m2[S](self, x: S) -> S:
return x
```
## Nested formal typevars must be distinct
Generic functions and classes can be nested in each other, but it is an error for the same typevar
to be used in nested generic definitions.
Note that the typing spec only mentions two specific versions of this rule:
> A generic class definition that appears inside a generic function should not use type variables
> that parameterize the generic function.
and
> A generic class nested in another generic class cannot use the same type variables.
We assume that the more general form holds.
### Generic function within generic function
```py
def f[T](x: T, y: T) -> None:
def ok[S](a: S, b: S) -> None: ...
# TODO: error
def bad[T](a: T, b: T) -> None: ...
```
### Generic method within generic class
```py
class C[T]:
def ok[S](self, a: S, b: S) -> None: ...
# TODO: error
def bad[T](self, a: T, b: T) -> None: ...
```
### Generic class within generic function
```py
from typing import Iterable
def f[T](x: T, y: T) -> None:
class Ok[S]: ...
# TODO: error for reuse of typevar
class Bad1[T]: ...
# TODO: error for reuse of typevar
class Bad2(Iterable[T]): ...
```
### Generic class within generic class
```py
from typing import Iterable
class C[T]:
class Ok1[S]: ...
# TODO: error for reuse of typevar
class Bad1[T]: ...
# TODO: error for reuse of typevar
class Bad2(Iterable[T]): ...
```
## Class scopes do not cover inner scopes
Just like regular symbols, the typevars of a generic class are only available in that class's scope,
and are not available in nested scopes.
```py
class C[T]:
ok1: list[T] = []
class Bad:
# TODO: error: cannot refer to T in nested scope
bad: list[T] = []
class Inner[S]: ...
ok2: Inner[T]
```
[scoping]: https://typing.python.org/en/latest/spec/generics.html#scoping-rules-for-type-variables