mirror of
https://github.com/astral-sh/ruff.git
synced 2025-10-01 14:21:53 +00:00
Rename Red Knot (#17820)
This commit is contained in:
parent
e6a798b962
commit
b51c4f82ea
1564 changed files with 1598 additions and 1578 deletions
|
@ -0,0 +1,630 @@
|
|||
# PEP 695 Generics
|
||||
|
||||
```toml
|
||||
[environment]
|
||||
python-version = "3.12"
|
||||
```
|
||||
|
||||
[PEP 695] and Python 3.12 introduced new, more ergonomic syntax for type variables.
|
||||
|
||||
## Type variables
|
||||
|
||||
### Defining PEP 695 type variables
|
||||
|
||||
PEP 695 introduces a new syntax for defining type variables. The resulting type variables are
|
||||
instances of `typing.TypeVar`, just like legacy type variables.
|
||||
|
||||
```py
|
||||
def f[T]():
|
||||
reveal_type(type(T)) # revealed: Literal[TypeVar]
|
||||
reveal_type(T) # revealed: typing.TypeVar
|
||||
reveal_type(T.__name__) # revealed: Literal["T"]
|
||||
```
|
||||
|
||||
### Type variables with a default
|
||||
|
||||
Note that the `__default__` property is only available in Python ≥3.13.
|
||||
|
||||
```toml
|
||||
[environment]
|
||||
python-version = "3.13"
|
||||
```
|
||||
|
||||
```py
|
||||
def f[T = int]():
|
||||
reveal_type(T.__default__) # revealed: int
|
||||
reveal_type(T.__bound__) # revealed: None
|
||||
reveal_type(T.__constraints__) # revealed: tuple[()]
|
||||
|
||||
def g[S]():
|
||||
reveal_type(S.__default__) # revealed: NoDefault
|
||||
```
|
||||
|
||||
### Type variables with an upper bound
|
||||
|
||||
```py
|
||||
def f[T: int]():
|
||||
reveal_type(T.__bound__) # revealed: int
|
||||
reveal_type(T.__constraints__) # revealed: tuple[()]
|
||||
|
||||
def g[S]():
|
||||
reveal_type(S.__bound__) # revealed: None
|
||||
```
|
||||
|
||||
### Type variables with constraints
|
||||
|
||||
```py
|
||||
def f[T: (int, str)]():
|
||||
reveal_type(T.__constraints__) # revealed: tuple[int, str]
|
||||
reveal_type(T.__bound__) # revealed: None
|
||||
|
||||
def g[S]():
|
||||
reveal_type(S.__constraints__) # revealed: tuple[()]
|
||||
```
|
||||
|
||||
### Cannot have only one constraint
|
||||
|
||||
> `TypeVar` supports constraining parametric types to a fixed set of possible types...There should
|
||||
> be at least two constraints, if any; specifying a single constraint is disallowed.
|
||||
|
||||
```py
|
||||
# error: [invalid-type-variable-constraints] "TypeVar must have at least two constrained types"
|
||||
def f[T: (int,)]():
|
||||
pass
|
||||
```
|
||||
|
||||
## Invalid uses
|
||||
|
||||
Note that many of the invalid uses of legacy typevars do not apply to PEP 695 typevars, since the
|
||||
PEP 695 syntax is only allowed places where typevars are allowed.
|
||||
|
||||
## Displaying typevars
|
||||
|
||||
We use a suffix when displaying the typevars of a generic function or class. This helps distinguish
|
||||
different uses of the same typevar.
|
||||
|
||||
```py
|
||||
def f[T](x: T, y: T) -> None:
|
||||
# TODO: revealed: T@f
|
||||
reveal_type(x) # revealed: T
|
||||
|
||||
class C[T]:
|
||||
def m(self, x: T) -> None:
|
||||
# TODO: revealed: T@c
|
||||
reveal_type(x) # revealed: T
|
||||
```
|
||||
|
||||
## Fully static typevars
|
||||
|
||||
We consider a typevar to be fully static unless it has a non-fully-static bound or constraint. This
|
||||
is true even though a fully static typevar might be specialized to a gradual form like `Any`. (This
|
||||
is similar to how you can assign an expression whose type is not fully static to a target whose type
|
||||
is.)
|
||||
|
||||
```py
|
||||
from ty_extensions import is_fully_static, static_assert
|
||||
from typing import Any
|
||||
|
||||
def unbounded_unconstrained[T](t: T) -> None:
|
||||
static_assert(is_fully_static(T))
|
||||
|
||||
def bounded[T: int](t: T) -> None:
|
||||
static_assert(is_fully_static(T))
|
||||
|
||||
def bounded_by_gradual[T: Any](t: T) -> None:
|
||||
static_assert(not is_fully_static(T))
|
||||
|
||||
def constrained[T: (int, str)](t: T) -> None:
|
||||
static_assert(is_fully_static(T))
|
||||
|
||||
def constrained_by_gradual[T: (int, Any)](t: T) -> None:
|
||||
static_assert(not is_fully_static(T))
|
||||
```
|
||||
|
||||
## Subtyping and assignability
|
||||
|
||||
(Note: for simplicity, all of the prose in this section refers to _subtyping_ involving fully static
|
||||
typevars. Unless otherwise noted, all of the claims also apply to _assignability_ involving gradual
|
||||
typevars.)
|
||||
|
||||
We can make no assumption about what type an unbounded, unconstrained, fully static typevar will be
|
||||
specialized to. Properties are true of the typevar only if they are true for every valid
|
||||
specialization. Thus, the typevar is a subtype of itself and of `object`, but not of any other type
|
||||
(including other typevars).
|
||||
|
||||
```py
|
||||
from ty_extensions import is_assignable_to, is_subtype_of, static_assert
|
||||
|
||||
class Super: ...
|
||||
class Base(Super): ...
|
||||
class Sub(Base): ...
|
||||
class Unrelated: ...
|
||||
|
||||
def unbounded_unconstrained[T, U](t: T, u: U) -> None:
|
||||
static_assert(is_assignable_to(T, T))
|
||||
static_assert(is_assignable_to(T, object))
|
||||
static_assert(not is_assignable_to(T, Super))
|
||||
static_assert(is_assignable_to(U, U))
|
||||
static_assert(is_assignable_to(U, object))
|
||||
static_assert(not is_assignable_to(U, Super))
|
||||
static_assert(not is_assignable_to(T, U))
|
||||
static_assert(not is_assignable_to(U, T))
|
||||
|
||||
static_assert(is_subtype_of(T, T))
|
||||
static_assert(is_subtype_of(T, object))
|
||||
static_assert(not is_subtype_of(T, Super))
|
||||
static_assert(is_subtype_of(U, U))
|
||||
static_assert(is_subtype_of(U, object))
|
||||
static_assert(not is_subtype_of(U, Super))
|
||||
static_assert(not is_subtype_of(T, U))
|
||||
static_assert(not is_subtype_of(U, T))
|
||||
```
|
||||
|
||||
A bounded typevar is assignable to its bound, and a bounded, fully static typevar is a subtype of
|
||||
its bound. (A typevar with a non-fully-static bound is itself non-fully-static, and therefore does
|
||||
not participate in subtyping.) A fully static bound is not assignable to, nor a subtype of, the
|
||||
typevar, since the typevar might be specialized to a smaller type. (This is true even if the bound
|
||||
is a final class, since the typevar can still be specialized to `Never`.)
|
||||
|
||||
```py
|
||||
from typing import Any
|
||||
from typing_extensions import final
|
||||
|
||||
def bounded[T: Super](t: T) -> None:
|
||||
static_assert(is_assignable_to(T, Super))
|
||||
static_assert(not is_assignable_to(T, Sub))
|
||||
static_assert(not is_assignable_to(Super, T))
|
||||
static_assert(not is_assignable_to(Sub, T))
|
||||
|
||||
static_assert(is_subtype_of(T, Super))
|
||||
static_assert(not is_subtype_of(T, Sub))
|
||||
static_assert(not is_subtype_of(Super, T))
|
||||
static_assert(not is_subtype_of(Sub, T))
|
||||
|
||||
def bounded_by_gradual[T: Any](t: T) -> None:
|
||||
static_assert(is_assignable_to(T, Any))
|
||||
static_assert(is_assignable_to(Any, T))
|
||||
static_assert(is_assignable_to(T, Super))
|
||||
static_assert(not is_assignable_to(Super, T))
|
||||
static_assert(is_assignable_to(T, Sub))
|
||||
static_assert(not is_assignable_to(Sub, T))
|
||||
|
||||
static_assert(not is_subtype_of(T, Any))
|
||||
static_assert(not is_subtype_of(Any, T))
|
||||
static_assert(not is_subtype_of(T, Super))
|
||||
static_assert(not is_subtype_of(Super, T))
|
||||
static_assert(not is_subtype_of(T, Sub))
|
||||
static_assert(not is_subtype_of(Sub, T))
|
||||
|
||||
@final
|
||||
class FinalClass: ...
|
||||
|
||||
def bounded_final[T: FinalClass](t: T) -> None:
|
||||
static_assert(is_assignable_to(T, FinalClass))
|
||||
static_assert(not is_assignable_to(FinalClass, T))
|
||||
|
||||
static_assert(is_subtype_of(T, FinalClass))
|
||||
static_assert(not is_subtype_of(FinalClass, T))
|
||||
```
|
||||
|
||||
Two distinct fully static typevars are not subtypes of each other, even if they have the same
|
||||
bounds, since there is (still) no guarantee that they will be specialized to the same type. This is
|
||||
true even if both typevars are bounded by the same final class, since you can specialize the
|
||||
typevars to `Never` in addition to that final class.
|
||||
|
||||
```py
|
||||
def two_bounded[T: Super, U: Super](t: T, u: U) -> None:
|
||||
static_assert(not is_assignable_to(T, U))
|
||||
static_assert(not is_assignable_to(U, T))
|
||||
|
||||
static_assert(not is_subtype_of(T, U))
|
||||
static_assert(not is_subtype_of(U, T))
|
||||
|
||||
def two_final_bounded[T: FinalClass, U: FinalClass](t: T, u: U) -> None:
|
||||
static_assert(not is_assignable_to(T, U))
|
||||
static_assert(not is_assignable_to(U, T))
|
||||
|
||||
static_assert(not is_subtype_of(T, U))
|
||||
static_assert(not is_subtype_of(U, T))
|
||||
```
|
||||
|
||||
A constrained fully static typevar is assignable to the union of its constraints, but not to any of
|
||||
the constraints individually. None of the constraints are subtypes of the typevar, though the
|
||||
intersection of all of its constraints is a subtype of the typevar.
|
||||
|
||||
```py
|
||||
from ty_extensions import Intersection
|
||||
|
||||
def constrained[T: (Base, Unrelated)](t: T) -> None:
|
||||
static_assert(not is_assignable_to(T, Super))
|
||||
static_assert(not is_assignable_to(T, Base))
|
||||
static_assert(not is_assignable_to(T, Sub))
|
||||
static_assert(not is_assignable_to(T, Unrelated))
|
||||
static_assert(is_assignable_to(T, Super | Unrelated))
|
||||
static_assert(is_assignable_to(T, Base | Unrelated))
|
||||
static_assert(not is_assignable_to(T, Sub | Unrelated))
|
||||
static_assert(not is_assignable_to(Super, T))
|
||||
static_assert(not is_assignable_to(Unrelated, T))
|
||||
static_assert(not is_assignable_to(Super | Unrelated, T))
|
||||
static_assert(is_assignable_to(Intersection[Base, Unrelated], T))
|
||||
|
||||
static_assert(not is_subtype_of(T, Super))
|
||||
static_assert(not is_subtype_of(T, Base))
|
||||
static_assert(not is_subtype_of(T, Sub))
|
||||
static_assert(not is_subtype_of(T, Unrelated))
|
||||
static_assert(is_subtype_of(T, Super | Unrelated))
|
||||
static_assert(is_subtype_of(T, Base | Unrelated))
|
||||
static_assert(not is_subtype_of(T, Sub | Unrelated))
|
||||
static_assert(not is_subtype_of(Super, T))
|
||||
static_assert(not is_subtype_of(Unrelated, T))
|
||||
static_assert(not is_subtype_of(Super | Unrelated, T))
|
||||
static_assert(is_subtype_of(Intersection[Base, Unrelated], T))
|
||||
|
||||
def constrained_by_gradual[T: (Base, Any)](t: T) -> None:
|
||||
static_assert(is_assignable_to(T, Super))
|
||||
static_assert(is_assignable_to(T, Base))
|
||||
static_assert(not is_assignable_to(T, Sub))
|
||||
static_assert(not is_assignable_to(T, Unrelated))
|
||||
static_assert(is_assignable_to(T, Any))
|
||||
static_assert(is_assignable_to(T, Super | Any))
|
||||
static_assert(is_assignable_to(T, Super | Unrelated))
|
||||
static_assert(not is_assignable_to(Super, T))
|
||||
static_assert(is_assignable_to(Base, T))
|
||||
static_assert(not is_assignable_to(Unrelated, T))
|
||||
static_assert(is_assignable_to(Any, T))
|
||||
static_assert(not is_assignable_to(Super | Any, T))
|
||||
static_assert(is_assignable_to(Base | Any, T))
|
||||
static_assert(not is_assignable_to(Super | Unrelated, T))
|
||||
static_assert(is_assignable_to(Intersection[Base, Unrelated], T))
|
||||
static_assert(is_assignable_to(Intersection[Base, Any], T))
|
||||
|
||||
static_assert(not is_subtype_of(T, Super))
|
||||
static_assert(not is_subtype_of(T, Base))
|
||||
static_assert(not is_subtype_of(T, Sub))
|
||||
static_assert(not is_subtype_of(T, Unrelated))
|
||||
static_assert(not is_subtype_of(T, Any))
|
||||
static_assert(not is_subtype_of(T, Super | Any))
|
||||
static_assert(not is_subtype_of(T, Super | Unrelated))
|
||||
static_assert(not is_subtype_of(Super, T))
|
||||
static_assert(not is_subtype_of(Base, T))
|
||||
static_assert(not is_subtype_of(Unrelated, T))
|
||||
static_assert(not is_subtype_of(Any, T))
|
||||
static_assert(not is_subtype_of(Super | Any, T))
|
||||
static_assert(not is_subtype_of(Base | Any, T))
|
||||
static_assert(not is_subtype_of(Super | Unrelated, T))
|
||||
static_assert(not is_subtype_of(Intersection[Base, Unrelated], T))
|
||||
static_assert(not is_subtype_of(Intersection[Base, Any], T))
|
||||
```
|
||||
|
||||
Two distinct fully static typevars are not subtypes of each other, even if they have the same
|
||||
constraints, and even if any of the constraints are final. There must always be at least two
|
||||
distinct constraints, meaning that there is (still) no guarantee that they will be specialized to
|
||||
the same type.
|
||||
|
||||
```py
|
||||
def two_constrained[T: (int, str), U: (int, str)](t: T, u: U) -> None:
|
||||
static_assert(not is_assignable_to(T, U))
|
||||
static_assert(not is_assignable_to(U, T))
|
||||
|
||||
static_assert(not is_subtype_of(T, U))
|
||||
static_assert(not is_subtype_of(U, T))
|
||||
|
||||
@final
|
||||
class AnotherFinalClass: ...
|
||||
|
||||
def two_final_constrained[T: (FinalClass, AnotherFinalClass), U: (FinalClass, AnotherFinalClass)](t: T, u: U) -> None:
|
||||
static_assert(not is_assignable_to(T, U))
|
||||
static_assert(not is_assignable_to(U, T))
|
||||
|
||||
static_assert(not is_subtype_of(T, U))
|
||||
static_assert(not is_subtype_of(U, T))
|
||||
```
|
||||
|
||||
## Singletons and single-valued types
|
||||
|
||||
(Note: for simplicity, all of the prose in this section refers to _singleton_ types, but all of the
|
||||
claims also apply to _single-valued_ types.)
|
||||
|
||||
An unbounded, unconstrained typevar is not a singleton, because it can be specialized to a
|
||||
non-singleton type.
|
||||
|
||||
```py
|
||||
from ty_extensions import is_singleton, is_single_valued, static_assert
|
||||
|
||||
def unbounded_unconstrained[T](t: T) -> None:
|
||||
static_assert(not is_singleton(T))
|
||||
static_assert(not is_single_valued(T))
|
||||
```
|
||||
|
||||
A bounded typevar is not a singleton, even if its bound is a singleton, since it can still be
|
||||
specialized to `Never`.
|
||||
|
||||
```py
|
||||
def bounded[T: None](t: T) -> None:
|
||||
static_assert(not is_singleton(T))
|
||||
static_assert(not is_single_valued(T))
|
||||
```
|
||||
|
||||
A constrained typevar is a singleton if all of its constraints are singletons. (Note that you cannot
|
||||
specialize a constrained typevar to a subtype of a constraint.)
|
||||
|
||||
```py
|
||||
from typing_extensions import Literal
|
||||
|
||||
def constrained_non_singletons[T: (int, str)](t: T) -> None:
|
||||
static_assert(not is_singleton(T))
|
||||
static_assert(not is_single_valued(T))
|
||||
|
||||
def constrained_singletons[T: (Literal[True], Literal[False])](t: T) -> None:
|
||||
static_assert(is_singleton(T))
|
||||
|
||||
def constrained_single_valued[T: (Literal[True], tuple[()])](t: T) -> None:
|
||||
static_assert(is_single_valued(T))
|
||||
```
|
||||
|
||||
## Unions involving typevars
|
||||
|
||||
The union of an unbounded unconstrained typevar with any other type cannot be simplified, since
|
||||
there is no guarantee what type the typevar will be specialized to.
|
||||
|
||||
```py
|
||||
from typing import Any
|
||||
|
||||
class Super: ...
|
||||
class Base(Super): ...
|
||||
class Sub(Base): ...
|
||||
class Unrelated: ...
|
||||
|
||||
def unbounded_unconstrained[T](t: T) -> None:
|
||||
def _(x: T | Super) -> None:
|
||||
reveal_type(x) # revealed: T | Super
|
||||
|
||||
def _(x: T | Base) -> None:
|
||||
reveal_type(x) # revealed: T | Base
|
||||
|
||||
def _(x: T | Sub) -> None:
|
||||
reveal_type(x) # revealed: T | Sub
|
||||
|
||||
def _(x: T | Unrelated) -> None:
|
||||
reveal_type(x) # revealed: T | Unrelated
|
||||
|
||||
def _(x: T | Any) -> None:
|
||||
reveal_type(x) # revealed: T | Any
|
||||
```
|
||||
|
||||
The union of a bounded typevar with its bound is that bound. (The typevar is guaranteed to be
|
||||
specialized to a subtype of the bound.) The union of a bounded typevar with a subtype of its bound
|
||||
cannot be simplified. (The typevar might be specialized to a different subtype of the bound.)
|
||||
|
||||
```py
|
||||
def bounded[T: Base](t: T) -> None:
|
||||
def _(x: T | Super) -> None:
|
||||
reveal_type(x) # revealed: Super
|
||||
|
||||
def _(x: T | Base) -> None:
|
||||
reveal_type(x) # revealed: Base
|
||||
|
||||
def _(x: T | Sub) -> None:
|
||||
reveal_type(x) # revealed: T | Sub
|
||||
|
||||
def _(x: T | Unrelated) -> None:
|
||||
reveal_type(x) # revealed: T | Unrelated
|
||||
|
||||
def _(x: T | Any) -> None:
|
||||
reveal_type(x) # revealed: T | Any
|
||||
```
|
||||
|
||||
The union of a constrained typevar with a type depends on how that type relates to the constraints.
|
||||
If all of the constraints are a subtype of that type, the union simplifies to that type. Inversely,
|
||||
if the type is a subtype of every constraint, the union simplifies to the typevar. Otherwise, the
|
||||
union cannot be simplified.
|
||||
|
||||
```py
|
||||
def constrained[T: (Base, Sub)](t: T) -> None:
|
||||
def _(x: T | Super) -> None:
|
||||
reveal_type(x) # revealed: Super
|
||||
|
||||
def _(x: T | Base) -> None:
|
||||
reveal_type(x) # revealed: Base
|
||||
|
||||
def _(x: T | Sub) -> None:
|
||||
reveal_type(x) # revealed: T
|
||||
|
||||
def _(x: T | Unrelated) -> None:
|
||||
reveal_type(x) # revealed: T | Unrelated
|
||||
|
||||
def _(x: T | Any) -> None:
|
||||
reveal_type(x) # revealed: T | Any
|
||||
```
|
||||
|
||||
## Intersections involving typevars
|
||||
|
||||
The intersection of an unbounded unconstrained typevar with any other type cannot be simplified,
|
||||
since there is no guarantee what type the typevar will be specialized to.
|
||||
|
||||
```py
|
||||
from ty_extensions import Intersection
|
||||
from typing import Any
|
||||
|
||||
class Super: ...
|
||||
class Base(Super): ...
|
||||
class Sub(Base): ...
|
||||
class Unrelated: ...
|
||||
|
||||
def unbounded_unconstrained[T](t: T) -> None:
|
||||
def _(x: Intersection[T, Super]) -> None:
|
||||
reveal_type(x) # revealed: T & Super
|
||||
|
||||
def _(x: Intersection[T, Base]) -> None:
|
||||
reveal_type(x) # revealed: T & Base
|
||||
|
||||
def _(x: Intersection[T, Sub]) -> None:
|
||||
reveal_type(x) # revealed: T & Sub
|
||||
|
||||
def _(x: Intersection[T, Unrelated]) -> None:
|
||||
reveal_type(x) # revealed: T & Unrelated
|
||||
|
||||
def _(x: Intersection[T, Any]) -> None:
|
||||
reveal_type(x) # revealed: T & Any
|
||||
```
|
||||
|
||||
The intersection of a bounded typevar with its bound or a supertype of its bound is the typevar
|
||||
itself. (The typevar might be specialized to a subtype of the bound.) The intersection of a bounded
|
||||
typevar with a subtype of its bound cannot be simplified. (The typevar might be specialized to a
|
||||
different subtype of the bound.) The intersection of a bounded typevar with a type that is disjoint
|
||||
from its bound is `Never`.
|
||||
|
||||
```py
|
||||
def bounded[T: Base](t: T) -> None:
|
||||
def _(x: Intersection[T, Super]) -> None:
|
||||
reveal_type(x) # revealed: T
|
||||
|
||||
def _(x: Intersection[T, Base]) -> None:
|
||||
reveal_type(x) # revealed: T
|
||||
|
||||
def _(x: Intersection[T, Sub]) -> None:
|
||||
reveal_type(x) # revealed: T & Sub
|
||||
|
||||
def _(x: Intersection[T, None]) -> None:
|
||||
reveal_type(x) # revealed: Never
|
||||
|
||||
def _(x: Intersection[T, Any]) -> None:
|
||||
reveal_type(x) # revealed: T & Any
|
||||
```
|
||||
|
||||
Constrained typevars can be modeled using a hypothetical `OneOf` connector, where the typevar must
|
||||
be specialized to _one_ of its constraints. The typevar is not the _union_ of those constraints,
|
||||
since that would allow the typevar to take on values from _multiple_ constraints simultaneously. The
|
||||
`OneOf` connector would not be a “type” according to a strict reading of the typing spec, since it
|
||||
would not represent a single set of runtime objects; it would instead represent a _set of_ sets of
|
||||
runtime objects. This is one reason we have not actually added this connector to our data model yet.
|
||||
Nevertheless, describing constrained typevars this way helps explain how we simplify intersections
|
||||
involving them.
|
||||
|
||||
This means that when intersecting a constrained typevar with a type `T`, constraints that are
|
||||
supertypes of `T` can be simplified to `T`, since intersection distributes over `OneOf`. Moreover,
|
||||
constraints that are disjoint from `T` are no longer valid specializations of the typevar, since
|
||||
`Never` is an identity for `OneOf`. After these simplifications, if only one constraint remains, we
|
||||
can simplify the intersection as a whole to that constraint.
|
||||
|
||||
```py
|
||||
def constrained[T: (Base, Sub, Unrelated)](t: T) -> None:
|
||||
def _(x: Intersection[T, Base]) -> None:
|
||||
# With OneOf this would be OneOf[Base, Sub]
|
||||
reveal_type(x) # revealed: T & Base
|
||||
|
||||
def _(x: Intersection[T, Unrelated]) -> None:
|
||||
reveal_type(x) # revealed: Unrelated
|
||||
|
||||
def _(x: Intersection[T, Sub]) -> None:
|
||||
reveal_type(x) # revealed: Sub
|
||||
|
||||
def _(x: Intersection[T, None]) -> None:
|
||||
reveal_type(x) # revealed: Never
|
||||
|
||||
def _(x: Intersection[T, Any]) -> None:
|
||||
reveal_type(x) # revealed: T & Any
|
||||
```
|
||||
|
||||
We can simplify the intersection similarly when removing a type from a constrained typevar, since
|
||||
this is modeled internally as an intersection with a negation.
|
||||
|
||||
```py
|
||||
from ty_extensions import Not
|
||||
|
||||
def remove_constraint[T: (int, str, bool)](t: T) -> None:
|
||||
def _(x: Intersection[T, Not[int]]) -> None:
|
||||
reveal_type(x) # revealed: str & ~int
|
||||
|
||||
def _(x: Intersection[T, Not[str]]) -> None:
|
||||
# With OneOf this would be OneOf[int, bool]
|
||||
reveal_type(x) # revealed: T & ~str
|
||||
|
||||
def _(x: Intersection[T, Not[bool]]) -> None:
|
||||
reveal_type(x) # revealed: T & ~bool
|
||||
|
||||
def _(x: Intersection[T, Not[int], Not[str]]) -> None:
|
||||
reveal_type(x) # revealed: Never
|
||||
|
||||
def _(x: Intersection[T, Not[None]]) -> None:
|
||||
reveal_type(x) # revealed: T
|
||||
|
||||
def _(x: Intersection[T, Not[Any]]) -> None:
|
||||
reveal_type(x) # revealed: T & Any
|
||||
```
|
||||
|
||||
The intersection of a typevar with any other type is assignable to (and if fully static, a subtype
|
||||
of) itself.
|
||||
|
||||
```py
|
||||
from ty_extensions import is_assignable_to, is_subtype_of, static_assert, Not
|
||||
|
||||
def intersection_is_assignable[T](t: T) -> None:
|
||||
static_assert(is_assignable_to(Intersection[T, None], T))
|
||||
static_assert(is_assignable_to(Intersection[T, Not[None]], T))
|
||||
|
||||
static_assert(is_subtype_of(Intersection[T, None], T))
|
||||
static_assert(is_subtype_of(Intersection[T, Not[None]], T))
|
||||
```
|
||||
|
||||
## Narrowing
|
||||
|
||||
We can use narrowing expressions to eliminate some of the possibilities of a constrained typevar:
|
||||
|
||||
```py
|
||||
class P: ...
|
||||
class Q: ...
|
||||
class R: ...
|
||||
|
||||
def f[T: (P, Q)](t: T) -> None:
|
||||
if isinstance(t, P):
|
||||
reveal_type(t) # revealed: P
|
||||
p: P = t
|
||||
else:
|
||||
reveal_type(t) # revealed: Q & ~P
|
||||
q: Q = t
|
||||
|
||||
if isinstance(t, Q):
|
||||
reveal_type(t) # revealed: Q
|
||||
q: Q = t
|
||||
else:
|
||||
reveal_type(t) # revealed: P & ~Q
|
||||
p: P = t
|
||||
|
||||
def g[T: (P, Q, R)](t: T) -> None:
|
||||
if isinstance(t, P):
|
||||
reveal_type(t) # revealed: P
|
||||
p: P = t
|
||||
elif isinstance(t, Q):
|
||||
reveal_type(t) # revealed: Q & ~P
|
||||
q: Q = t
|
||||
else:
|
||||
reveal_type(t) # revealed: R & ~P & ~Q
|
||||
r: R = t
|
||||
|
||||
if isinstance(t, P):
|
||||
reveal_type(t) # revealed: P
|
||||
p: P = t
|
||||
elif isinstance(t, Q):
|
||||
reveal_type(t) # revealed: Q & ~P
|
||||
q: Q = t
|
||||
elif isinstance(t, R):
|
||||
reveal_type(t) # revealed: R & ~P & ~Q
|
||||
r: R = t
|
||||
else:
|
||||
reveal_type(t) # revealed: Never
|
||||
```
|
||||
|
||||
If the constraints are disjoint, simplification does eliminate the redundant negative:
|
||||
|
||||
```py
|
||||
def h[T: (P, None)](t: T) -> None:
|
||||
if t is None:
|
||||
reveal_type(t) # revealed: None
|
||||
p: None = t
|
||||
else:
|
||||
reveal_type(t) # revealed: P
|
||||
p: P = t
|
||||
```
|
||||
|
||||
[pep 695]: https://peps.python.org/pep-0695/
|
Loading…
Add table
Add a link
Reference in a new issue