mirror of
https://github.com/astral-sh/ruff.git
synced 2025-09-28 21:05:08 +00:00
Rename Red Knot (#17820)
This commit is contained in:
parent
e6a798b962
commit
b51c4f82ea
1564 changed files with 1598 additions and 1578 deletions
|
@ -0,0 +1,670 @@
|
|||
//! # Visibility constraints
|
||||
//!
|
||||
//! During semantic index building, we collect visibility constraints for each binding and
|
||||
//! declaration. These constraints are then used during type-checking to determine the static
|
||||
//! visibility of a certain definition. This allows us to re-analyze control flow during type
|
||||
//! checking, potentially "hiding" some branches that we can statically determine to never be
|
||||
//! taken. Consider the following example first. We added implicit "unbound" definitions at the
|
||||
//! start of the scope. Note how visibility constraints can apply to bindings outside of the
|
||||
//! if-statement:
|
||||
//! ```py
|
||||
//! x = <unbound> # not a live binding for the use of x below, shadowed by `x = 1`
|
||||
//! y = <unbound> # visibility constraint: ~test
|
||||
//!
|
||||
//! x = 1 # visibility constraint: ~test
|
||||
//! if test:
|
||||
//! x = 2 # visibility constraint: test
|
||||
//!
|
||||
//! y = 2 # visibility constraint: test
|
||||
//!
|
||||
//! use(x)
|
||||
//! use(y)
|
||||
//! ```
|
||||
//! The static truthiness of the `test` condition can either be always-false, ambiguous, or
|
||||
//! always-true. Similarly, we have the same three options when evaluating a visibility constraint.
|
||||
//! This outcome determines the visibility of a definition: always-true means that the definition
|
||||
//! is definitely visible for a given use, always-false means that the definition is definitely
|
||||
//! not visible, and ambiguous means that we might see this definition or not. In the latter case,
|
||||
//! we need to consider both options during type inference and boundness analysis. For the example
|
||||
//! above, these are the possible type inference / boundness results for the uses of `x` and `y`:
|
||||
//!
|
||||
//! ```text
|
||||
//! | `test` truthiness | `~test` truthiness | type of `x` | boundness of `y` |
|
||||
//! |-------------------|--------------------|-----------------|------------------|
|
||||
//! | always false | always true | `Literal[1]` | unbound |
|
||||
//! | ambiguous | ambiguous | `Literal[1, 2]` | possibly unbound |
|
||||
//! | always true | always false | `Literal[2]` | bound |
|
||||
//! ```
|
||||
//!
|
||||
//! ### Sequential constraints (ternary AND)
|
||||
//!
|
||||
//! As we have seen above, visibility constraints can apply outside of a control flow element.
|
||||
//! So we need to consider the possibility that multiple constraints apply to the same binding.
|
||||
//! Here, we consider what happens if multiple `if`-statements lead to a sequence of constraints.
|
||||
//! Consider the following example:
|
||||
//! ```py
|
||||
//! x = 0
|
||||
//!
|
||||
//! if test1:
|
||||
//! x = 1
|
||||
//!
|
||||
//! if test2:
|
||||
//! x = 2
|
||||
//! ```
|
||||
//! The binding `x = 2` is easy to analyze. Its visibility corresponds to the truthiness of `test2`.
|
||||
//! For the `x = 1` binding, things are a bit more interesting. It is always visible if `test1` is
|
||||
//! always-true *and* `test2` is always-false. It is never visible if `test1` is always-false *or*
|
||||
//! `test2` is always-true. And it is ambiguous otherwise. This corresponds to a ternary *test1 AND
|
||||
//! ~test2* operation in three-valued Kleene logic [Kleene]:
|
||||
//!
|
||||
//! ```text
|
||||
//! | AND | always-false | ambiguous | always-true |
|
||||
//! |--------------|--------------|--------------|--------------|
|
||||
//! | always false | always-false | always-false | always-false |
|
||||
//! | ambiguous | always-false | ambiguous | ambiguous |
|
||||
//! | always true | always-false | ambiguous | always-true |
|
||||
//! ```
|
||||
//!
|
||||
//! The `x = 0` binding can be handled similarly, with the difference that both `test1` and `test2`
|
||||
//! are negated:
|
||||
//! ```py
|
||||
//! x = 0 # ~test1 AND ~test2
|
||||
//!
|
||||
//! if test1:
|
||||
//! x = 1 # test1 AND ~test2
|
||||
//!
|
||||
//! if test2:
|
||||
//! x = 2 # test2
|
||||
//! ```
|
||||
//!
|
||||
//! ### Merged constraints (ternary OR)
|
||||
//!
|
||||
//! Finally, we consider what happens in "parallel" control flow. Consider the following example
|
||||
//! where we have omitted the test condition for the outer `if` for clarity:
|
||||
//! ```py
|
||||
//! x = 0
|
||||
//!
|
||||
//! if <…>:
|
||||
//! if test1:
|
||||
//! x = 1
|
||||
//! else:
|
||||
//! if test2:
|
||||
//! x = 2
|
||||
//!
|
||||
//! use(x)
|
||||
//! ```
|
||||
//! At the usage of `x`, i.e. after control flow has been merged again, the visibility of the `x =
|
||||
//! 0` binding behaves as follows: the binding is always visible if `test1` is always-false *or*
|
||||
//! `test2` is always-false; and it is never visible if `test1` is always-true *and* `test2` is
|
||||
//! always-true. This corresponds to a ternary *OR* operation in Kleene logic:
|
||||
//!
|
||||
//! ```text
|
||||
//! | OR | always-false | ambiguous | always-true |
|
||||
//! |--------------|--------------|--------------|--------------|
|
||||
//! | always false | always-false | ambiguous | always-true |
|
||||
//! | ambiguous | ambiguous | ambiguous | always-true |
|
||||
//! | always true | always-true | always-true | always-true |
|
||||
//! ```
|
||||
//!
|
||||
//! Using this, we can annotate the visibility constraints for the example above:
|
||||
//! ```py
|
||||
//! x = 0 # ~test1 OR ~test2
|
||||
//!
|
||||
//! if <…>:
|
||||
//! if test1:
|
||||
//! x = 1 # test1
|
||||
//! else:
|
||||
//! if test2:
|
||||
//! x = 2 # test2
|
||||
//!
|
||||
//! use(x)
|
||||
//! ```
|
||||
//!
|
||||
//! ### Explicit ambiguity
|
||||
//!
|
||||
//! In some cases, we explicitly add an “ambiguous” constraint to all bindings
|
||||
//! in a certain control flow path. We do this when branching on something that we can not (or
|
||||
//! intentionally do not want to) analyze statically. `for` loops are one example:
|
||||
//! ```py
|
||||
//! x = <unbound>
|
||||
//!
|
||||
//! for _ in range(2):
|
||||
//! x = 1
|
||||
//! ```
|
||||
//! Here, we report an ambiguous visibility constraint before branching off. If we don't do this,
|
||||
//! the `x = <unbound>` binding would be considered unconditionally visible in the no-loop case.
|
||||
//! And since the other branch does not have the live `x = <unbound>` binding, we would incorrectly
|
||||
//! create a state where the `x = <unbound>` binding is always visible.
|
||||
//!
|
||||
//!
|
||||
//! ### Representing formulas
|
||||
//!
|
||||
//! Given everything above, we can represent a visibility constraint as a _ternary formula_. This
|
||||
//! is like a boolean formula (which maps several true/false variables to a single true/false
|
||||
//! result), but which allows the third "ambiguous" value in addition to "true" and "false".
|
||||
//!
|
||||
//! [_Binary decision diagrams_][bdd] (BDDs) are a common way to represent boolean formulas when
|
||||
//! doing program analysis. We extend this to a _ternary decision diagram_ (TDD) to support
|
||||
//! ambiguous values.
|
||||
//!
|
||||
//! A TDD is a graph, and a ternary formula is represented by a node in this graph. There are three
|
||||
//! possible leaf nodes representing the "true", "false", and "ambiguous" constant functions.
|
||||
//! Interior nodes consist of a ternary variable to evaluate, and outgoing edges for whether the
|
||||
//! variable evaluates to true, false, or ambiguous.
|
||||
//!
|
||||
//! Our TDDs are _reduced_ and _ordered_ (as is typical for BDDs).
|
||||
//!
|
||||
//! An ordered TDD means that variables appear in the same order in all paths within the graph.
|
||||
//!
|
||||
//! A reduced TDD means two things: First, we intern the graph nodes, so that we only keep a single
|
||||
//! copy of interior nodes with the same contents. Second, we eliminate any nodes that are "noops",
|
||||
//! where the "true" and "false" outgoing edges lead to the same node. (This implies that it
|
||||
//! doesn't matter what value that variable has when evaluating the formula, and we can leave it
|
||||
//! out of the evaluation chain completely.)
|
||||
//!
|
||||
//! Reduced and ordered decision diagrams are _normal forms_, which means that two equivalent
|
||||
//! formulas (which have the same outputs for every combination of inputs) are represented by
|
||||
//! exactly the same graph node. (Because of interning, this is not _equal_ nodes, but _identical_
|
||||
//! ones.) That means that we can compare formulas for equivalence in constant time, and in
|
||||
//! particular, can check whether a visibility constraint is statically always true or false,
|
||||
//! regardless of any Python program state, by seeing if the constraint's formula is the "true" or
|
||||
//! "false" leaf node.
|
||||
//!
|
||||
//! [Kleene]: <https://en.wikipedia.org/wiki/Three-valued_logic#Kleene_and_Priest_logics>
|
||||
//! [bdd]: https://en.wikipedia.org/wiki/Binary_decision_diagram
|
||||
|
||||
use std::cmp::Ordering;
|
||||
|
||||
use ruff_index::{Idx, IndexVec};
|
||||
use rustc_hash::FxHashMap;
|
||||
|
||||
use crate::semantic_index::expression::Expression;
|
||||
use crate::semantic_index::predicate::{
|
||||
PatternPredicate, PatternPredicateKind, Predicate, PredicateNode, Predicates, ScopedPredicateId,
|
||||
};
|
||||
use crate::semantic_index::symbol_table;
|
||||
use crate::symbol::imported_symbol;
|
||||
use crate::types::{infer_expression_type, Truthiness, Type};
|
||||
use crate::Db;
|
||||
|
||||
/// A ternary formula that defines under what conditions a binding is visible. (A ternary formula
|
||||
/// is just like a boolean formula, but with `Ambiguous` as a third potential result. See the
|
||||
/// module documentation for more details.)
|
||||
///
|
||||
/// The primitive atoms of the formula are [`Predicate`]s, which express some property of the
|
||||
/// runtime state of the code that we are analyzing.
|
||||
///
|
||||
/// We assume that each atom has a stable value each time that the formula is evaluated. An atom
|
||||
/// that resolves to `Ambiguous` might be true or false, and we can't tell which — but within that
|
||||
/// evaluation, we assume that the atom has the _same_ unknown value each time it appears. That
|
||||
/// allows us to perform simplifications like `A ∨ !A → true` and `A ∧ !A → false`.
|
||||
///
|
||||
/// That means that when you are constructing a formula, you might need to create distinct atoms
|
||||
/// for a particular [`Predicate`], if your formula needs to consider how a particular runtime
|
||||
/// property might be different at different points in the execution of the program.
|
||||
///
|
||||
/// Visibility constraints are normalized, so equivalent constraints are guaranteed to have equal
|
||||
/// IDs.
|
||||
#[derive(Clone, Copy, Eq, Hash, PartialEq)]
|
||||
pub(crate) struct ScopedVisibilityConstraintId(u32);
|
||||
|
||||
impl std::fmt::Debug for ScopedVisibilityConstraintId {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
let mut f = f.debug_tuple("ScopedVisibilityConstraintId");
|
||||
match *self {
|
||||
// We use format_args instead of rendering the strings directly so that we don't get
|
||||
// any quotes in the output: ScopedVisibilityConstraintId(AlwaysTrue) instead of
|
||||
// ScopedVisibilityConstraintId("AlwaysTrue").
|
||||
ALWAYS_TRUE => f.field(&format_args!("AlwaysTrue")),
|
||||
AMBIGUOUS => f.field(&format_args!("Ambiguous")),
|
||||
ALWAYS_FALSE => f.field(&format_args!("AlwaysFalse")),
|
||||
_ => f.field(&self.0),
|
||||
};
|
||||
f.finish()
|
||||
}
|
||||
}
|
||||
|
||||
// Internal details:
|
||||
//
|
||||
// There are 3 terminals, with hard-coded constraint IDs: true, ambiguous, and false.
|
||||
//
|
||||
// _Atoms_ are the underlying Predicates, which are the variables that are evaluated by the
|
||||
// ternary function.
|
||||
//
|
||||
// _Interior nodes_ provide the TDD structure for the formula. Interior nodes are stored in an
|
||||
// arena Vec, with the constraint ID providing an index into the arena.
|
||||
|
||||
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
|
||||
struct InteriorNode {
|
||||
/// A "variable" that is evaluated as part of a TDD ternary function. For visibility
|
||||
/// constraints, this is a `Predicate` that represents some runtime property of the Python
|
||||
/// code that we are evaluating.
|
||||
atom: ScopedPredicateId,
|
||||
if_true: ScopedVisibilityConstraintId,
|
||||
if_ambiguous: ScopedVisibilityConstraintId,
|
||||
if_false: ScopedVisibilityConstraintId,
|
||||
}
|
||||
|
||||
impl ScopedVisibilityConstraintId {
|
||||
/// A special ID that is used for an "always true" / "always visible" constraint.
|
||||
pub(crate) const ALWAYS_TRUE: ScopedVisibilityConstraintId =
|
||||
ScopedVisibilityConstraintId(0xffff_ffff);
|
||||
|
||||
/// A special ID that is used for an ambiguous constraint.
|
||||
pub(crate) const AMBIGUOUS: ScopedVisibilityConstraintId =
|
||||
ScopedVisibilityConstraintId(0xffff_fffe);
|
||||
|
||||
/// A special ID that is used for an "always false" / "never visible" constraint.
|
||||
pub(crate) const ALWAYS_FALSE: ScopedVisibilityConstraintId =
|
||||
ScopedVisibilityConstraintId(0xffff_fffd);
|
||||
|
||||
fn is_terminal(self) -> bool {
|
||||
self.0 >= SMALLEST_TERMINAL.0
|
||||
}
|
||||
}
|
||||
|
||||
impl Idx for ScopedVisibilityConstraintId {
|
||||
#[inline]
|
||||
fn new(value: usize) -> Self {
|
||||
assert!(value <= (SMALLEST_TERMINAL.0 as usize));
|
||||
#[allow(clippy::cast_possible_truncation)]
|
||||
Self(value as u32)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn index(self) -> usize {
|
||||
debug_assert!(!self.is_terminal());
|
||||
self.0 as usize
|
||||
}
|
||||
}
|
||||
|
||||
// Rebind some constants locally so that we don't need as many qualifiers below.
|
||||
const ALWAYS_TRUE: ScopedVisibilityConstraintId = ScopedVisibilityConstraintId::ALWAYS_TRUE;
|
||||
const AMBIGUOUS: ScopedVisibilityConstraintId = ScopedVisibilityConstraintId::AMBIGUOUS;
|
||||
const ALWAYS_FALSE: ScopedVisibilityConstraintId = ScopedVisibilityConstraintId::ALWAYS_FALSE;
|
||||
const SMALLEST_TERMINAL: ScopedVisibilityConstraintId = ALWAYS_FALSE;
|
||||
|
||||
/// A collection of visibility constraints for a given scope.
|
||||
#[derive(Debug, PartialEq, Eq, salsa::Update)]
|
||||
pub(crate) struct VisibilityConstraints {
|
||||
interiors: IndexVec<ScopedVisibilityConstraintId, InteriorNode>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Default, PartialEq, Eq)]
|
||||
pub(crate) struct VisibilityConstraintsBuilder {
|
||||
interiors: IndexVec<ScopedVisibilityConstraintId, InteriorNode>,
|
||||
interior_cache: FxHashMap<InteriorNode, ScopedVisibilityConstraintId>,
|
||||
not_cache: FxHashMap<ScopedVisibilityConstraintId, ScopedVisibilityConstraintId>,
|
||||
and_cache: FxHashMap<
|
||||
(ScopedVisibilityConstraintId, ScopedVisibilityConstraintId),
|
||||
ScopedVisibilityConstraintId,
|
||||
>,
|
||||
or_cache: FxHashMap<
|
||||
(ScopedVisibilityConstraintId, ScopedVisibilityConstraintId),
|
||||
ScopedVisibilityConstraintId,
|
||||
>,
|
||||
}
|
||||
|
||||
impl VisibilityConstraintsBuilder {
|
||||
pub(crate) fn build(self) -> VisibilityConstraints {
|
||||
VisibilityConstraints {
|
||||
interiors: self.interiors,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns whether `a` or `b` has a "larger" atom. TDDs are ordered such that interior nodes
|
||||
/// can only have edges to "larger" nodes. Terminals are considered to have a larger atom than
|
||||
/// any internal node, since they are leaf nodes.
|
||||
fn cmp_atoms(
|
||||
&self,
|
||||
a: ScopedVisibilityConstraintId,
|
||||
b: ScopedVisibilityConstraintId,
|
||||
) -> Ordering {
|
||||
if a == b || (a.is_terminal() && b.is_terminal()) {
|
||||
Ordering::Equal
|
||||
} else if a.is_terminal() {
|
||||
Ordering::Greater
|
||||
} else if b.is_terminal() {
|
||||
Ordering::Less
|
||||
} else {
|
||||
self.interiors[a].atom.cmp(&self.interiors[b].atom)
|
||||
}
|
||||
}
|
||||
|
||||
/// Adds an interior node, ensuring that we always use the same visibility constraint ID for
|
||||
/// equal nodes.
|
||||
fn add_interior(&mut self, node: InteriorNode) -> ScopedVisibilityConstraintId {
|
||||
// If the true and false branches lead to the same node, we can override the ambiguous
|
||||
// branch to go there too. And this node is then redundant and can be reduced.
|
||||
if node.if_true == node.if_false {
|
||||
return node.if_true;
|
||||
}
|
||||
|
||||
*self
|
||||
.interior_cache
|
||||
.entry(node)
|
||||
.or_insert_with(|| self.interiors.push(node))
|
||||
}
|
||||
|
||||
/// Adds a new visibility constraint that checks a single [`Predicate`].
|
||||
///
|
||||
/// [`ScopedPredicateId`]s are the “variables” that are evaluated by a TDD. A TDD variable has
|
||||
/// the same value no matter how many times it appears in the ternary formula that the TDD
|
||||
/// represents.
|
||||
///
|
||||
/// However, we sometimes have to model how a `Predicate` can have a different runtime
|
||||
/// value at different points in the execution of the program. To handle this, you can take
|
||||
/// advantage of the fact that the [`Predicates`] arena does not deduplicate `Predicate`s.
|
||||
/// You can add a `Predicate` multiple times, yielding different `ScopedPredicateId`s, which
|
||||
/// you can then create separate TDD atoms for.
|
||||
pub(crate) fn add_atom(
|
||||
&mut self,
|
||||
predicate: ScopedPredicateId,
|
||||
) -> ScopedVisibilityConstraintId {
|
||||
self.add_interior(InteriorNode {
|
||||
atom: predicate,
|
||||
if_true: ALWAYS_TRUE,
|
||||
if_ambiguous: AMBIGUOUS,
|
||||
if_false: ALWAYS_FALSE,
|
||||
})
|
||||
}
|
||||
|
||||
/// Adds a new visibility constraint that is the ternary NOT of an existing one.
|
||||
pub(crate) fn add_not_constraint(
|
||||
&mut self,
|
||||
a: ScopedVisibilityConstraintId,
|
||||
) -> ScopedVisibilityConstraintId {
|
||||
if a == ALWAYS_TRUE {
|
||||
return ALWAYS_FALSE;
|
||||
} else if a == AMBIGUOUS {
|
||||
return AMBIGUOUS;
|
||||
} else if a == ALWAYS_FALSE {
|
||||
return ALWAYS_TRUE;
|
||||
}
|
||||
|
||||
if let Some(cached) = self.not_cache.get(&a) {
|
||||
return *cached;
|
||||
}
|
||||
let a_node = self.interiors[a];
|
||||
let if_true = self.add_not_constraint(a_node.if_true);
|
||||
let if_ambiguous = self.add_not_constraint(a_node.if_ambiguous);
|
||||
let if_false = self.add_not_constraint(a_node.if_false);
|
||||
let result = self.add_interior(InteriorNode {
|
||||
atom: a_node.atom,
|
||||
if_true,
|
||||
if_ambiguous,
|
||||
if_false,
|
||||
});
|
||||
self.not_cache.insert(a, result);
|
||||
result
|
||||
}
|
||||
|
||||
/// Adds a new visibility constraint that is the ternary OR of two existing ones.
|
||||
pub(crate) fn add_or_constraint(
|
||||
&mut self,
|
||||
a: ScopedVisibilityConstraintId,
|
||||
b: ScopedVisibilityConstraintId,
|
||||
) -> ScopedVisibilityConstraintId {
|
||||
match (a, b) {
|
||||
(ALWAYS_TRUE, _) | (_, ALWAYS_TRUE) => return ALWAYS_TRUE,
|
||||
(ALWAYS_FALSE, other) | (other, ALWAYS_FALSE) => return other,
|
||||
(AMBIGUOUS, AMBIGUOUS) => return AMBIGUOUS,
|
||||
_ => {}
|
||||
}
|
||||
|
||||
// OR is commutative, which lets us halve the cache requirements
|
||||
let (a, b) = if b.0 < a.0 { (b, a) } else { (a, b) };
|
||||
if let Some(cached) = self.or_cache.get(&(a, b)) {
|
||||
return *cached;
|
||||
}
|
||||
|
||||
let (atom, if_true, if_ambiguous, if_false) = match self.cmp_atoms(a, b) {
|
||||
Ordering::Equal => {
|
||||
let a_node = self.interiors[a];
|
||||
let b_node = self.interiors[b];
|
||||
let if_true = self.add_or_constraint(a_node.if_true, b_node.if_true);
|
||||
let if_false = self.add_or_constraint(a_node.if_false, b_node.if_false);
|
||||
let if_ambiguous = if if_true == if_false {
|
||||
if_true
|
||||
} else {
|
||||
self.add_or_constraint(a_node.if_ambiguous, b_node.if_ambiguous)
|
||||
};
|
||||
(a_node.atom, if_true, if_ambiguous, if_false)
|
||||
}
|
||||
Ordering::Less => {
|
||||
let a_node = self.interiors[a];
|
||||
let if_true = self.add_or_constraint(a_node.if_true, b);
|
||||
let if_false = self.add_or_constraint(a_node.if_false, b);
|
||||
let if_ambiguous = if if_true == if_false {
|
||||
if_true
|
||||
} else {
|
||||
self.add_or_constraint(a_node.if_ambiguous, b)
|
||||
};
|
||||
(a_node.atom, if_true, if_ambiguous, if_false)
|
||||
}
|
||||
Ordering::Greater => {
|
||||
let b_node = self.interiors[b];
|
||||
let if_true = self.add_or_constraint(a, b_node.if_true);
|
||||
let if_false = self.add_or_constraint(a, b_node.if_false);
|
||||
let if_ambiguous = if if_true == if_false {
|
||||
if_true
|
||||
} else {
|
||||
self.add_or_constraint(a, b_node.if_ambiguous)
|
||||
};
|
||||
(b_node.atom, if_true, if_ambiguous, if_false)
|
||||
}
|
||||
};
|
||||
|
||||
let result = self.add_interior(InteriorNode {
|
||||
atom,
|
||||
if_true,
|
||||
if_ambiguous,
|
||||
if_false,
|
||||
});
|
||||
self.or_cache.insert((a, b), result);
|
||||
result
|
||||
}
|
||||
|
||||
/// Adds a new visibility constraint that is the ternary AND of two existing ones.
|
||||
pub(crate) fn add_and_constraint(
|
||||
&mut self,
|
||||
a: ScopedVisibilityConstraintId,
|
||||
b: ScopedVisibilityConstraintId,
|
||||
) -> ScopedVisibilityConstraintId {
|
||||
match (a, b) {
|
||||
(ALWAYS_FALSE, _) | (_, ALWAYS_FALSE) => return ALWAYS_FALSE,
|
||||
(ALWAYS_TRUE, other) | (other, ALWAYS_TRUE) => return other,
|
||||
(AMBIGUOUS, AMBIGUOUS) => return AMBIGUOUS,
|
||||
_ => {}
|
||||
}
|
||||
|
||||
// AND is commutative, which lets us halve the cache requirements
|
||||
let (a, b) = if b.0 < a.0 { (b, a) } else { (a, b) };
|
||||
if let Some(cached) = self.and_cache.get(&(a, b)) {
|
||||
return *cached;
|
||||
}
|
||||
|
||||
let (atom, if_true, if_ambiguous, if_false) = match self.cmp_atoms(a, b) {
|
||||
Ordering::Equal => {
|
||||
let a_node = self.interiors[a];
|
||||
let b_node = self.interiors[b];
|
||||
let if_true = self.add_and_constraint(a_node.if_true, b_node.if_true);
|
||||
let if_false = self.add_and_constraint(a_node.if_false, b_node.if_false);
|
||||
let if_ambiguous = if if_true == if_false {
|
||||
if_true
|
||||
} else {
|
||||
self.add_and_constraint(a_node.if_ambiguous, b_node.if_ambiguous)
|
||||
};
|
||||
(a_node.atom, if_true, if_ambiguous, if_false)
|
||||
}
|
||||
Ordering::Less => {
|
||||
let a_node = self.interiors[a];
|
||||
let if_true = self.add_and_constraint(a_node.if_true, b);
|
||||
let if_false = self.add_and_constraint(a_node.if_false, b);
|
||||
let if_ambiguous = if if_true == if_false {
|
||||
if_true
|
||||
} else {
|
||||
self.add_and_constraint(a_node.if_ambiguous, b)
|
||||
};
|
||||
(a_node.atom, if_true, if_ambiguous, if_false)
|
||||
}
|
||||
Ordering::Greater => {
|
||||
let b_node = self.interiors[b];
|
||||
let if_true = self.add_and_constraint(a, b_node.if_true);
|
||||
let if_false = self.add_and_constraint(a, b_node.if_false);
|
||||
let if_ambiguous = if if_true == if_false {
|
||||
if_true
|
||||
} else {
|
||||
self.add_and_constraint(a, b_node.if_ambiguous)
|
||||
};
|
||||
(b_node.atom, if_true, if_ambiguous, if_false)
|
||||
}
|
||||
};
|
||||
|
||||
let result = self.add_interior(InteriorNode {
|
||||
atom,
|
||||
if_true,
|
||||
if_ambiguous,
|
||||
if_false,
|
||||
});
|
||||
self.and_cache.insert((a, b), result);
|
||||
result
|
||||
}
|
||||
}
|
||||
|
||||
impl VisibilityConstraints {
|
||||
/// Analyze the statically known visibility for a given visibility constraint.
|
||||
pub(crate) fn evaluate<'db>(
|
||||
&self,
|
||||
db: &'db dyn Db,
|
||||
predicates: &Predicates<'db>,
|
||||
mut id: ScopedVisibilityConstraintId,
|
||||
) -> Truthiness {
|
||||
loop {
|
||||
let node = match id {
|
||||
ALWAYS_TRUE => return Truthiness::AlwaysTrue,
|
||||
AMBIGUOUS => return Truthiness::Ambiguous,
|
||||
ALWAYS_FALSE => return Truthiness::AlwaysFalse,
|
||||
_ => self.interiors[id],
|
||||
};
|
||||
let predicate = &predicates[node.atom];
|
||||
match Self::analyze_single(db, predicate) {
|
||||
Truthiness::AlwaysTrue => id = node.if_true,
|
||||
Truthiness::Ambiguous => id = node.if_ambiguous,
|
||||
Truthiness::AlwaysFalse => id = node.if_false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn analyze_single_pattern_predicate_kind<'db>(
|
||||
db: &'db dyn Db,
|
||||
predicate_kind: &PatternPredicateKind<'db>,
|
||||
subject: Expression<'db>,
|
||||
) -> Truthiness {
|
||||
match predicate_kind {
|
||||
PatternPredicateKind::Value(value) => {
|
||||
let subject_ty = infer_expression_type(db, subject);
|
||||
let value_ty = infer_expression_type(db, *value);
|
||||
|
||||
if subject_ty.is_single_valued(db) {
|
||||
Truthiness::from(subject_ty.is_equivalent_to(db, value_ty))
|
||||
} else {
|
||||
Truthiness::Ambiguous
|
||||
}
|
||||
}
|
||||
PatternPredicateKind::Singleton(singleton) => {
|
||||
let subject_ty = infer_expression_type(db, subject);
|
||||
|
||||
let singleton_ty = match singleton {
|
||||
ruff_python_ast::Singleton::None => Type::none(db),
|
||||
ruff_python_ast::Singleton::True => Type::BooleanLiteral(true),
|
||||
ruff_python_ast::Singleton::False => Type::BooleanLiteral(false),
|
||||
};
|
||||
|
||||
debug_assert!(singleton_ty.is_singleton(db));
|
||||
|
||||
if subject_ty.is_equivalent_to(db, singleton_ty) {
|
||||
Truthiness::AlwaysTrue
|
||||
} else if subject_ty.is_disjoint_from(db, singleton_ty) {
|
||||
Truthiness::AlwaysFalse
|
||||
} else {
|
||||
Truthiness::Ambiguous
|
||||
}
|
||||
}
|
||||
PatternPredicateKind::Or(predicates) => {
|
||||
use std::ops::ControlFlow;
|
||||
let (ControlFlow::Break(truthiness) | ControlFlow::Continue(truthiness)) =
|
||||
predicates
|
||||
.iter()
|
||||
.map(|p| Self::analyze_single_pattern_predicate_kind(db, p, subject))
|
||||
// this is just a "max", but with a slight optimization: `AlwaysTrue` is the "greatest" possible element, so we short-circuit if we get there
|
||||
.try_fold(Truthiness::AlwaysFalse, |acc, next| match (acc, next) {
|
||||
(Truthiness::AlwaysTrue, _) | (_, Truthiness::AlwaysTrue) => {
|
||||
ControlFlow::Break(Truthiness::AlwaysTrue)
|
||||
}
|
||||
(Truthiness::Ambiguous, _) | (_, Truthiness::Ambiguous) => {
|
||||
ControlFlow::Continue(Truthiness::Ambiguous)
|
||||
}
|
||||
(Truthiness::AlwaysFalse, Truthiness::AlwaysFalse) => {
|
||||
ControlFlow::Continue(Truthiness::AlwaysFalse)
|
||||
}
|
||||
});
|
||||
truthiness
|
||||
}
|
||||
PatternPredicateKind::Class(class_expr) => {
|
||||
let subject_ty = infer_expression_type(db, subject);
|
||||
let class_ty = infer_expression_type(db, *class_expr).to_instance(db);
|
||||
|
||||
class_ty.map_or(Truthiness::Ambiguous, |class_ty| {
|
||||
if subject_ty.is_subtype_of(db, class_ty) {
|
||||
Truthiness::AlwaysTrue
|
||||
} else if subject_ty.is_disjoint_from(db, class_ty) {
|
||||
Truthiness::AlwaysFalse
|
||||
} else {
|
||||
Truthiness::Ambiguous
|
||||
}
|
||||
})
|
||||
}
|
||||
PatternPredicateKind::Unsupported => Truthiness::Ambiguous,
|
||||
}
|
||||
}
|
||||
|
||||
fn analyze_single_pattern_predicate(db: &dyn Db, predicate: PatternPredicate) -> Truthiness {
|
||||
let truthiness = Self::analyze_single_pattern_predicate_kind(
|
||||
db,
|
||||
predicate.kind(db),
|
||||
predicate.subject(db),
|
||||
);
|
||||
|
||||
if truthiness == Truthiness::AlwaysTrue && predicate.guard(db).is_some() {
|
||||
// Fall back to ambiguous, the guard might change the result.
|
||||
// TODO: actually analyze guard truthiness
|
||||
Truthiness::Ambiguous
|
||||
} else {
|
||||
truthiness
|
||||
}
|
||||
}
|
||||
|
||||
fn analyze_single(db: &dyn Db, predicate: &Predicate) -> Truthiness {
|
||||
match predicate.node {
|
||||
PredicateNode::Expression(test_expr) => {
|
||||
let ty = infer_expression_type(db, test_expr);
|
||||
ty.bool(db).negate_if(!predicate.is_positive)
|
||||
}
|
||||
PredicateNode::Pattern(inner) => Self::analyze_single_pattern_predicate(db, inner),
|
||||
PredicateNode::StarImportPlaceholder(star_import) => {
|
||||
let symbol_table = symbol_table(db, star_import.scope(db));
|
||||
let symbol_name = symbol_table.symbol(star_import.symbol_id(db)).name();
|
||||
match imported_symbol(db, star_import.referenced_file(db), symbol_name).symbol {
|
||||
crate::symbol::Symbol::Type(_, crate::symbol::Boundness::Bound) => {
|
||||
Truthiness::AlwaysTrue
|
||||
}
|
||||
crate::symbol::Symbol::Type(_, crate::symbol::Boundness::PossiblyUnbound) => {
|
||||
Truthiness::Ambiguous
|
||||
}
|
||||
crate::symbol::Symbol::Unbound => Truthiness::AlwaysFalse,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue