[ty] Consider domain of BDD when checking whether always satisfiable (#21050)

That PR title might be a bit inscrutable.

Consider the two constraints `T ≤ bool` and `T ≤ int`. Since `bool ≤
int`, by transitivity `T ≤ bool` implies `T ≤ int`. (Every type that is
a subtype of `bool` is necessarily also a subtype of `int`.) That means
that `T ≤ bool ∧ T ≰ int` is an impossible combination of constraints,
and is therefore not a valid input to any BDD. We say that that
assignment is not in the _domain_ of the BDD.

The implication `T ≤ bool → T ≤ int` can be rewritten as `T ≰ bool ∨ T ≤
int`. (That's the definition of implication.) If we construct that
constraint set in an mdtest, we should get a constraint set that is
always satisfiable. Previously, that constraint set would correctly
_display_ as `always`, but a `static_assert` on it would fail.

The underlying cause is that our `is_always_satisfied` method would only
test if the BDD was the `AlwaysTrue` terminal node. `T ≰ bool ∨ T ≤ int`
does not simplify that far, because we purposefully keep around those
constraints in the BDD structure so that it's easier to compare against
other BDDs that reference those constraints.

To fix this, we need a more nuanced definition of "always satisfied".
Instead of evaluating to `true` for _every_ input, we only need it to
evaluate to `true` for every _valid_ input — that is, every input in its
domain.
This commit is contained in:
Douglas Creager 2025-10-24 13:37:56 -04:00 committed by GitHub
parent f17ddd62ad
commit c3de8847d5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 194 additions and 76 deletions

View file

@ -604,6 +604,8 @@ def _[T, U]() -> None:
## Other simplifications
### Displaying constraint sets
When displaying a constraint set, we transform the internal BDD representation into a DNF formula
(i.e., the logical OR of several clauses, each of which is the logical AND of several constraints).
This section contains several examples that show that we simplify the DNF formula as much as we can
@ -626,11 +628,44 @@ def f[T, U]():
reveal_type((t1 | t2) & (u1 | u2))
```
We might simplify a BDD so much that we can no longer see the constraints that we used to construct
it!
```py
from typing import Never
from ty_extensions import static_assert
def f[T]():
t_int = range_constraint(Never, T, int)
t_bool = range_constraint(Never, T, bool)
# `T ≤ bool` implies `T ≤ int`: if a type satisfies the former, it must always satisfy the
# latter. We can turn that into a constraint set, using the equivalence `p → q == ¬p q`:
implication = ~t_bool | t_int
# revealed: ty_extensions.ConstraintSet[always]
reveal_type(implication)
static_assert(implication)
# However, because of that implication, some inputs aren't valid: it's not possible for
# `T ≤ bool` to be true and `T ≤ int` to be false. This is reflected in the constraint set's
# "domain", which maps valid inputs to `true` and invalid inputs to `false`. This means that two
# constraint sets that are both always satisfied will not be identical if they have different
# domains!
always = range_constraint(Never, T, object)
# revealed: ty_extensions.ConstraintSet[always]
reveal_type(always)
static_assert(always)
static_assert(implication != always)
```
### Normalized bounds
The lower and upper bounds of a constraint are normalized, so that we equate unions and
intersections whose elements appear in different orders.
```py
from typing import Never
from ty_extensions import range_constraint
def f[T]():
# revealed: ty_extensions.ConstraintSet[(T@f ≤ int | str)]

View file

@ -1234,7 +1234,7 @@ impl<'db> Type<'db> {
self.filter_union(db, |elem| {
!elem
.when_disjoint_from(db, target, inferable)
.is_always_satisfied()
.is_always_satisfied(db)
})
}
@ -1524,7 +1524,7 @@ impl<'db> Type<'db> {
/// See [`TypeRelation::Subtyping`] for more details.
pub(crate) fn is_subtype_of(self, db: &'db dyn Db, target: Type<'db>) -> bool {
self.when_subtype_of(db, target, InferableTypeVars::None)
.is_always_satisfied()
.is_always_satisfied(db)
}
fn when_subtype_of(
@ -1541,7 +1541,7 @@ impl<'db> Type<'db> {
/// See [`TypeRelation::Assignability`] for more details.
pub(crate) fn is_assignable_to(self, db: &'db dyn Db, target: Type<'db>) -> bool {
self.when_assignable_to(db, target, InferableTypeVars::None)
.is_always_satisfied()
.is_always_satisfied(db)
}
fn when_assignable_to(
@ -1559,7 +1559,7 @@ impl<'db> Type<'db> {
#[salsa::tracked(cycle_initial=is_redundant_with_cycle_initial, heap_size=ruff_memory_usage::heap_size)]
pub(crate) fn is_redundant_with(self, db: &'db dyn Db, other: Type<'db>) -> bool {
self.has_relation_to(db, other, InferableTypeVars::None, TypeRelation::Redundancy)
.is_always_satisfied()
.is_always_satisfied(db)
}
fn has_relation_to(
@ -1782,7 +1782,7 @@ impl<'db> Type<'db> {
)
})
})
.is_never_satisfied() =>
.is_never_satisfied(db) =>
{
// TODO: The repetition here isn't great, but we really need the fallthrough logic,
// where this arm only engages if it returns true (or in the world of constraints,
@ -1925,7 +1925,7 @@ impl<'db> Type<'db> {
relation_visitor,
disjointness_visitor,
)
.is_never_satisfied()
.is_never_satisfied(db)
}) =>
{
// TODO: record the unification constraints
@ -2405,7 +2405,7 @@ impl<'db> Type<'db> {
/// [equivalent to]: https://typing.python.org/en/latest/spec/glossary.html#term-equivalent
pub(crate) fn is_equivalent_to(self, db: &'db dyn Db, other: Type<'db>) -> bool {
self.when_equivalent_to(db, other, InferableTypeVars::None)
.is_always_satisfied()
.is_always_satisfied(db)
}
fn when_equivalent_to(
@ -2528,7 +2528,7 @@ impl<'db> Type<'db> {
/// `false` answers in some cases.
pub(crate) fn is_disjoint_from(self, db: &'db dyn Db, other: Type<'db>) -> bool {
self.when_disjoint_from(db, other, InferableTypeVars::None)
.is_always_satisfied()
.is_always_satisfied(db)
}
fn when_disjoint_from(
@ -4631,7 +4631,7 @@ impl<'db> Type<'db> {
Type::KnownInstance(KnownInstanceType::ConstraintSet(tracked_set)) => {
let constraints = tracked_set.constraints(db);
Truthiness::from(constraints.is_always_satisfied())
Truthiness::from(constraints.is_always_satisfied(db))
}
Type::FunctionLiteral(_)
@ -7450,7 +7450,6 @@ impl<'db> TypeMapping<'_, 'db> {
#[salsa::tracked(debug, heap_size=ruff_memory_usage::heap_size)]
#[derive(PartialOrd, Ord)]
pub struct TrackedConstraintSet<'db> {
#[returns(ref)]
constraints: ConstraintSet<'db>,
}
@ -7646,17 +7645,11 @@ impl<'db> KnownInstanceType<'db> {
}
KnownInstanceType::ConstraintSet(tracked_set) => {
let constraints = tracked_set.constraints(self.db);
if constraints.is_always_satisfied() {
f.write_str("ty_extensions.ConstraintSet[always]")
} else if constraints.is_never_satisfied() {
f.write_str("ty_extensions.ConstraintSet[never]")
} else {
write!(
f,
"ty_extensions.ConstraintSet[{}]",
constraints.display(self.db)
)
}
write!(
f,
"ty_extensions.ConstraintSet[{}]",
constraints.display(self.db)
)
}
}
}

View file

@ -1474,7 +1474,7 @@ impl<'db> CallableBinding<'db> {
.unwrap_or(Type::unknown());
if argument_type
.when_assignable_to(db, parameter_type, overload.inferable_typevars)
.is_always_satisfied()
.is_always_satisfied(db)
{
is_argument_assignable_to_any_overload = true;
break 'overload;
@ -1707,7 +1707,7 @@ impl<'db> CallableBinding<'db> {
current_parameter_type,
overload.inferable_typevars,
)
.is_always_satisfied()
.is_always_satisfied(db)
{
participating_parameter_indexes.insert(parameter_index);
}
@ -1830,7 +1830,7 @@ impl<'db> CallableBinding<'db> {
first_overload_return_type,
overload.inferable_typevars,
)
.is_always_satisfied()
.is_always_satisfied(db)
})
} else {
// No matching overload
@ -2705,7 +2705,7 @@ impl<'a, 'db> ArgumentTypeChecker<'a, 'db> {
// building them in an earlier separate step.
if argument_type
.when_assignable_to(self.db, expected_ty, self.inferable_typevars)
.is_never_satisfied()
.is_never_satisfied(self.db)
{
let positional = matches!(argument, Argument::Positional | Argument::Synthetic)
&& !parameter.is_variadic();
@ -2839,7 +2839,7 @@ impl<'a, 'db> ArgumentTypeChecker<'a, 'db> {
KnownClass::Str.to_instance(self.db),
self.inferable_typevars,
)
.is_always_satisfied()
.is_always_satisfied(self.db)
{
self.errors.push(BindingError::InvalidKeyType {
argument_index: adjusted_argument_index,

View file

@ -499,7 +499,7 @@ impl<'db> ClassType<'db> {
/// Return `true` if `other` is present in this class's MRO.
pub(super) fn is_subclass_of(self, db: &'db dyn Db, other: ClassType<'db>) -> bool {
self.when_subclass_of(db, other, InferableTypeVars::None)
.is_always_satisfied()
.is_always_satisfied(db)
}
pub(super) fn when_subclass_of(

View file

@ -98,7 +98,7 @@ pub(crate) trait IteratorConstraintsExtension<T> {
/// Returns the constraints under which any element of the iterator holds.
///
/// This method short-circuits; if we encounter any element that
/// [`is_always_satisfied`][ConstraintSet::is_always_satisfied] true, then the overall result
/// [`is_always_satisfied`][ConstraintSet::is_always_satisfied], then the overall result
/// must be as well, and we stop consuming elements from the iterator.
fn when_any<'db>(
self,
@ -109,7 +109,7 @@ pub(crate) trait IteratorConstraintsExtension<T> {
/// Returns the constraints under which every element of the iterator holds.
///
/// This method short-circuits; if we encounter any element that
/// [`is_never_satisfied`][ConstraintSet::is_never_satisfied] true, then the overall result
/// [`is_never_satisfied`][ConstraintSet::is_never_satisfied], then the overall result
/// must be as well, and we stop consuming elements from the iterator.
fn when_all<'db>(
self,
@ -129,7 +129,7 @@ where
) -> ConstraintSet<'db> {
let mut result = ConstraintSet::never();
for child in self {
if result.union(db, f(child)).is_always_satisfied() {
if result.union(db, f(child)).is_always_satisfied(db) {
return result;
}
}
@ -143,7 +143,7 @@ where
) -> ConstraintSet<'db> {
let mut result = ConstraintSet::always();
for child in self {
if result.intersect(db, f(child)).is_never_satisfied() {
if result.intersect(db, f(child)).is_never_satisfied(db) {
return result;
}
}
@ -176,13 +176,13 @@ impl<'db> ConstraintSet<'db> {
}
/// Returns whether this constraint set never holds
pub(crate) fn is_never_satisfied(self) -> bool {
pub(crate) fn is_never_satisfied(self, _db: &'db dyn Db) -> bool {
self.node.is_never_satisfied()
}
/// Returns whether this constraint set always holds
pub(crate) fn is_always_satisfied(self) -> bool {
self.node.is_always_satisfied()
pub(crate) fn is_always_satisfied(self, db: &'db dyn Db) -> bool {
self.node.is_always_satisfied(db)
}
/// Updates this constraint set to hold the union of itself and another constraint set.
@ -208,7 +208,7 @@ impl<'db> ConstraintSet<'db> {
/// provided as a thunk, to implement short-circuiting: the thunk is not forced if the
/// constraint set is already saturated.
pub(crate) fn and(mut self, db: &'db dyn Db, other: impl FnOnce() -> Self) -> Self {
if !self.is_never_satisfied() {
if !self.is_never_satisfied(db) {
self.intersect(db, other());
}
self
@ -218,7 +218,7 @@ impl<'db> ConstraintSet<'db> {
/// as a thunk, to implement short-circuiting: the thunk is not forced if the constraint set is
/// already saturated.
pub(crate) fn or(mut self, db: &'db dyn Db, other: impl FnOnce() -> Self) -> Self {
if !self.is_always_satisfied() {
if !self.is_always_satisfied(db) {
self.union(db, other());
}
self
@ -247,7 +247,7 @@ impl<'db> ConstraintSet<'db> {
}
pub(crate) fn display(self, db: &'db dyn Db) -> impl Display {
self.node.display(db)
self.node.simplify(db).display(db)
}
}
@ -494,8 +494,16 @@ impl<'db> Node<'db> {
}
/// Returns whether this BDD represent the constant function `true`.
fn is_always_satisfied(self) -> bool {
matches!(self, Node::AlwaysTrue)
fn is_always_satisfied(self, db: &'db dyn Db) -> bool {
match self {
Node::AlwaysTrue => true,
Node::AlwaysFalse => false,
Node::Interior(_) => {
let domain = self.domain(db);
let restricted = self.and(db, domain);
restricted == domain
}
}
}
/// Returns whether this BDD represent the constant function `false`.
@ -538,6 +546,11 @@ impl<'db> Node<'db> {
}
}
fn implies(self, db: &'db dyn Db, other: Self) -> Self {
// p → q == ¬p q
self.negate(db).or(db, other)
}
/// Returns a new BDD that evaluates to `true` when both input BDDs evaluate to the same
/// result.
fn iff(self, db: &'db dyn Db, other: Self) -> Self {
@ -738,7 +751,21 @@ impl<'db> Node<'db> {
fn simplify(self, db: &'db dyn Db) -> Self {
match self {
Node::AlwaysTrue | Node::AlwaysFalse => self,
Node::Interior(interior) => interior.simplify(db),
Node::Interior(interior) => {
let (simplified, _) = interior.simplify(db);
simplified
}
}
}
/// Returns the domain (the set of allowed inputs) for a BDD.
fn domain(self, db: &'db dyn Db) -> Self {
match self {
Node::AlwaysTrue | Node::AlwaysFalse => Node::AlwaysTrue,
Node::Interior(interior) => {
let (_, domain) = interior.simplify(db);
domain
}
}
}
@ -801,10 +828,7 @@ impl<'db> Node<'db> {
}
}
DisplayNode {
node: self.simplify(db),
db,
}
DisplayNode { node: self, db }
}
/// Displays the full graph structure of this BDD. `prefix` will be output before each line
@ -1009,8 +1033,14 @@ impl<'db> InteriorNode<'db> {
}
}
/// Returns a simplified version of a BDD, along with the BDD's domain.
///
/// Both are calculated by looking at the relationships that exist between the constraints that
/// are mentioned in the BDD. For instance, if one constraint implies another (`x → y`), then
/// `x ∧ ¬y` is not a valid input, and is excluded from the BDD's domain. At the same time, we
/// can rewrite any occurrences of `x y` into `y`.
#[salsa::tracked(heap_size=ruff_memory_usage::heap_size)]
fn simplify(self, db: &'db dyn Db) -> Node<'db> {
fn simplify(self, db: &'db dyn Db) -> (Node<'db>, Node<'db>) {
// To simplify a non-terminal BDD, we find all pairs of constraints that are mentioned in
// the BDD. If any of those pairs can be simplified to some other BDD, we perform a
// substitution to replace the pair with the simplification.
@ -1037,6 +1067,7 @@ impl<'db> InteriorNode<'db> {
// Repeatedly pop constraint pairs off of the visit queue, checking whether each pair can
// be simplified.
let mut simplified = Node::Interior(self);
let mut domain = Node::AlwaysTrue;
while let Some((left_constraint, right_constraint)) = to_visit.pop() {
// If the constraints refer to different typevars, they trivially cannot be compared.
// TODO: We might need to consider when one constraint's upper or lower bound refers to
@ -1056,12 +1087,24 @@ impl<'db> InteriorNode<'db> {
None
};
if let Some((larger_constraint, smaller_constraint)) = larger_smaller {
let positive_larger_node =
Node::new_satisfied_constraint(db, larger_constraint.when_true());
let negative_larger_node =
Node::new_satisfied_constraint(db, larger_constraint.when_false());
let positive_smaller_node =
Node::new_satisfied_constraint(db, smaller_constraint.when_true());
// smaller → larger
let implication = positive_smaller_node.implies(db, positive_larger_node);
domain = domain.and(db, implication);
// larger smaller = larger
simplified = simplified.substitute_union(
db,
larger_constraint.when_true(),
smaller_constraint.when_true(),
Node::new_satisfied_constraint(db, larger_constraint.when_true()),
positive_larger_node,
);
// ¬larger ∧ ¬smaller = ¬larger
@ -1069,7 +1112,7 @@ impl<'db> InteriorNode<'db> {
db,
larger_constraint.when_false(),
smaller_constraint.when_false(),
Node::new_satisfied_constraint(db, larger_constraint.when_false()),
negative_larger_node,
);
// smaller ∧ ¬larger = false
@ -1111,6 +1154,21 @@ impl<'db> InteriorNode<'db> {
let negative_intersection_node =
Node::new_satisfied_constraint(db, intersection_constraint.when_false());
let positive_left_node =
Node::new_satisfied_constraint(db, left_constraint.when_true());
let negative_left_node =
Node::new_satisfied_constraint(db, left_constraint.when_false());
let positive_right_node =
Node::new_satisfied_constraint(db, right_constraint.when_true());
let negative_right_node =
Node::new_satisfied_constraint(db, right_constraint.when_false());
// (left ∧ right) → intersection
let implication = (positive_left_node.and(db, positive_right_node))
.implies(db, positive_intersection_node);
domain = domain.and(db, implication);
// left ∧ right = intersection
simplified = simplified.substitute_intersection(
db,
@ -1134,8 +1192,7 @@ impl<'db> InteriorNode<'db> {
db,
left_constraint.when_true(),
right_constraint.when_false(),
Node::new_satisfied_constraint(db, left_constraint.when_true())
.and(db, negative_intersection_node),
positive_left_node.and(db, negative_intersection_node),
);
// ¬left ∧ right = ¬intersection ∧ right
@ -1144,8 +1201,7 @@ impl<'db> InteriorNode<'db> {
db,
left_constraint.when_false(),
right_constraint.when_true(),
Node::new_satisfied_constraint(db, right_constraint.when_true())
.and(db, negative_intersection_node),
positive_right_node.and(db, negative_intersection_node),
);
// left ¬right = intersection ¬right
@ -1155,8 +1211,7 @@ impl<'db> InteriorNode<'db> {
db,
left_constraint.when_true(),
right_constraint.when_false(),
Node::new_satisfied_constraint(db, right_constraint.when_false())
.or(db, positive_intersection_node),
negative_right_node.or(db, positive_intersection_node),
);
// ¬left right = ¬left intersection
@ -1165,8 +1220,7 @@ impl<'db> InteriorNode<'db> {
db,
left_constraint.when_false(),
right_constraint.when_true(),
Node::new_satisfied_constraint(db, left_constraint.when_false())
.or(db, positive_intersection_node),
negative_left_node.or(db, positive_intersection_node),
);
}
@ -1174,6 +1228,16 @@ impl<'db> InteriorNode<'db> {
// All of the below hold because we just proved that the intersection of left
// and right is empty.
let positive_left_node =
Node::new_satisfied_constraint(db, left_constraint.when_true());
let positive_right_node =
Node::new_satisfied_constraint(db, right_constraint.when_true());
// (left ∧ right) → false
let implication = (positive_left_node.and(db, positive_right_node))
.implies(db, Node::AlwaysFalse);
domain = domain.and(db, implication);
// left ∧ right = false
simplified = simplified.substitute_intersection(
db,
@ -1196,7 +1260,7 @@ impl<'db> InteriorNode<'db> {
db,
left_constraint.when_true(),
right_constraint.when_false(),
Node::new_constraint(db, left_constraint),
positive_left_node,
);
// ¬left ∧ right = right
@ -1205,13 +1269,13 @@ impl<'db> InteriorNode<'db> {
db,
left_constraint.when_false(),
right_constraint.when_true(),
Node::new_constraint(db, right_constraint),
positive_right_node,
);
}
}
}
simplified
(simplified, domain)
}
}
@ -1459,6 +1523,11 @@ impl<'db> SatisfiedClauses<'db> {
while self.simplify_one_round() {
// Keep going
}
// We can remove any clauses that have been simplified to the point where they are empty.
// (Clauses are intersections, so an empty clause is `false`, which does not contribute
// anything to the outer union.)
self.clauses.retain(|clause| !clause.constraints.is_empty());
}
fn simplify_one_round(&mut self) -> bool {

View file

@ -1179,7 +1179,7 @@ impl<'db> Specialization<'db> {
),
TypeVarVariance::Bivariant => ConstraintSet::from(true),
};
if result.intersect(db, compatible).is_never_satisfied() {
if result.intersect(db, compatible).is_never_satisfied(db) {
return result;
}
}
@ -1221,7 +1221,7 @@ impl<'db> Specialization<'db> {
}
TypeVarVariance::Bivariant => ConstraintSet::from(true),
};
if result.intersect(db, compatible).is_never_satisfied() {
if result.intersect(db, compatible).is_never_satisfied(db) {
return result;
}
}
@ -1232,7 +1232,7 @@ impl<'db> Specialization<'db> {
(Some(self_tuple), Some(other_tuple)) => {
let compatible =
self_tuple.is_equivalent_to_impl(db, other_tuple, inferable, visitor);
if result.intersect(db, compatible).is_never_satisfied() {
if result.intersect(db, compatible).is_never_satisfied(db) {
return result;
}
}
@ -1386,7 +1386,7 @@ impl<'db> SpecializationBuilder<'db> {
&& !actual.is_never()
&& actual
.when_subtype_of(self.db, formal, self.inferable)
.is_always_satisfied()
.is_always_satisfied(self.db)
{
return Ok(());
}
@ -1472,7 +1472,7 @@ impl<'db> SpecializationBuilder<'db> {
Some(TypeVarBoundOrConstraints::UpperBound(bound)) => {
if !ty
.when_assignable_to(self.db, bound, self.inferable)
.is_always_satisfied()
.is_always_satisfied(self.db)
{
return Err(SpecializationError::MismatchedBound {
bound_typevar,
@ -1485,7 +1485,7 @@ impl<'db> SpecializationBuilder<'db> {
for constraint in constraints.elements(self.db) {
if ty
.when_assignable_to(self.db, *constraint, self.inferable)
.is_always_satisfied()
.is_always_satisfied(self.db)
{
self.add_type_mapping(bound_typevar, *constraint);
return Ok(());

View file

@ -8189,7 +8189,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
) => {
let left = left.constraints(self.db());
let right = right.constraints(self.db());
let result = left.and(self.db(), || *right);
let result = left.and(self.db(), || right);
Some(Type::KnownInstance(KnownInstanceType::ConstraintSet(
TrackedConstraintSet::new(self.db(), result),
)))
@ -8202,7 +8202,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
) => {
let left = left.constraints(self.db());
let right = right.constraints(self.db());
let result = left.or(self.db(), || *right);
let result = left.or(self.db(), || right);
Some(Type::KnownInstance(KnownInstanceType::ConstraintSet(
TrackedConstraintSet::new(self.db(), result),
)))
@ -8930,6 +8930,19 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
}))
}
(
Type::KnownInstance(KnownInstanceType::ConstraintSet(left)),
Type::KnownInstance(KnownInstanceType::ConstraintSet(right)),
) => match op {
ast::CmpOp::Eq => Some(Ok(Type::BooleanLiteral(
left.constraints(self.db()) == right.constraints(self.db())
))),
ast::CmpOp::NotEq => Some(Ok(Type::BooleanLiteral(
left.constraints(self.db()) != right.constraints(self.db())
))),
_ => None,
}
(
Type::NominalInstance(nominal1),
Type::NominalInstance(nominal2),

View file

@ -429,7 +429,7 @@ impl<'db> NominalInstanceType<'db> {
disjointness_visitor,
relation_visitor,
);
if result.union(db, compatible).is_always_satisfied() {
if result.union(db, compatible).is_always_satisfied(db) {
return result;
}
}
@ -659,7 +659,7 @@ impl<'db> ProtocolInstanceType<'db> {
&HasRelationToVisitor::default(),
&IsDisjointVisitor::default(),
)
.is_always_satisfied()
.is_always_satisfied(db)
}
fn initial<'db>(_db: &'db dyn Db, _value: ProtocolInstanceType<'db>, _: ()) -> bool {

View file

@ -621,7 +621,7 @@ impl<'db> Signature<'db> {
db,
self_type.is_equivalent_to_impl(db, other_type, inferable, visitor),
)
.is_never_satisfied()
.is_never_satisfied(db)
};
if self.parameters.is_gradual() != other.parameters.is_gradual() {
@ -787,7 +787,7 @@ impl<'db> Signature<'db> {
disjointness_visitor,
),
)
.is_never_satisfied()
.is_never_satisfied(db)
};
// Return types are covariant.

View file

@ -477,7 +477,7 @@ impl<'db> FixedLengthTuple<Type<'db>> {
);
if result
.intersect(db, element_constraints)
.is_never_satisfied()
.is_never_satisfied(db)
{
return result;
}
@ -496,7 +496,7 @@ impl<'db> FixedLengthTuple<Type<'db>> {
);
if result
.intersect(db, element_constraints)
.is_never_satisfied()
.is_never_satisfied(db)
{
return result;
}
@ -834,7 +834,7 @@ impl<'db> VariableLengthTuple<Type<'db>> {
);
if result
.intersect(db, element_constraints)
.is_never_satisfied()
.is_never_satisfied(db)
{
return result;
}
@ -854,7 +854,7 @@ impl<'db> VariableLengthTuple<Type<'db>> {
);
if result
.intersect(db, element_constraints)
.is_never_satisfied()
.is_never_satisfied(db)
{
return result;
}
@ -907,7 +907,10 @@ impl<'db> VariableLengthTuple<Type<'db>> {
return ConstraintSet::from(false);
}
};
if result.intersect(db, pair_constraints).is_never_satisfied() {
if result
.intersect(db, pair_constraints)
.is_never_satisfied(db)
{
return result;
}
}
@ -943,7 +946,10 @@ impl<'db> VariableLengthTuple<Type<'db>> {
return ConstraintSet::from(false);
}
};
if result.intersect(db, pair_constraints).is_never_satisfied() {
if result
.intersect(db, pair_constraints)
.is_never_satisfied(db)
{
return result;
}
}

View file

@ -44,6 +44,8 @@ type JustComplex = TypeOf[1.0j]
# Constraints
class ConstraintSet:
def __bool__(self) -> bool: ...
def __eq__(self, other: ConstraintSet) -> bool: ...
def __ne__(self, other: ConstraintSet) -> bool: ...
def __and__(self, other: ConstraintSet) -> ConstraintSet: ...
def __or__(self, other: ConstraintSet) -> ConstraintSet: ...
def __invert__(self) -> ConstraintSet: ...