[ty] add support for mapped union and intersection subscript loads (#18846)

## Summary

Note this modifies the diagnostics a bit. Previously performing
subscript access on something like `NotSubscriptable1 |
NotSubscriptable2` would report the full type as not being
subscriptable:

```
[non-subscriptable] "Cannot subscript object of type `NotSubscriptable1 | NotSubscriptable2` with no `__getitem__` method"
```

Now each erroneous constituent has a separate error:

```
[non-subscriptable] "Cannot subscript object of type `NotSubscriptable2` with no `__getitem__` method"
[non-subscriptable] "Cannot subscript object of type `NotSubscriptable1` with no `__getitem__` method"
```

Closes https://github.com/astral-sh/ty/issues/625

## Test Plan

 mdtest

---------

Co-authored-by: Carl Meyer <carl@astral.sh>
This commit is contained in:
Suneet Tipirneni 2025-06-23 12:38:01 -04:00 committed by GitHub
parent a77db3da3f
commit ef8281b695
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 54 additions and 24 deletions

View file

@ -258,7 +258,8 @@ class NotSubscriptable2:
self.__getitem__ = external_getitem
def _(union: NotSubscriptable1 | NotSubscriptable2):
# error: [non-subscriptable]
# error: [non-subscriptable] "Cannot subscript object of type `NotSubscriptable2` with no `__getitem__` method"
# error: [non-subscriptable] "Cannot subscript object of type `NotSubscriptable1` with no `__getitem__` method"
union[0]
```

View file

@ -215,7 +215,7 @@ def _(a: tuple[str, int] | tuple[int, str], c: C[Any]):
# TODO: Should be `tuple[int, str]`
reveal_type(a) # revealed: tuple[str, int] | tuple[int, str]
# TODO: Should be `str`
reveal_type(a[1]) # revealed: str | int
reveal_type(a[1]) # revealed: int | str
if reveal_type(is_int(a[0])): # revealed: TypeIs[int @ a[0]]
# TODO: Should be `tuple[int, str]`

View file

@ -63,12 +63,12 @@ def _(flag: bool):
else:
class Spam: ...
# error: [possibly-unbound-implicit-call] "Method `__class_getitem__` of type `<class 'Spam'> | <class 'Spam'>` is possibly unbound"
# revealed: str
# error: [non-subscriptable] "Cannot subscript object of type `<class 'Spam'>` with no `__class_getitem__` method"
# revealed: str | Unknown
reveal_type(Spam[42])
```
## TODO: Class getitem non-class union
## Class getitem non-class union
```py
def _(flag: bool):
@ -80,8 +80,7 @@ def _(flag: bool):
else:
Eggs = 1
a = Eggs[42] # error: "Cannot subscript object of type `<class 'Eggs'> | Literal[1]` with no `__getitem__` method"
a = Eggs[42] # error: "Cannot subscript object of type `Literal[1]` with no `__getitem__` method"
# TODO: should _probably_ emit `str | Unknown`
reveal_type(a) # revealed: Unknown
reveal_type(a) # revealed: str | Unknown
```

View file

@ -188,3 +188,30 @@ class C(Tuple): ...
# revealed: tuple[<class 'C'>, <class 'tuple[Unknown, ...]'>, <class 'Sequence[Unknown]'>, <class 'Reversible[Unknown]'>, <class 'Collection[Unknown]'>, <class 'Iterable[Unknown]'>, <class 'Container[Unknown]'>, typing.Protocol, typing.Generic, <class 'object'>]
reveal_type(C.__mro__)
```
### Union subscript access
```py
def test(val: tuple[str] | tuple[int]):
reveal_type(val[0]) # revealed: str | int
def test2(val: tuple[str, None] | list[int | float]):
reveal_type(val[0]) # revealed: str | int | float
```
### Union subscript access with non-indexable type
```py
def test3(val: tuple[str] | tuple[int] | int):
# error: [non-subscriptable] "Cannot subscript object of type `int` with no `__getitem__` method"
reveal_type(val[0]) # revealed: str | int | Unknown
```
### Intersection subscript access
```py
from ty_extensions import Intersection, Not
def test4(val: Intersection[tuple[str], tuple[int]]):
reveal_type(val[0]) # revealed: str & int
```

View file

@ -8125,7 +8125,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
}
fn infer_subscript_expression_types(
&mut self,
&self,
value_node: &ast::Expr,
value_ty: Type<'db>,
slice_ty: Type<'db>,
@ -8140,7 +8140,22 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
slice_ty,
)
}
// If the value type is a union make sure to union the load types.
// For example:
// val: tuple[int] | tuple[str]
// val[0] can be an int or str type
(Type::Union(union_ty), _, _) => union_ty.map(self.db(), |ty| {
self.infer_subscript_expression_types(value_node, *ty, slice_ty)
}),
(Type::Intersection(intersection_ty), _, _) => intersection_ty
.positive(self.db())
.iter()
.map(|ty| self.infer_subscript_expression_types(value_node, *ty, slice_ty))
.fold(
IntersectionBuilder::new(self.db()),
IntersectionBuilder::add_positive,
)
.build(),
// Ex) Given `("a", "b", "c", "d")[1]`, return `"b"`
(Type::Tuple(tuple_ty), Type::IntLiteral(int), _) if i32::try_from(int).is_ok() => {
let tuple = tuple_ty.tuple(self.db());
@ -8446,25 +8461,13 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
);
}
match value_ty {
Type::ClassLiteral(_) => {
// TODO: proper support for generic classes
// For now, just infer `Sequence`, if we see something like `Sequence[str]`. This allows us
// to look up attributes on generic base classes, even if we don't understand generics yet.
// Note that this isn't handled by the clause up above for generic classes
// that use legacy type variables and an explicit `Generic` base class.
// Once we handle legacy typevars, this special case will be removed in
// favor of the specialization logic above.
value_ty
}
_ => Type::unknown(),
}
Type::unknown()
}
}
}
fn legacy_generic_class_context(
&mut self,
&self,
value_node: &ast::Expr,
typevars: &[Type<'db>],
origin: LegacyGenericBase,