Add a rule/autofix to sort __slots__ and __match_args__ (#9564)

## Summary

This PR introduces a new rule to sort `__slots__` and `__match_args__`
according to a [natural sort](https://en.wikipedia.org/wiki/Natural_sort_order), as was
requested in https://github.com/astral-sh/ruff/issues/1198#issuecomment-1881418365.

The implementation here generalises some of the machinery introduced in
3aae16f1bd
so that different kinds of sorts can be applied to lists of string
literals. (We use an "isort-style" sort for `__all__`, but that isn't
really appropriate for `__slots__` and `__match_args__`, where nearly
all items will be snake_case.) Several sections of code have been moved
from `sort_dunder_all.rs` to a new module, `sorting_helpers.rs`, which
`sort_dunder_all.rs` and `sort_dunder_slots.rs` both make use of.

`__match_args__` is very similar to `__all__`, in that it can only be a
tuple or a list. `__slots__` differs from the other two, however, in
that it can be any iterable of strings. If slots is a dictionary, the
values are used by the builtin `help()` function as per-attribute
docstrings that show up in the output of `help()`. (There's no
particular use-case for making `__slots__` a set, but it's perfectly
legal at runtime, so there's no reason for us not to handle it in this
rule.)

Note that we don't do an autofix for multiline `__slots__` if `__slots__` is a dictionary: that's out of scope. Everything else, we can nearly always fix, however.

## Test Plan

`cargo test` / `cargo insta review`.

I also ran this rule on CPython, and the diff looked pretty good

---

Co-authored-by: Micha Reiser <micha@reiser.io>
This commit is contained in:
Alex Waygood 2024-01-22 12:21:55 +00:00 committed by GitHub
parent a3d667ed04
commit f5061dbb8e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 2093 additions and 813 deletions

View file

@ -306,3 +306,5 @@ __all__ = (
__all__ = [
"foo", (), "bar"
]
__all__ = "foo", "an" "implicitly_concatenated_second_item", not_a_string_literal

View file

@ -0,0 +1,234 @@
#########################
# Single-line definitions
#########################
class Klass:
__slots__ = ["d", "c", "b", "a"] # a comment that is untouched
__match_args__ = ("d", "c", "b", "a")
# Quoting style is retained,
# but unnecessary parens are not
__slots__: set = {'b', "c", ((('a')))}
# Trailing commas are also not retained for single-line definitions
# (but they are in multiline definitions)
__match_args__: tuple = ("b", "c", "a",)
class Klass2:
if bool():
__slots__ = {"x": "docs for x", "m": "docs for m", "a": "docs for a"}
else:
__slots__ = "foo3", "foo2", "foo1" # NB: an implicit tuple (without parens)
__match_args__: list[str] = ["the", "three", "little", "pigs"]
__slots__ = ("parenthesized_item"), "in", ("an_unparenthesized_tuple")
# we use natural sort,
# not alphabetical sort or "isort-style" sort
__slots__ = {"aadvark237", "aadvark10092", "aadvark174", "aadvark532"}
############################
# Neat multiline definitions
############################
class Klass3:
__slots__ = (
"d0",
"c0", # a comment regarding 'c0'
"b0",
# a comment regarding 'a0':
"a0"
)
__match_args__ = [
"d",
"c", # a comment regarding 'c'
"b",
# a comment regarding 'a':
"a"
]
##########################################
# Messier multiline __all__ definitions...
##########################################
class Klass4:
# comment0
__slots__ = ("d", "a", # comment1
# comment2
"f", "b",
"strangely", # comment3
# comment4
"formatted",
# comment5
) # comment6
# comment7
__match_args__ = [ # comment0
# comment1
# comment2
"dx", "cx", "bx", "ax" # comment3
# comment4
# comment5
# comment6
] # comment7
# from cpython/Lib/pathlib/__init__.py
class PurePath:
__slots__ = (
# The `_raw_paths` slot stores unnormalized string paths. This is set
# in the `__init__()` method.
'_raw_paths',
# The `_drv`, `_root` and `_tail_cached` slots store parsed and
# normalized parts of the path. They are set when any of the `drive`,
# `root` or `_tail` properties are accessed for the first time. The
# three-part division corresponds to the result of
# `os.path.splitroot()`, except that the tail is further split on path
# separators (i.e. it is a list of strings), and that the root and
# tail are normalized.
'_drv', '_root', '_tail_cached',
# The `_str` slot stores the string representation of the path,
# computed from the drive, root and tail when `__str__()` is called
# for the first time. It's used to implement `_str_normcase`
'_str',
# The `_str_normcase_cached` slot stores the string path with
# normalized case. It is set when the `_str_normcase` property is
# accessed for the first time. It's used to implement `__eq__()`
# `__hash__()`, and `_parts_normcase`
'_str_normcase_cached',
# The `_parts_normcase_cached` slot stores the case-normalized
# string path after splitting on path separators. It's set when the
# `_parts_normcase` property is accessed for the first time. It's used
# to implement comparison methods like `__lt__()`.
'_parts_normcase_cached',
# The `_hash` slot stores the hash of the case-normalized string
# path. It's set when `__hash__()` is called for the first time.
'_hash',
)
# From cpython/Lib/pickletools.py
class ArgumentDescriptor(object):
__slots__ = (
# name of descriptor record, also a module global name; a string
'name',
# length of argument, in bytes; an int; UP_TO_NEWLINE and
# TAKEN_FROM_ARGUMENT{1,4,8} are negative values for variable-length
# cases
'n',
# a function taking a file-like object, reading this kind of argument
# from the object at the current position, advancing the current
# position by n bytes, and returning the value of the argument
'reader',
# human-readable docs for this arg descriptor; a string
'doc',
)
####################################
# Should be flagged, but not fixed
####################################
# from cpython/Lib/test/test_inspect.py.
# Multiline dicts are out of scope.
class SlotUser:
__slots__ = {'power': 'measured in kilowatts',
'distance': 'measured in kilometers'}
class Klass5:
__match_args__ = (
"look",
(
"a_veeeeeeeeeeeeeeeeeeery_long_parenthesized_item"
),
)
__slots__ = (
"b",
((
"c"
)),
"a"
)
__slots__ = ("don't" "care" "about", "__slots__" "with", "concatenated" "strings")
###################################
# These should all not get flagged:
###################################
class Klass6:
__slots__ = ()
__match_args__ = []
__slots__ = ("single_item",)
__match_args__ = (
"single_item_multiline",
)
__slots__ = {"single_item",}
__slots__ = {"single_item_no_trailing_comma": "docs for that"}
__match_args__ = [
"single_item_multiline_no_trailing_comma"
]
__slots__ = ("not_a_tuple_just_a_string")
__slots__ = ["a", "b", "c", "d"]
__slots__ += ["e", "f", "g"]
__slots__ = ("a", "b", "c", "d")
if bool():
__slots__ += ("e", "f", "g")
else:
__slots__ += ["alpha", "omega"]
__slots__ = {"not": "sorted", "but": "includes", **a_kwarg_splat}
__slots__ = ("b", "a", "e", "d")
__slots__ = ["b", "a", "e", "d"]
__match_args__ = ["foo", "bar", "antipasti"]
class Klass6:
__slots__ = (9, 8, 7)
__match_args__ = ( # This is just an empty tuple,
# but,
# it's very well
) # documented
# We don't deduplicate elements;
# this just ensures that duplicate elements aren't unnecessarily
# reordered by an autofix:
__slots__ = (
"duplicate_element", # comment1
"duplicate_element", # comment3
"duplicate_element", # comment2
"duplicate_element", # comment0
)
__slots__ = "foo", "an" "implicitly_concatenated_second_item", not_a_string_literal
__slots__ =[
[]
]
__slots__ = [
()
]
__match_args__ = (
()
)
__match_args__ = (
[]
)
__slots__ = (
(),
)
__slots__ = (
[],
)
__match_args__ = (
"foo", [], "bar"
)
__match_args__ = [
"foo", (), "bar"
]
__match_args__ = {"a", "set", "for", "__match_args__", "is invalid"}
__match_args__ = {"this": "is", "also": "invalid"}

View file

@ -1450,6 +1450,9 @@ pub(crate) fn statement(stmt: &Stmt, checker: &mut Checker) {
if checker.settings.rules.enabled(Rule::UnsortedDunderAll) {
ruff::rules::sort_dunder_all_assign(checker, assign);
}
if checker.enabled(Rule::UnsortedDunderSlots) {
ruff::rules::sort_dunder_slots_assign(checker, assign);
}
if checker.source_type.is_stub() {
if checker.any_enabled(&[
Rule::UnprefixedTypeParam,
@ -1523,6 +1526,9 @@ pub(crate) fn statement(stmt: &Stmt, checker: &mut Checker) {
if checker.settings.rules.enabled(Rule::UnsortedDunderAll) {
ruff::rules::sort_dunder_all_ann_assign(checker, assign_stmt);
}
if checker.enabled(Rule::UnsortedDunderSlots) {
ruff::rules::sort_dunder_slots_ann_assign(checker, assign_stmt);
}
if checker.source_type.is_stub() {
if let Some(value) = value {
if checker.enabled(Rule::AssignmentDefaultInStub) {

View file

@ -926,6 +926,7 @@ pub fn code_to_rule(linter: Linter, code: &str) -> Option<(RuleGroup, Rule)> {
(Ruff, "020") => (RuleGroup::Preview, rules::ruff::rules::NeverUnion),
(Ruff, "021") => (RuleGroup::Preview, rules::ruff::rules::ParenthesizeChainedOperators),
(Ruff, "022") => (RuleGroup::Preview, rules::ruff::rules::UnsortedDunderAll),
(Ruff, "023") => (RuleGroup::Preview, rules::ruff::rules::UnsortedDunderSlots),
(Ruff, "024") => (RuleGroup::Preview, rules::ruff::rules::MutableFromkeysValue),
(Ruff, "100") => (RuleGroup::Stable, rules::ruff::rules::UnusedNOQA),
(Ruff, "200") => (RuleGroup::Stable, rules::ruff::rules::InvalidPyprojectToml),

View file

@ -43,6 +43,7 @@ mod tests {
#[test_case(Rule::NeverUnion, Path::new("RUF020.py"))]
#[test_case(Rule::ParenthesizeChainedOperators, Path::new("RUF021.py"))]
#[test_case(Rule::UnsortedDunderAll, Path::new("RUF022.py"))]
#[test_case(Rule::UnsortedDunderSlots, Path::new("RUF023.py"))]
#[test_case(Rule::MutableFromkeysValue, Path::new("RUF024.py"))]
fn rules(rule_code: Rule, path: &Path) -> Result<()> {
let snapshot = format!("{}_{}", rule_code.noqa_code(), path.to_string_lossy());

View file

@ -15,6 +15,7 @@ pub(crate) use pairwise_over_zipped::*;
pub(crate) use parenthesize_logical_operators::*;
pub(crate) use quadratic_list_summation::*;
pub(crate) use sort_dunder_all::*;
pub(crate) use sort_dunder_slots::*;
pub(crate) use static_key_dict_comprehension::*;
pub(crate) use unnecessary_iterable_allocation_for_first_element::*;
pub(crate) use unnecessary_key_check::*;
@ -37,7 +38,9 @@ mod mutable_fromkeys_value;
mod never_union;
mod pairwise_over_zipped;
mod parenthesize_logical_operators;
mod sequence_sorting;
mod sort_dunder_all;
mod sort_dunder_slots;
mod static_key_dict_comprehension;
mod unnecessary_iterable_allocation_for_first_element;
mod unnecessary_key_check;

View file

@ -0,0 +1,926 @@
/// Utilities for sorting constant lists of string literals.
///
/// Examples where these are useful:
/// - Sorting `__all__` in the global scope,
/// - Sorting `__slots__` or `__match_args__` in a class scope
use std::borrow::Cow;
use std::cmp::Ordering;
use ruff_python_ast as ast;
use ruff_python_codegen::Stylist;
use ruff_python_parser::{lexer, Mode, Tok, TokenKind};
use ruff_python_stdlib::str::is_cased_uppercase;
use ruff_python_trivia::leading_indentation;
use ruff_source_file::Locator;
use ruff_text_size::{Ranged, TextRange, TextSize};
use is_macro;
use natord;
/// An enumeration of the different sorting styles
/// currently supported for displays of string literals
#[derive(Debug, Clone, Copy)]
pub(super) enum SortingStyle {
/// Sort string-literal items according to a
/// [natural sort](https://en.wikipedia.org/wiki/Natural_sort_order).
Natural,
/// Sort string-literal items "isort-style".
///
/// An isort-style sort orders items first according to their casing:
/// SCREAMING_SNAKE_CASE names (conventionally used for global constants)
/// come first, followed by CamelCase names (conventionally used for
/// classes), followed by anything else. Within each category,
/// a [natural sort](https://en.wikipedia.org/wiki/Natural_sort_order)
/// is used to order the elements.
Isort,
}
impl SortingStyle {
pub(super) fn compare(self, a: &str, b: &str) -> Ordering {
match self {
Self::Natural => natord::compare(a, b),
Self::Isort => IsortSortKey::from(a).cmp(&IsortSortKey::from(b)),
}
}
}
/// A struct to implement logic necessary to achieve
/// an "isort-style sort".
///
/// An isort-style sort sorts items first according to their casing:
/// `SCREAMING_SNAKE_CASE` names (conventionally used for global constants)
/// come first, followed by CamelCase names (conventionally used for
/// classes), followed by anything else. Within each category,
/// a [natural sort](https://en.wikipedia.org/wiki/Natural_sort_order)
/// is used to order the elements.
struct IsortSortKey<'a> {
category: InferredMemberType,
value: &'a str,
}
impl Ord for IsortSortKey<'_> {
fn cmp(&self, other: &Self) -> Ordering {
self.category
.cmp(&other.category)
.then_with(|| natord::compare(self.value, other.value))
}
}
impl PartialOrd for IsortSortKey<'_> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for IsortSortKey<'_> {
fn eq(&self, other: &Self) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl Eq for IsortSortKey<'_> {}
impl<'a> From<&'a str> for IsortSortKey<'a> {
fn from(value: &'a str) -> Self {
Self {
category: InferredMemberType::of(value),
value,
}
}
}
/// Classification for the casing of an element in a
/// sequence of literal strings.
///
/// This is necessary to achieve an "isort-style" sort,
/// where elements are sorted first by category,
/// then, within categories, are sorted according
/// to a natural sort.
///
/// You'll notice that a very similar enum exists
/// in ruff's reimplementation of isort.
#[derive(Debug, Ord, PartialOrd, Eq, PartialEq, Clone, Copy)]
enum InferredMemberType {
Constant,
Class,
Other,
}
impl InferredMemberType {
fn of(value: &str) -> Self {
// E.g. `CONSTANT`
if value.len() > 1 && is_cased_uppercase(value) {
Self::Constant
// E.g. `Class`
} else if value.starts_with(char::is_uppercase) {
Self::Class
// E.g. `some_variable` or `some_function`
} else {
Self::Other
}
}
}
/// An enumeration of the various kinds of sequences for which Python has
/// [display literals](https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries).
///
/// (I'm aware a set isn't actually a "sequence",
/// *but* for our purposes it's conceptually a sequence,
/// since in terms of the AST structure it's almost identical
/// to tuples/lists.)
///
/// Whereas list, dict and set literals are always parenthesized
/// (e.g. lists always start with `[` and end with `]`),
/// single-line tuple literals *can* be unparenthesized.
/// We keep the original AST node around for the
/// Tuple variant so that this can be queried later.
#[derive(Debug)]
pub(super) enum SequenceKind<'a> {
List,
Set,
Tuple(&'a ast::ExprTuple),
}
impl SequenceKind<'_> {
// N.B. We only need the source code for the Tuple variant here,
// but if you already have a `Locator` instance handy,
// getting the source code is very cheap.
fn surrounding_brackets(&self, source: &str) -> (&'static str, &'static str) {
match self {
Self::List => ("[", "]"),
Self::Set => ("{", "}"),
Self::Tuple(ast_node) => {
if ast_node.is_parenthesized(source) {
("(", ")")
} else {
("", "")
}
}
}
}
const fn opening_token_for_multiline_definition(&self) -> TokenKind {
match self {
Self::List => TokenKind::Lsqb,
Self::Set => TokenKind::Lbrace,
Self::Tuple(_) => TokenKind::Lpar,
}
}
const fn closing_token_for_multiline_definition(&self) -> TokenKind {
match self {
Self::List => TokenKind::Rsqb,
Self::Set => TokenKind::Rbrace,
Self::Tuple(_) => TokenKind::Rpar,
}
}
}
/// A newtype that zips together the string values of a display literal's elts,
/// together with the original AST nodes for that display literal's elts.
///
/// The main purpose of separating this out into a separate struct
/// is to enforce the invariants that:
///
/// 1. The two iterables that are zipped together have the same length; and,
/// 2. The length of both iterables is >= 2
struct SequenceElements<'a>(Vec<(&'a &'a str, &'a ast::Expr)>);
impl<'a> SequenceElements<'a> {
fn new(elements: &'a [&str], elts: &'a [ast::Expr]) -> Self {
assert_eq!(elements.len(), elts.len());
assert!(
elements.len() >= 2,
"A sequence with < 2 elements cannot be unsorted"
);
Self(elements.iter().zip(elts).collect())
}
fn last_item_index(&self) -> usize {
// Safe from underflow, as the constructor guarantees
// that the underlying vector has length >= 2
self.0.len() - 1
}
fn into_sorted_elts(
mut self,
sorting_style: SortingStyle,
) -> impl Iterator<Item = &'a ast::Expr> {
self.0
.sort_by(|(elem1, _), (elem2, _)| sorting_style.compare(elem1, elem2));
self.0.into_iter().map(|(_, elt)| elt)
}
}
/// Create a string representing a fixed-up single-line
/// definition of `__all__` or `__slots__` (etc.),
/// that can be inserted into the
/// source code as a `range_replacement` autofix.
pub(super) fn sort_single_line_elements_sequence(
kind: &SequenceKind,
elts: &[ast::Expr],
elements: &[&str],
locator: &Locator,
sorting_style: SortingStyle,
) -> String {
let element_pairs = SequenceElements::new(elements, elts);
let last_item_index = element_pairs.last_item_index();
let (opening_paren, closing_paren) = kind.surrounding_brackets(locator.contents());
let mut result = String::from(opening_paren);
// We grab the original source-code ranges using `locator.slice()`
// rather than using the expression generator, as this approach allows
// us to easily preserve stylistic choices in the original source code
// such as whether double or single quotes were used.
for (i, elt) in element_pairs.into_sorted_elts(sorting_style).enumerate() {
result.push_str(locator.slice(elt));
if i < last_item_index {
result.push_str(", ");
}
}
result.push_str(closing_paren);
result
}
/// An enumeration of the possible conclusions we could come to
/// regarding the ordering of the elements in a display of string literals
#[derive(Debug, is_macro::Is)]
pub(super) enum SortClassification<'a> {
/// It's a display of string literals that is already sorted
Sorted,
/// It's an unsorted display of string literals,
/// but we wouldn't be able to autofix it
UnsortedButUnfixable,
/// It's an unsorted display of string literals,
/// and it's possible we could generate a fix for it;
/// here's the values of the elts so we can use them to
/// generate an autofix:
UnsortedAndMaybeFixable { items: Vec<&'a str> },
/// The display contains one or more items that are not string
/// literals.
NotAListOfStringLiterals,
}
impl<'a> SortClassification<'a> {
pub(super) fn of_elements(elements: &'a [ast::Expr], sorting_style: SortingStyle) -> Self {
// If it's of length less than 2, it has to be sorted already
let Some((first, rest @ [_, ..])) = elements.split_first() else {
return Self::Sorted;
};
// If any elt we encounter is not an ExprStringLiteral AST node,
// that indicates at least one item in the sequence is not a string literal,
// which means the sequence is out of scope for RUF022/RUF023/etc.
let Some(string_node) = first.as_string_literal_expr() else {
return Self::NotAListOfStringLiterals;
};
let mut current = string_node.value.to_str();
for expr in rest {
let Some(string_node) = expr.as_string_literal_expr() else {
return Self::NotAListOfStringLiterals;
};
let next = string_node.value.to_str();
if sorting_style.compare(next, current).is_lt() {
// Looks like the sequence was not in fact already sorted!
//
// Now we need to gather the necessary information we'd need
// to create an autofix. We need to know three things for this:
//
// 1. Are all items in the sequence string literals?
// (If not, we won't even be emitting the violation, let alone
// trying to fix it.)
// 2. Are any items in the sequence implicitly concatenated?
// (If so, we might be *emitting* the violation, but we definitely
// won't be trying to fix it.)
// 3. What is the value of each elt in the sequence?
let mut items = Vec::with_capacity(elements.len());
let mut any_implicit_concatenation = false;
for expr in elements {
let Some(string_node) = expr.as_string_literal_expr() else {
return Self::NotAListOfStringLiterals;
};
any_implicit_concatenation |= string_node.value.is_implicit_concatenated();
items.push(string_node.value.to_str());
}
if any_implicit_concatenation {
return Self::UnsortedButUnfixable;
}
return Self::UnsortedAndMaybeFixable { items };
}
current = next;
}
// Looks like the sequence was already sorted -- hooray!
// We won't be emitting a violation this time.
Self::Sorted
}
}
// An instance of this struct encapsulates an analysis
/// of a multiline Python tuple/list that represents an
/// `__all__`/`__slots__`/etc. definition or augmentation.
pub(super) struct MultilineStringSequenceValue {
items: Vec<StringSequenceItem>,
range: TextRange,
ends_with_trailing_comma: bool,
}
impl MultilineStringSequenceValue {
pub(super) fn len(&self) -> usize {
self.items.len()
}
/// Analyse the source range for a multiline Python tuple/list that
/// represents an `__all__`/`__slots__`/etc. definition or augmentation.
/// Return `None` if the analysis fails for whatever reason.
pub(super) fn from_source_range(
range: TextRange,
kind: &SequenceKind,
locator: &Locator,
) -> Option<MultilineStringSequenceValue> {
// Parse the multiline string sequence using the raw tokens.
// See the docs for `collect_string_sequence_lines()` for why we have to
// use the raw tokens, rather than just the AST, to do this parsing.
//
// Step (1). Start by collecting information on each line individually:
let (lines, ends_with_trailing_comma) =
collect_string_sequence_lines(range, kind, locator)?;
// Step (2). Group lines together into sortable "items":
// - Any "item" contains a single element of the list/tuple
// - Assume that any comments on their own line are meant to be grouped
// with the element immediately below them: if the element moves,
// the comments above the element move with it.
// - The same goes for any comments on the same line as an element:
// if the element moves, the comment moves with it.
let items = collect_string_sequence_items(lines, range, locator);
Some(MultilineStringSequenceValue {
items,
range,
ends_with_trailing_comma,
})
}
/// Sort a multiline sequence of literal strings
/// that is known to be unsorted.
///
/// This function panics if it is called and `self.items`
/// has length < 2. It's redundant to call this method in this case,
/// since lists with < 2 items cannot be unsorted,
/// so this is a logic error.
pub(super) fn into_sorted_source_code(
mut self,
sorting_style: SortingStyle,
locator: &Locator,
stylist: &Stylist,
) -> String {
let (first_item_start, last_item_end) = match self.items.as_slice() {
[first_item, .., last_item] => (first_item.start(), last_item.end()),
_ => panic!(
"We shouldn't be attempting an autofix if a sequence has < 2 elements;
a sequence with 1 or 0 elements cannot be unsorted."
),
};
// As well as the "items" in a multiline string sequence,
// there is also a "prelude" and a "postlude":
// - Prelude == the region of source code from the opening parenthesis,
// up to the start of the first item in `__all__`/`__slots__`/etc.
// - Postlude == the region of source code from the end of the last
// item in `__all__`/`__slots__`/etc. up to and including the closing
// parenthesis.
//
// For example:
//
// ```python
// __all__ = [ # comment0
// # comment1
// "first item",
// "last item" # comment2
// # comment3
// ] # comment4
// ```
//
// - The prelude in the above example is the source code region
// starting just before the opening `[` and ending just after `# comment0`.
// `comment0` here counts as part of the prelude because it is on
// the same line as the opening paren, and because we haven't encountered
// any elements of `__all__` yet, but `comment1` counts as part of the first item,
// as it's on its own line, and all comments on their own line are grouped
// with the next element below them to make "items",
// (an "item" being a region of source code that all moves as one unit
// when `__all__` is sorted).
// - The postlude in the above example is the source code region starting
// just after `# comment2` and ending just after the closing paren.
// `# comment2` is part of the last item, as it's an inline comment on the
// same line as an element, but `# comment3` becomes part of the postlude
// because there are no items below it. `# comment4` is not part of the
// postlude: it's outside of the source-code range considered by this rule,
// and should therefore be untouched.
//
let newline = stylist.line_ending().as_str();
let start_offset = self.start();
let leading_indent = leading_indentation(locator.full_line(start_offset));
let item_indent = format!("{}{}", leading_indent, stylist.indentation().as_str());
let prelude =
multiline_string_sequence_prelude(first_item_start, newline, start_offset, locator);
let postlude = multiline_string_sequence_postlude(
last_item_end,
newline,
leading_indent,
&item_indent,
self.end(),
locator,
);
self.items
.sort_by(|a, b| sorting_style.compare(&a.value, &b.value));
let joined_items = join_multiline_string_sequence_items(
&self.items,
locator,
&item_indent,
newline,
self.ends_with_trailing_comma,
);
format!("{prelude}{joined_items}{postlude}")
}
}
impl Ranged for MultilineStringSequenceValue {
fn range(&self) -> TextRange {
self.range
}
}
/// Collect data on each line of a multiline string sequence.
/// Return `None` if the sequence appears to be invalid,
/// or if it's an edge case we don't support.
///
/// Why do we need to do this using the raw tokens,
/// when we already have the AST? The AST strips out
/// crucial information that we need to track here for
/// a multiline string sequence, such as:
/// - The value of comments
/// - The amount of whitespace between the end of a line
/// and an inline comment
/// - Whether or not the final item in the tuple/list has a
/// trailing comma
///
/// All of this information is necessary to have at a later
/// stage if we're to sort items without doing unnecessary
/// brutality to the comments and pre-existing style choices
/// in the original source code.
fn collect_string_sequence_lines(
range: TextRange,
kind: &SequenceKind,
locator: &Locator,
) -> Option<(Vec<StringSequenceLine>, bool)> {
// These first two variables are used for keeping track of state
// regarding the entirety of the string sequence...
let mut ends_with_trailing_comma = false;
let mut lines = vec![];
// ... all state regarding a single line of a string sequence
// is encapsulated in this variable
let mut line_state = LineState::default();
// `lex_starts_at()` gives us absolute ranges rather than relative ranges,
// but (surprisingly) we still need to pass in the slice of code we want it to lex,
// rather than the whole source file:
let mut token_iter =
lexer::lex_starts_at(locator.slice(range), Mode::Expression, range.start());
let (first_tok, _) = token_iter.next()?.ok()?;
if TokenKind::from(&first_tok) != kind.opening_token_for_multiline_definition() {
return None;
}
let expected_final_token = kind.closing_token_for_multiline_definition();
for pair in token_iter {
let (tok, subrange) = pair.ok()?;
match tok {
Tok::NonLogicalNewline => {
lines.push(line_state.into_string_sequence_line());
line_state = LineState::default();
}
Tok::Comment(_) => {
line_state.visit_comment_token(subrange);
}
Tok::String { value, .. } => {
line_state.visit_string_token(value, subrange);
ends_with_trailing_comma = false;
}
Tok::Comma => {
line_state.visit_comma_token(subrange);
ends_with_trailing_comma = true;
}
tok if TokenKind::from(&tok) == expected_final_token => {
lines.push(line_state.into_string_sequence_line());
break;
}
_ => return None,
}
}
Some((lines, ends_with_trailing_comma))
}
/// This struct is for keeping track of state
/// regarding a single line in a multiline string sequence
/// It is purely internal to `collect_string_sequence_lines()`,
/// and should not be used outside that function.
///
/// There are three possible kinds of line in a multiline
/// string sequence, and we don't know what kind of a line
/// we're in until all tokens in that line have been processed:
///
/// - A line with just a comment
/// (`StringSequenceLine::JustAComment)`)
/// - A line with one or more string items in it
/// (`StringSequenceLine::OneOrMoreItems`)
/// - An empty line (`StringSequenceLine::Empty`)
///
/// As we process the tokens in a single line,
/// this struct accumulates the necessary state for us
/// to be able to determine what kind of a line we're in.
/// Once the entire line has been processed,
/// `into_string_sequence_line()` is called, which consumes
/// `self` and produces the classification for the line.
#[derive(Debug, Default)]
struct LineState {
first_item_in_line: Option<(String, TextRange)>,
following_items_in_line: Vec<(String, TextRange)>,
comment_range_start: Option<TextSize>,
comment_in_line: Option<TextRange>,
}
impl LineState {
fn visit_string_token(&mut self, token_value: String, token_range: TextRange) {
if self.first_item_in_line.is_none() {
self.first_item_in_line = Some((token_value, token_range));
} else {
self.following_items_in_line
.push((token_value, token_range));
}
self.comment_range_start = Some(token_range.end());
}
fn visit_comma_token(&mut self, token_range: TextRange) {
self.comment_range_start = Some(token_range.end());
}
/// If this is a comment on its own line,
/// record the range of that comment.
///
/// *If*, however, we've already seen a comma
/// or a string in this line, that means that we're
/// in a line with items. In that case, we want to
/// record the range of the comment, *plus* the whitespace
/// (if any) preceding the comment. This is so that we don't
/// unnecessarily apply opinionated formatting changes
/// where they might not be welcome.
fn visit_comment_token(&mut self, token_range: TextRange) {
self.comment_in_line = {
if let Some(comment_range_start) = self.comment_range_start {
Some(TextRange::new(comment_range_start, token_range.end()))
} else {
Some(token_range)
}
}
}
fn into_string_sequence_line(self) -> StringSequenceLine {
if let Some(first_item) = self.first_item_in_line {
StringSequenceLine::OneOrMoreItems(LineWithItems {
first_item,
following_items: self.following_items_in_line,
trailing_comment_range: self.comment_in_line,
})
} else {
self.comment_in_line
.map_or(StringSequenceLine::Empty, |comment_range| {
StringSequenceLine::JustAComment(LineWithJustAComment(comment_range))
})
}
}
}
/// Instances of this struct represent source-code lines in the middle
/// of multiline tuples/lists/sets where the line contains
/// 0 elements of the sequence, but the line does have a comment in it.
#[derive(Debug)]
struct LineWithJustAComment(TextRange);
/// Instances of this struct represent source-code lines in
/// multiline tuples/lists/sets where the line contains at least
/// 1 element of the sequence. The line may contain > 1 element of the
/// sequence, and may also have a trailing comment after the element(s).
#[derive(Debug)]
struct LineWithItems {
// For elements in the list, we keep track of the value of the
// value of the element as well as the source-code range of the element.
// (We need to know the actual value so that we can sort the items.)
first_item: (String, TextRange),
following_items: Vec<(String, TextRange)>,
// For comments, we only need to keep track of the source-code range.
trailing_comment_range: Option<TextRange>,
}
impl LineWithItems {
fn num_items(&self) -> usize {
self.following_items.len() + 1
}
}
/// An enumeration of the possible kinds of source-code lines
/// that can exist in a multiline string sequence:
///
/// - A line that has no string elements, but does have a comment.
/// - A line that has one or more string elements,
/// and may also have a trailing comment.
/// - An entirely empty line.
#[derive(Debug)]
enum StringSequenceLine {
JustAComment(LineWithJustAComment),
OneOrMoreItems(LineWithItems),
Empty,
}
/// Given data on each line in a multiline string sequence,
/// group lines together into "items".
///
/// Each item contains exactly one string element,
/// but might contain multiple comments attached to that element
/// that must move with the element when the string sequence is sorted.
///
/// Note that any comments following the last item are discarded here,
/// but that doesn't matter: we add them back in `into_sorted_source_code()`
/// as part of the `postlude` (see comments in that function)
fn collect_string_sequence_items(
lines: Vec<StringSequenceLine>,
dunder_all_range: TextRange,
locator: &Locator,
) -> Vec<StringSequenceItem> {
let mut all_items = Vec::with_capacity(match lines.as_slice() {
[StringSequenceLine::OneOrMoreItems(single)] => single.num_items(),
_ => lines.len(),
});
let mut first_item_encountered = false;
let mut preceding_comment_ranges = vec![];
for line in lines {
match line {
StringSequenceLine::JustAComment(LineWithJustAComment(comment_range)) => {
// Comments on the same line as the opening paren and before any elements
// count as part of the "prelude"; these are not grouped into any item...
if first_item_encountered
|| locator.line_start(comment_range.start())
!= locator.line_start(dunder_all_range.start())
{
// ...but for all other comments that precede an element,
// group the comment with the element following that comment
// into an "item", so that the comment moves as one with the element
// when the list/tuple/set is sorted
preceding_comment_ranges.push(comment_range);
}
}
StringSequenceLine::OneOrMoreItems(LineWithItems {
first_item: (first_val, first_range),
following_items,
trailing_comment_range: comment_range,
}) => {
first_item_encountered = true;
all_items.push(StringSequenceItem::new(
first_val,
std::mem::take(&mut preceding_comment_ranges),
first_range,
comment_range,
));
for (value, range) in following_items {
all_items.push(StringSequenceItem::with_no_comments(value, range));
}
}
StringSequenceLine::Empty => continue, // discard empty lines
}
}
all_items
}
/// An instance of this struct represents a single element
/// from a multiline string sequence, *and* any comments that
/// are "attached" to it. The comments "attached" to the element
/// will move with the element when the tuple/list/set is sorted.
///
/// Comments on their own line immediately preceding the element will
/// always form a contiguous range with the range of the element itself;
/// however, inline comments won't necessary form a contiguous range.
/// Consider the following scenario, where both `# comment0` and `# comment1`
/// will move with the "a" element when the list is sorted:
///
/// ```python
/// __all__ = [
/// "b",
/// # comment0
/// "a", "c", # comment1
/// ]
/// ```
///
/// The desired outcome here is:
///
/// ```python
/// __all__ = [
/// # comment0
/// "a", # comment1
/// "b",
/// "c",
/// ]
/// ```
///
/// To achieve this, both `# comment0` and `# comment1`
/// are grouped into the `StringSequenceItem` instance
/// where the value is `"a"`, even though the source-code range
/// of `# comment1` does not form a contiguous range with the
/// source-code range of `"a"`.
#[derive(Debug)]
struct StringSequenceItem {
value: String,
preceding_comment_ranges: Vec<TextRange>,
element_range: TextRange,
// total_range incorporates the ranges of preceding comments
// (which must be contiguous with the element),
// but doesn't incorporate any trailing comments
// (which might be contiguous, but also might not be)
total_range: TextRange,
end_of_line_comments: Option<TextRange>,
}
impl StringSequenceItem {
fn new(
value: String,
preceding_comment_ranges: Vec<TextRange>,
element_range: TextRange,
end_of_line_comments: Option<TextRange>,
) -> Self {
let total_range = {
if let Some(first_comment_range) = preceding_comment_ranges.first() {
TextRange::new(first_comment_range.start(), element_range.end())
} else {
element_range
}
};
Self {
value,
preceding_comment_ranges,
element_range,
total_range,
end_of_line_comments,
}
}
fn with_no_comments(value: String, element_range: TextRange) -> Self {
Self::new(value, vec![], element_range, None)
}
}
impl Ranged for StringSequenceItem {
fn range(&self) -> TextRange {
self.total_range
}
}
/// Return a string representing the "prelude" for a
/// multiline string sequence.
///
/// See inline comments in
/// `MultilineStringSequenceValue::into_sorted_source_code()`
/// for a definition of the term "prelude" in this context.
fn multiline_string_sequence_prelude<'a>(
first_item_start_offset: TextSize,
newline: &str,
dunder_all_offset: TextSize,
locator: &'a Locator,
) -> Cow<'a, str> {
let prelude_end = {
let first_item_line_offset = locator.line_start(first_item_start_offset);
if first_item_line_offset == locator.line_start(dunder_all_offset) {
first_item_start_offset
} else {
first_item_line_offset
}
};
let prelude = locator.slice(TextRange::new(dunder_all_offset, prelude_end));
if prelude.ends_with(['\r', '\n']) {
Cow::Borrowed(prelude)
} else {
Cow::Owned(format!("{}{}", prelude.trim_end(), newline))
}
}
/// Join the elements and comments of a multiline string sequence
/// definition into a single string.
///
/// The resulting string does not include the "prelude" or
/// "postlude" of the tuple/set/list.
/// (See inline comments in
/// `MultilineStringSequence::into_sorted_source_code()` for
/// definitions of the terms "prelude" and "postlude" in this
/// context.)
fn join_multiline_string_sequence_items(
sorted_items: &[StringSequenceItem],
locator: &Locator,
item_indent: &str,
newline: &str,
needs_trailing_comma: bool,
) -> String {
assert!(
sorted_items.len() >= 2,
"A sequence with < 2 items cannot be unsorted"
);
let last_item_index = sorted_items.len() - 1;
let mut new_dunder_all = String::new();
for (i, item) in sorted_items.iter().enumerate() {
let is_final_item = i == last_item_index;
for comment_range in &item.preceding_comment_ranges {
new_dunder_all.push_str(item_indent);
new_dunder_all.push_str(locator.slice(comment_range));
new_dunder_all.push_str(newline);
}
new_dunder_all.push_str(item_indent);
new_dunder_all.push_str(locator.slice(item.element_range));
if !is_final_item || needs_trailing_comma {
new_dunder_all.push(',');
}
if let Some(trailing_comments) = item.end_of_line_comments {
new_dunder_all.push_str(locator.slice(trailing_comments));
}
if !is_final_item {
new_dunder_all.push_str(newline);
}
}
new_dunder_all
}
/// Return a string representing the "postlude" for a
/// multiline string sequence.
///
/// See inline comments in
/// `MultilineStringSequence::into_sorted_source_code()`
/// for a definition of the term "postlude" in this context.
fn multiline_string_sequence_postlude<'a>(
last_item_end_offset: TextSize,
newline: &str,
leading_indent: &str,
item_indent: &str,
dunder_all_range_end: TextSize,
locator: &'a Locator,
) -> Cow<'a, str> {
let postlude_start = {
let last_item_line_offset = locator.line_end(last_item_end_offset);
if last_item_line_offset == locator.line_end(dunder_all_range_end) {
last_item_end_offset
} else {
last_item_line_offset
}
};
let postlude = locator.slice(TextRange::new(postlude_start, dunder_all_range_end));
// The rest of this function uses heuristics to
// avoid very long indents for the closing paren
// that don't match the style for the rest of the
// fixed-up multiline string sequence.
//
// For example, we want to avoid something like this
// (not uncommon in code that hasn't been
// autoformatted)...
//
// ```python
// __all__ = ["xxxxxx", "yyyyyy",
// "aaaaaa", "bbbbbb",
// ]
// ```
//
// ...getting autofixed to this:
//
// ```python
// __all__ = [
// "a",
// "b",
// "x",
// "y",
// ]
// ```
let newline_chars = ['\r', '\n'];
if !postlude.starts_with(newline_chars) {
return Cow::Borrowed(postlude);
}
if TextSize::of(leading_indentation(
postlude.trim_start_matches(newline_chars),
)) <= TextSize::of(item_indent)
{
return Cow::Borrowed(postlude);
}
let trimmed_postlude = postlude.trim_start();
if trimmed_postlude.starts_with([']', ')']) {
return Cow::Owned(format!("{newline}{leading_indent}{trimmed_postlude}"));
}
Cow::Borrowed(postlude)
}

View file

@ -1,27 +1,19 @@
use std::borrow::Cow;
use std::cmp::Ordering;
use ruff_diagnostics::{Diagnostic, Edit, Fix, FixAvailability, Violation};
use ruff_macros::{derive_message_formats, violation};
use ruff_python_ast as ast;
use ruff_python_codegen::Stylist;
use ruff_python_parser::{lexer, Mode, Tok};
use ruff_python_stdlib::str::is_cased_uppercase;
use ruff_python_trivia::leading_indentation;
use ruff_source_file::Locator;
use ruff_text_size::{Ranged, TextRange, TextSize};
use ruff_text_size::TextRange;
use crate::checkers::ast::Checker;
use is_macro;
use itertools::Itertools;
use natord;
use crate::rules::ruff::rules::sequence_sorting::{
sort_single_line_elements_sequence, MultilineStringSequenceValue, SequenceKind,
SortClassification, SortingStyle,
};
/// ## What it does
/// Checks for `__all__` definitions that are not ordered
/// according to an "isort-style" sort.
///
/// An isort-style sort sorts items first according to their casing:
/// An isort-style sort orders items first according to their casing:
/// SCREAMING_SNAKE_CASE names (conventionally used for global constants)
/// come first, followed by CamelCase names (conventionally used for
/// classes), followed by anything else. Within each category,
@ -85,6 +77,8 @@ impl Violation for UnsortedDunderAll {
}
}
const SORTING_STYLE: SortingStyle = SortingStyle::Isort;
/// Sort an `__all__` definition represented by a `StmtAssign` AST node.
/// For example: `__all__ = ["b", "c", "a"]`.
pub(crate) fn sort_dunder_all_assign(
@ -157,21 +151,21 @@ fn sort_dunder_all(checker: &mut Checker, target: &ast::Expr, node: &ast::Expr)
}
let (elts, range, kind) = match node {
ast::Expr::List(ast::ExprList { elts, range, .. }) => (elts, *range, DunderAllKind::List),
ast::Expr::List(ast::ExprList { elts, range, .. }) => (elts, *range, SequenceKind::List),
ast::Expr::Tuple(tuple_node @ ast::ExprTuple { elts, range, .. }) => {
(elts, *range, DunderAllKind::Tuple(tuple_node))
(elts, *range, SequenceKind::Tuple(tuple_node))
}
_ => return,
};
let elts_analysis = DunderAllSortClassification::from_elements(elts);
let elts_analysis = SortClassification::of_elements(elts, SORTING_STYLE);
if elts_analysis.is_not_a_list_of_string_literals() || elts_analysis.is_sorted() {
return;
}
let mut diagnostic = Diagnostic::new(UnsortedDunderAll, range);
if let DunderAllSortClassification::UnsortedAndMaybeFixable { items } = elts_analysis {
if let SortClassification::UnsortedAndMaybeFixable { items } = elts_analysis {
if let Some(fix) = create_fix(range, elts, &items, &kind, checker) {
diagnostic.set_fix(fix);
}
@ -180,176 +174,6 @@ fn sort_dunder_all(checker: &mut Checker, target: &ast::Expr, node: &ast::Expr)
checker.diagnostics.push(diagnostic);
}
/// An enumeration of the two valid ways of defining
/// `__all__`: as a list, or as a tuple.
///
/// Whereas lists are always parenthesized
/// (they always start with `[` and end with `]`),
/// single-line tuples *can* be unparenthesized.
/// We keep the original AST node around for the
/// Tuple variant so that this can be queried later.
#[derive(Debug)]
enum DunderAllKind<'a> {
List,
Tuple(&'a ast::ExprTuple),
}
impl DunderAllKind<'_> {
fn is_parenthesized(&self, source: &str) -> bool {
match self {
Self::List => true,
Self::Tuple(ast_node) => ast_node.is_parenthesized(source),
}
}
fn opening_token_for_multiline_definition(&self) -> Tok {
match self {
Self::List => Tok::Lsqb,
Self::Tuple(_) => Tok::Lpar,
}
}
fn closing_token_for_multiline_definition(&self) -> Tok {
match self {
Self::List => Tok::Rsqb,
Self::Tuple(_) => Tok::Rpar,
}
}
}
/// An enumeration of the possible conclusions we could come to
/// regarding the ordering of the elements in an `__all__` definition:
///
/// 1. `__all__` is a list of string literals that is already sorted
/// 2. `__all__` is an unsorted list of string literals,
/// but we wouldn't be able to autofix it
/// 3. `__all__` is an unsorted list of string literals,
/// and it's possible we could generate a fix for it
/// 4. `__all__` contains one or more items that are not string
/// literals.
///
/// ("Sorted" here means "ordered according to an isort-style sort".
/// See the module-level docs for a definition of "isort-style sort.")
#[derive(Debug, is_macro::Is)]
enum DunderAllSortClassification<'a> {
Sorted,
UnsortedButUnfixable,
UnsortedAndMaybeFixable { items: Vec<&'a str> },
NotAListOfStringLiterals,
}
impl<'a> DunderAllSortClassification<'a> {
fn from_elements(elements: &'a [ast::Expr]) -> Self {
let Some((first, rest @ [_, ..])) = elements.split_first() else {
return Self::Sorted;
};
let Some(string_node) = first.as_string_literal_expr() else {
return Self::NotAListOfStringLiterals;
};
let mut this = string_node.value.to_str();
for expr in rest {
let Some(string_node) = expr.as_string_literal_expr() else {
return Self::NotAListOfStringLiterals;
};
let next = string_node.value.to_str();
if AllItemSortKey::from(next) < AllItemSortKey::from(this) {
let mut items = Vec::with_capacity(elements.len());
for expr in elements {
let Some(string_node) = expr.as_string_literal_expr() else {
return Self::NotAListOfStringLiterals;
};
if string_node.value.is_implicit_concatenated() {
return Self::UnsortedButUnfixable;
}
items.push(string_node.value.to_str());
}
return Self::UnsortedAndMaybeFixable { items };
}
this = next;
}
Self::Sorted
}
}
/// A struct to implement logic necessary to achieve
/// an "isort-style sort".
///
/// See the docs for this module as a whole for the
/// definition we use here of an "isort-style sort".
struct AllItemSortKey<'a> {
category: InferredMemberType,
value: &'a str,
}
impl Ord for AllItemSortKey<'_> {
fn cmp(&self, other: &Self) -> Ordering {
self.category
.cmp(&other.category)
.then_with(|| natord::compare(self.value, other.value))
}
}
impl PartialOrd for AllItemSortKey<'_> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for AllItemSortKey<'_> {
fn eq(&self, other: &Self) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl Eq for AllItemSortKey<'_> {}
impl<'a> From<&'a str> for AllItemSortKey<'a> {
fn from(value: &'a str) -> Self {
Self {
category: InferredMemberType::of(value),
value,
}
}
}
impl<'a> From<&'a DunderAllItem> for AllItemSortKey<'a> {
fn from(item: &'a DunderAllItem) -> Self {
Self::from(item.value.as_str())
}
}
/// Classification for an element in `__all__`.
///
/// This is necessary to achieve an "isort-style" sort,
/// where elements are sorted first by category,
/// then, within categories, are sorted according
/// to a natural sort.
///
/// You'll notice that a very similar enum exists
/// in ruff's reimplementation of isort.
#[derive(Debug, Ord, PartialOrd, Eq, PartialEq, Clone, Copy)]
enum InferredMemberType {
Constant,
Class,
Other,
}
impl InferredMemberType {
fn of(value: &str) -> Self {
// E.g. `CONSTANT`
if value.len() > 1 && is_cased_uppercase(value) {
Self::Constant
// E.g. `Class`
} else if value.starts_with(char::is_uppercase) {
Self::Class
// E.g. `some_variable` or `some_function`
} else {
Self::Other
}
}
}
/// Attempt to return `Some(fix)`, where `fix` is a `Fix`
/// that can be set on the diagnostic to sort the user's
/// `__all__` definition
@ -363,7 +187,7 @@ fn create_fix(
range: TextRange,
elts: &[ast::Expr],
string_items: &[&str],
kind: &DunderAllKind,
kind: &SequenceKind,
checker: &Checker,
) -> Option<Fix> {
let locator = checker.locator();
@ -384,11 +208,11 @@ fn create_fix(
// bare minimum of token-processing for single-line `__all__`
// definitions:
if is_multiline {
let value = MultilineDunderAllValue::from_source_range(range, kind, locator)?;
assert_eq!(value.items.len(), elts.len());
value.into_sorted_source_code(locator, checker.stylist())
let value = MultilineStringSequenceValue::from_source_range(range, kind, locator)?;
assert_eq!(value.len(), elts.len());
value.into_sorted_source_code(SORTING_STYLE, locator, checker.stylist())
} else {
sort_single_line_dunder_all(elts, string_items, kind, locator)
sort_single_line_elements_sequence(kind, elts, string_items, locator, SORTING_STYLE)
}
};
@ -397,623 +221,3 @@ fn create_fix(
range,
)))
}
/// An instance of this struct encapsulates an analysis
/// of a multiline Python tuple/list that represents an
/// `__all__` definition or augmentation.
struct MultilineDunderAllValue {
items: Vec<DunderAllItem>,
range: TextRange,
ends_with_trailing_comma: bool,
}
impl MultilineDunderAllValue {
/// Analyse the source range for a multiline Python tuple/list that
/// represents an `__all__` definition or augmentation. Return `None`
/// if the analysis fails for whatever reason.
fn from_source_range(
range: TextRange,
kind: &DunderAllKind,
locator: &Locator,
) -> Option<MultilineDunderAllValue> {
// Parse the multiline `__all__` definition using the raw tokens.
// See the docs for `collect_dunder_all_lines()` for why we have to
// use the raw tokens, rather than just the AST, to do this parsing.
//
// Step (1). Start by collecting information on each line individually:
let (lines, ends_with_trailing_comma) = collect_dunder_all_lines(range, kind, locator)?;
// Step (2). Group lines together into sortable "items":
// - Any "item" contains a single element of the `__all__` list/tuple
// - Assume that any comments on their own line are meant to be grouped
// with the element immediately below them: if the element moves,
// the comments above the element move with it.
// - The same goes for any comments on the same line as an element:
// if the element moves, the comment moves with it.
let items = collect_dunder_all_items(lines, range, locator);
Some(MultilineDunderAllValue {
items,
range,
ends_with_trailing_comma,
})
}
/// Sort a multiline `__all__` definition
/// that is known to be unsorted.
///
/// Panics if this is called and `self.items`
/// has length < 2. It's redundant to call this method in this case,
/// since lists with < 2 items cannot be unsorted,
/// so this is a logic error.
fn into_sorted_source_code(mut self, locator: &Locator, stylist: &Stylist) -> String {
let (first_item_start, last_item_end) = match self.items.as_slice() {
[first_item, .., last_item] => (first_item.start(), last_item.end()),
_ => panic!(
"We shouldn't be attempting an autofix if `__all__` has < 2 elements;
an `__all__` definition with 1 or 0 elements cannot be unsorted."
),
};
// As well as the "items" in the `__all__` definition,
// there is also a "prelude" and a "postlude":
// - Prelude == the region of source code from the opening parenthesis,
// up to the start of the first item in `__all__`.
// - Postlude == the region of source code from the end of the last
// item in `__all__` up to and including the closing parenthesis.
//
// For example:
//
// ```python
// __all__ = [ # comment0
// # comment1
// "first item",
// "last item" # comment2
// # comment3
// ] # comment4
// ```
//
// - The prelude in the above example is the source code region
// starting just before the opening `[` and ending just after `# comment0`.
// `comment0` here counts as part of the prelude because it is on
// the same line as the opening paren, and because we haven't encountered
// any elements of `__all__` yet, but `comment1` counts as part of the first item,
// as it's on its own line, and all comments on their own line are grouped
// with the next element below them to make "items",
// (an "item" being a region of source code that all moves as one unit
// when `__all__` is sorted).
// - The postlude in the above example is the source code region starting
// just after `# comment2` and ending just after the closing paren.
// `# comment2` is part of the last item, as it's an inline comment on the
// same line as an element, but `# comment3` becomes part of the postlude
// because there are no items below it. `# comment4` is not part of the
// postlude: it's outside of the source-code range considered by this rule,
// and should therefore be untouched.
//
let newline = stylist.line_ending().as_str();
let start_offset = self.start();
let leading_indent = leading_indentation(locator.full_line(start_offset));
let item_indent = format!("{}{}", leading_indent, stylist.indentation().as_str());
let prelude =
multiline_dunder_all_prelude(first_item_start, newline, start_offset, locator);
let postlude = multiline_dunder_all_postlude(
last_item_end,
newline,
leading_indent,
&item_indent,
self.end(),
locator,
);
self.items
.sort_by(|this, next| AllItemSortKey::from(this).cmp(&AllItemSortKey::from(next)));
let joined_items = join_multiline_dunder_all_items(
&self.items,
locator,
&item_indent,
newline,
self.ends_with_trailing_comma,
);
format!("{prelude}{joined_items}{postlude}")
}
}
impl Ranged for MultilineDunderAllValue {
fn range(&self) -> TextRange {
self.range
}
}
/// Collect data on each line of a multiline `__all__` definition.
/// Return `None` if `__all__` appears to be invalid,
/// or if it's an edge case we don't support.
///
/// Why do we need to do this using the raw tokens,
/// when we already have the AST? The AST strips out
/// crucial information that we need to track here for
/// a multiline `__all__` definition, such as:
/// - The value of comments
/// - The amount of whitespace between the end of a line
/// and an inline comment
/// - Whether or not the final item in the tuple/list has a
/// trailing comma
///
/// All of this information is necessary to have at a later
/// stage if we're to sort items without doing unnecessary
/// brutality to the comments and pre-existing style choices
/// in the original source code.
fn collect_dunder_all_lines(
range: TextRange,
kind: &DunderAllKind,
locator: &Locator,
) -> Option<(Vec<DunderAllLine>, bool)> {
// These first two variables are used for keeping track of state
// regarding the entirety of the `__all__` definition...
let mut ends_with_trailing_comma = false;
let mut lines = vec![];
// ... all state regarding a single line of an `__all__` definition
// is encapsulated in this variable
let mut line_state = LineState::default();
// `lex_starts_at()` gives us absolute ranges rather than relative ranges,
// but (surprisingly) we still need to pass in the slice of code we want it to lex,
// rather than the whole source file:
let mut token_iter =
lexer::lex_starts_at(locator.slice(range), Mode::Expression, range.start());
let (first_tok, _) = token_iter.next()?.ok()?;
if first_tok != kind.opening_token_for_multiline_definition() {
return None;
}
let expected_final_token = kind.closing_token_for_multiline_definition();
for pair in token_iter {
let (tok, subrange) = pair.ok()?;
match tok {
Tok::NonLogicalNewline => {
lines.push(line_state.into_dunder_all_line());
line_state = LineState::default();
}
Tok::Comment(_) => {
line_state.visit_comment_token(subrange);
}
Tok::String { value, .. } => {
line_state.visit_string_token(value, subrange);
ends_with_trailing_comma = false;
}
Tok::Comma => {
line_state.visit_comma_token(subrange);
ends_with_trailing_comma = true;
}
tok if tok == expected_final_token => {
lines.push(line_state.into_dunder_all_line());
break;
}
_ => return None,
}
}
Some((lines, ends_with_trailing_comma))
}
/// This struct is for keeping track of state
/// regarding a single line in a multiline `__all__` definition.
/// It is purely internal to `collect_dunder_all_lines()`,
/// and should not be used outside that function.
///
/// There are three possible kinds of line in a multiline
/// `__all__` definition, and we don't know what kind of a line
/// we're in until all tokens in that line have been processed:
///
/// - A line with just a comment (`DunderAllLine::JustAComment)`)
/// - A line with one or more string items in it (`DunderAllLine::OneOrMoreItems`)
/// - An empty line (`DunderAllLine::Empty`)
///
/// As we process the tokens in a single line,
/// this struct accumulates the necessary state for us
/// to be able to determine what kind of a line we're in.
/// Once the entire line has been processed, `into_dunder_all_line()`
/// is called, which consumes `self` and produces the
/// classification for the line.
#[derive(Debug, Default)]
struct LineState {
first_item_in_line: Option<(String, TextRange)>,
following_items_in_line: Vec<(String, TextRange)>,
comment_range_start: Option<TextSize>,
comment_in_line: Option<TextRange>,
}
impl LineState {
fn visit_string_token(&mut self, token_value: String, token_range: TextRange) {
if self.first_item_in_line.is_none() {
self.first_item_in_line = Some((token_value, token_range));
} else {
self.following_items_in_line
.push((token_value, token_range));
}
self.comment_range_start = Some(token_range.end());
}
fn visit_comma_token(&mut self, token_range: TextRange) {
self.comment_range_start = Some(token_range.end());
}
/// If this is a comment on its own line,
/// record the range of that comment.
///
/// *If*, however, we've already seen a comma
/// or a string in this line, that means that we're
/// in a line with items. In that case, we want to
/// record the range of the comment, *plus* the whitespace
/// (if any) preceding the comment. This is so that we don't
/// unnecessarily apply opinionated formatting changes
/// where they might not be welcome.
fn visit_comment_token(&mut self, token_range: TextRange) {
self.comment_in_line = {
if let Some(comment_range_start) = self.comment_range_start {
Some(TextRange::new(comment_range_start, token_range.end()))
} else {
Some(token_range)
}
}
}
fn into_dunder_all_line(self) -> DunderAllLine {
if let Some(first_item) = self.first_item_in_line {
DunderAllLine::OneOrMoreItems(LineWithItems {
first_item,
following_items: self.following_items_in_line,
trailing_comment_range: self.comment_in_line,
})
} else {
self.comment_in_line
.map_or(DunderAllLine::Empty, |comment_range| {
DunderAllLine::JustAComment(LineWithJustAComment(comment_range))
})
}
}
}
/// Instances of this struct represent source-code lines in the middle
/// of multiline `__all__` tuples/lists where the line contains
/// 0 elements of the tuple/list, but the line does have a comment in it.
#[derive(Debug)]
struct LineWithJustAComment(TextRange);
/// Instances of this struct represent source-code lines in single-line
/// or multiline `__all__` tuples/lists where the line contains at least
/// 1 element of the tuple/list. The line may contain > 1 element of the
/// tuple/list, and may also have a trailing comment after the element(s).
#[derive(Debug)]
struct LineWithItems {
// For elements in the list, we keep track of the value of the
// value of the element as well as the source-code range of the element.
// (We need to know the actual value so that we can sort the items.)
first_item: (String, TextRange),
following_items: Vec<(String, TextRange)>,
// For comments, we only need to keep track of the source-code range.
trailing_comment_range: Option<TextRange>,
}
impl LineWithItems {
fn num_items(&self) -> usize {
self.following_items.len() + 1
}
}
/// An enumeration of the possible kinds of source-code lines
/// that can exist in a multiline `__all__` tuple or list:
///
/// - A line that has no string elements, but does have a comment.
/// - A line that has one or more string elements,
/// and may also have a trailing comment.
/// - An entirely empty line.
#[derive(Debug)]
enum DunderAllLine {
JustAComment(LineWithJustAComment),
OneOrMoreItems(LineWithItems),
Empty,
}
/// Given data on each line in a multiline `__all__` definition,
/// group lines together into "items".
///
/// Each item contains exactly one string element,
/// but might contain multiple comments attached to that element
/// that must move with the element when `__all__` is sorted.
///
/// Note that any comments following the last item are discarded here,
/// but that doesn't matter: we add them back in `into_sorted_source_code()`
/// as part of the `postlude` (see comments in that function)
fn collect_dunder_all_items(
lines: Vec<DunderAllLine>,
dunder_all_range: TextRange,
locator: &Locator,
) -> Vec<DunderAllItem> {
let mut all_items = Vec::with_capacity(match lines.as_slice() {
[DunderAllLine::OneOrMoreItems(single)] => single.num_items(),
_ => lines.len(),
});
let mut first_item_encountered = false;
let mut preceding_comment_ranges = vec![];
for line in lines {
match line {
DunderAllLine::JustAComment(LineWithJustAComment(comment_range)) => {
// Comments on the same line as the opening paren and before any elements
// count as part of the "prelude"; these are not grouped into any item...
if first_item_encountered
|| locator.line_start(comment_range.start())
!= locator.line_start(dunder_all_range.start())
{
// ...but for all other comments that precede an element,
// group the comment with the element following that comment
// into an "item", so that the comment moves as one with the element
// when the `__all__` list/tuple is sorted
preceding_comment_ranges.push(comment_range);
}
}
DunderAllLine::OneOrMoreItems(LineWithItems {
first_item: (first_val, first_range),
following_items,
trailing_comment_range: comment_range,
}) => {
first_item_encountered = true;
all_items.push(DunderAllItem::new(
first_val,
std::mem::take(&mut preceding_comment_ranges),
first_range,
comment_range,
));
for (value, range) in following_items {
all_items.push(DunderAllItem::with_no_comments(value, range));
}
}
DunderAllLine::Empty => continue, // discard empty lines
}
}
all_items
}
/// An instance of this struct represents a single element
/// from a multiline `__all__` tuple/list, *and* any comments that
/// are "attached" to it. The comments "attached" to the element
/// will move with the element when the `__all__` tuple/list is sorted.
///
/// Comments on their own line immediately preceding the element will
/// always form a contiguous range with the range of the element itself;
/// however, inline comments won't necessary form a contiguous range.
/// Consider the following scenario, where both `# comment0` and `# comment1`
/// will move with the "a" element when the list is sorted:
///
/// ```python
/// __all__ = [
/// "b",
/// # comment0
/// "a", "c", # comment1
/// ]
/// ```
///
/// The desired outcome here is:
///
/// ```python
/// __all__ = [
/// # comment0
/// "a", # comment1
/// "b",
/// "c",
/// ]
/// ```
///
/// To achieve this, both `# comment0` and `# comment1`
/// are grouped into the `DunderAllItem` instance
/// where the value is `"a"`, even though the source-code range
/// of `# comment1` does not form a contiguous range with the
/// source-code range of `"a"`.
#[derive(Debug)]
struct DunderAllItem {
value: String,
preceding_comment_ranges: Vec<TextRange>,
element_range: TextRange,
// total_range incorporates the ranges of preceding comments
// (which must be contiguous with the element),
// but doesn't incorporate any trailing comments
// (which might be contiguous, but also might not be)
total_range: TextRange,
end_of_line_comments: Option<TextRange>,
}
impl DunderAllItem {
fn new(
value: String,
preceding_comment_ranges: Vec<TextRange>,
element_range: TextRange,
end_of_line_comments: Option<TextRange>,
) -> Self {
let total_range = {
if let Some(first_comment_range) = preceding_comment_ranges.first() {
TextRange::new(first_comment_range.start(), element_range.end())
} else {
element_range
}
};
Self {
value,
preceding_comment_ranges,
element_range,
total_range,
end_of_line_comments,
}
}
fn with_no_comments(value: String, element_range: TextRange) -> Self {
Self::new(value, vec![], element_range, None)
}
}
impl Ranged for DunderAllItem {
fn range(&self) -> TextRange {
self.total_range
}
}
/// Return a string representing the "prelude" for a
/// multiline `__all__` definition.
///
/// See inline comments in
/// `MultilineDunderAllValue::into_sorted_source_code()`
/// for a definition of the term "prelude" in this context.
fn multiline_dunder_all_prelude<'a>(
first_item_start_offset: TextSize,
newline: &str,
dunder_all_offset: TextSize,
locator: &'a Locator,
) -> Cow<'a, str> {
let prelude_end = {
let first_item_line_offset = locator.line_start(first_item_start_offset);
if first_item_line_offset == locator.line_start(dunder_all_offset) {
first_item_start_offset
} else {
first_item_line_offset
}
};
let prelude = locator.slice(TextRange::new(dunder_all_offset, prelude_end));
if prelude.ends_with(['\r', '\n']) {
Cow::Borrowed(prelude)
} else {
Cow::Owned(format!("{}{}", prelude.trim_end(), newline))
}
}
/// Join the elements and comments of a multiline `__all__`
/// definition into a single string.
///
/// The resulting string does not include the "prelude" or
/// "postlude" of the `__all__` definition.
/// (See inline comments in `MultilineDunderAllValue::into_sorted_source_code()`
/// for definitions of the terms "prelude" and "postlude"
/// in this context.)
fn join_multiline_dunder_all_items(
sorted_items: &[DunderAllItem],
locator: &Locator,
item_indent: &str,
newline: &str,
needs_trailing_comma: bool,
) -> String {
let last_item_index = sorted_items.len() - 1;
let mut new_dunder_all = String::new();
for (i, item) in sorted_items.iter().enumerate() {
let is_final_item = i == last_item_index;
for comment_range in &item.preceding_comment_ranges {
new_dunder_all.push_str(item_indent);
new_dunder_all.push_str(locator.slice(comment_range));
new_dunder_all.push_str(newline);
}
new_dunder_all.push_str(item_indent);
new_dunder_all.push_str(locator.slice(item.element_range));
if !is_final_item || needs_trailing_comma {
new_dunder_all.push(',');
}
if let Some(trailing_comments) = item.end_of_line_comments {
new_dunder_all.push_str(locator.slice(trailing_comments));
}
if !is_final_item {
new_dunder_all.push_str(newline);
}
}
new_dunder_all
}
/// Return a string representing the "postlude" for a
/// multiline `__all__` definition.
///
/// See inline comments in
/// `MultilineDunderAllValue::into_sorted_source_code()`
/// for a definition of the term "postlude" in this context.
fn multiline_dunder_all_postlude<'a>(
last_item_end_offset: TextSize,
newline: &str,
leading_indent: &str,
item_indent: &str,
dunder_all_range_end: TextSize,
locator: &'a Locator,
) -> Cow<'a, str> {
let postlude_start = {
let last_item_line_offset = locator.line_end(last_item_end_offset);
if last_item_line_offset == locator.line_end(dunder_all_range_end) {
last_item_end_offset
} else {
last_item_line_offset
}
};
let postlude = locator.slice(TextRange::new(postlude_start, dunder_all_range_end));
// The rest of this function uses heuristics to
// avoid very long indents for the closing paren
// that don't match the style for the rest of the
// new `__all__` definition.
//
// For example, we want to avoid something like this
// (not uncommon in code that hasn't been
// autoformatted)...
//
// ```python
// __all__ = ["xxxxxx", "yyyyyy",
// "aaaaaa", "bbbbbb",
// ]
// ```
//
// ...getting autofixed to this:
//
// ```python
// __all__ = [
// "a",
// "b",
// "x",
// "y",
// ]
// ```
let newline_chars = ['\r', '\n'];
if !postlude.starts_with(newline_chars) {
return Cow::Borrowed(postlude);
}
if TextSize::of(leading_indentation(
postlude.trim_start_matches(newline_chars),
)) <= TextSize::of(item_indent)
{
return Cow::Borrowed(postlude);
}
let trimmed_postlude = postlude.trim_start();
if trimmed_postlude.starts_with([']', ')']) {
return Cow::Owned(format!("{newline}{leading_indent}{trimmed_postlude}"));
}
Cow::Borrowed(postlude)
}
/// Create a string representing a fixed-up single-line
/// `__all__` definition, that can be inserted into the
/// source code as a `range_replacement` autofix.
fn sort_single_line_dunder_all(
elts: &[ast::Expr],
elements: &[&str],
kind: &DunderAllKind,
locator: &Locator,
) -> String {
// We grab the original source-code ranges using `locator.slice()`
// rather than using the expression generator, as this approach allows
// us to easily preserve stylistic choices in the original source code
// such as whether double or single quotes were used.
let mut element_pairs = elts.iter().zip(elements).collect_vec();
element_pairs.sort_by_key(|(_, elem)| AllItemSortKey::from(**elem));
let joined_items = element_pairs
.iter()
.map(|(elt, _)| locator.slice(elt))
.join(", ");
match kind {
DunderAllKind::List => format!("[{joined_items}]"),
DunderAllKind::Tuple(_) if kind.is_parenthesized(locator.contents()) => {
format!("({joined_items})")
}
DunderAllKind::Tuple(_) => joined_items,
}
}

View file

@ -0,0 +1,356 @@
use std::borrow::Cow;
use std::fmt::Display;
use ruff_diagnostics::{Diagnostic, Edit, Fix, FixAvailability, Violation};
use ruff_macros::{derive_message_formats, violation};
use ruff_python_ast as ast;
use ruff_python_semantic::ScopeKind;
use ruff_source_file::Locator;
use ruff_text_size::{Ranged, TextRange};
use crate::checkers::ast::Checker;
use crate::rules::ruff::rules::sequence_sorting::{
sort_single_line_elements_sequence, MultilineStringSequenceValue, SequenceKind,
SortClassification, SortingStyle,
};
use itertools::izip;
/// ## What it does
/// Checks for `__slots__` and `__match_args__`
/// definitions that are not ordered according to a
/// [natural sort](https://en.wikipedia.org/wiki/Natural_sort_order).
///
/// ## Why is this bad?
/// Consistency is good. Use a common convention for
/// these special variables to make your code more
/// readable and idiomatic.
///
/// ## Example
/// ```python
/// class Dog:
/// __slots__ = "name", "breed"
/// ```
///
/// Use instead:
/// ```python
/// class Dog:
/// __slots__ = "breed", "name"
/// ```
#[violation]
pub struct UnsortedDunderSlots {
class_name: String,
class_variable: SpecialClassDunder,
}
impl Violation for UnsortedDunderSlots {
const FIX_AVAILABILITY: FixAvailability = FixAvailability::Sometimes;
#[derive_message_formats]
fn message(&self) -> String {
let UnsortedDunderSlots {
class_name,
class_variable,
} = self;
format!("`{class_name}.{class_variable}` is not sorted")
}
fn fix_title(&self) -> Option<String> {
let UnsortedDunderSlots {
class_name,
class_variable,
} = self;
Some(format!(
"Apply a natural sort to `{class_name}.{class_variable}`"
))
}
}
/// Enumeration of the two special class dunders
/// that we're interested in for this rule: `__match_args__` and `__slots__`
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
enum SpecialClassDunder {
Slots,
MatchArgs,
}
impl Display for SpecialClassDunder {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let string = match self {
Self::MatchArgs => "__match_args__",
Self::Slots => "__slots__",
};
write!(f, "{string}")
}
}
/// Sort a `__slots__`/`__match_args__` definition
/// represented by a `StmtAssign` AST node.
/// For example: `__slots__ = ["b", "c", "a"]`.
pub(crate) fn sort_dunder_slots_assign(
checker: &mut Checker,
ast::StmtAssign { value, targets, .. }: &ast::StmtAssign,
) {
if let [expr] = targets.as_slice() {
sort_dunder_slots(checker, expr, value);
}
}
/// Sort a `__slots__`/`__match_args__` definition
/// represented by a `StmtAnnAssign` AST node.
/// For example: `__slots__: list[str] = ["b", "c", "a"]`.
pub(crate) fn sort_dunder_slots_ann_assign(checker: &mut Checker, node: &ast::StmtAnnAssign) {
if let Some(value) = &node.value {
sort_dunder_slots(checker, &node.target, value);
}
}
const SORTING_STYLE: SortingStyle = SortingStyle::Natural;
/// Sort a tuple, list, dict or set that defines `__slots__`
/// or `__match_args__` in a class scope.
///
/// This routine checks whether the display is sorted, and emits a
/// violation if it is not sorted. If the tuple/list/set was not sorted,
/// it attempts to set a `Fix` on the violation.
fn sort_dunder_slots(checker: &mut Checker, target: &ast::Expr, node: &ast::Expr) {
let ast::Expr::Name(ast::ExprName { id, .. }) = target else {
return;
};
let dunder_kind = match id.as_str() {
"__slots__" => SpecialClassDunder::Slots,
"__match_args__" => SpecialClassDunder::MatchArgs,
_ => return,
};
// We're only interested in `__slots__`/`__match_args__` in the class scope
let ScopeKind::Class(ast::StmtClassDef {
name: class_name, ..
}) = checker.semantic().current_scope().kind
else {
return;
};
let Some(display) = StringLiteralDisplay::new(node, dunder_kind) else {
return;
};
let sort_classification = SortClassification::of_elements(&display.elts, SORTING_STYLE);
if sort_classification.is_not_a_list_of_string_literals() || sort_classification.is_sorted() {
return;
}
let mut diagnostic = Diagnostic::new(
UnsortedDunderSlots {
class_name: class_name.to_string(),
class_variable: dunder_kind,
},
display.range,
);
if let SortClassification::UnsortedAndMaybeFixable { items } = sort_classification {
if let Some(fix) = display.generate_fix(&items, checker) {
diagnostic.set_fix(fix);
}
}
checker.diagnostics.push(diagnostic);
}
/// Struct representing a [display](https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries)
/// of string literals.
#[derive(Debug)]
struct StringLiteralDisplay<'a> {
/// The elts from the original AST node representing the display.
/// Each elt is the AST representation of a single string literal
/// element in the display
elts: Cow<'a, Vec<ast::Expr>>,
/// The source-code range of the display as a whole
range: TextRange,
/// What kind of a display is it? A dict, set, list or tuple?
display_kind: DisplayKind<'a>,
}
impl Ranged for StringLiteralDisplay<'_> {
fn range(&self) -> TextRange {
self.range
}
}
impl<'a> StringLiteralDisplay<'a> {
fn new(node: &'a ast::Expr, dunder_kind: SpecialClassDunder) -> Option<Self> {
let result = match (dunder_kind, node) {
(_, ast::Expr::List(ast::ExprList { elts, range, .. })) => {
let display_kind = DisplayKind::Sequence(SequenceKind::List);
Self {
elts: Cow::Borrowed(elts),
range: *range,
display_kind,
}
}
(_, ast::Expr::Tuple(tuple_node @ ast::ExprTuple { elts, range, .. })) => {
let display_kind = DisplayKind::Sequence(SequenceKind::Tuple(tuple_node));
Self {
elts: Cow::Borrowed(elts),
range: *range,
display_kind,
}
}
(SpecialClassDunder::Slots, ast::Expr::Set(ast::ExprSet { elts, range })) => {
let display_kind = DisplayKind::Sequence(SequenceKind::Set);
Self {
elts: Cow::Borrowed(elts),
range: *range,
display_kind,
}
}
(
SpecialClassDunder::Slots,
ast::Expr::Dict(ast::ExprDict {
keys,
values,
range,
}),
) => {
let mut narrowed_keys = Vec::with_capacity(values.len());
for key in keys {
if let Some(key) = key {
// This is somewhat unfortunate,
// *but* only `__slots__` can be a dict out of
// `__all__`, `__slots__` and `__match_args__`,
// and even for `__slots__`, using a dict is very rare
narrowed_keys.push(key.to_owned());
} else {
return None;
}
}
// If `None` was present in the keys, it indicates a "** splat", .e.g
// `__slots__ = {"foo": "bar", **other_dict}`
// If `None` wasn't present in the keys,
// the length of the keys should always equal the length of the values
assert_eq!(narrowed_keys.len(), values.len());
let display_kind = DisplayKind::Dict { values };
Self {
elts: Cow::Owned(narrowed_keys),
range: *range,
display_kind,
}
}
_ => return None,
};
Some(result)
}
fn generate_fix(&self, items: &[&str], checker: &Checker) -> Option<Fix> {
let locator = checker.locator();
let is_multiline = locator.contains_line_break(self.range());
let sorted_source_code = match (&self.display_kind, is_multiline) {
(DisplayKind::Sequence(sequence_kind), true) => {
let analyzed_sequence = MultilineStringSequenceValue::from_source_range(
self.range(),
sequence_kind,
locator,
)?;
assert_eq!(analyzed_sequence.len(), self.elts.len());
analyzed_sequence.into_sorted_source_code(SORTING_STYLE, locator, checker.stylist())
}
// Sorting multiline dicts is unsupported
(DisplayKind::Dict { .. }, true) => return None,
(DisplayKind::Sequence(sequence_kind), false) => sort_single_line_elements_sequence(
sequence_kind,
&self.elts,
items,
locator,
SORTING_STYLE,
),
(DisplayKind::Dict { values }, false) => {
sort_single_line_elements_dict(&self.elts, items, values, locator)
}
};
Some(Fix::safe_edit(Edit::range_replacement(
sorted_source_code,
self.range,
)))
}
}
/// An enumeration of the various kinds of
/// [display literals](https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries)
/// Python provides for builtin containers.
#[derive(Debug)]
enum DisplayKind<'a> {
Sequence(SequenceKind<'a>),
Dict { values: &'a [ast::Expr] },
}
/// A newtype that zips together three iterables:
///
/// 1. The string values of a dict literal's keys;
/// 2. The original AST nodes for the dict literal's keys; and,
/// 3. The original AST nodes for the dict literal's values
///
/// The main purpose of separating this out into a separate struct
/// is to enforce the invariants that:
///
/// 1. The three iterables that are zipped together have the same length; and,
/// 2. The length of all three iterables is >= 2
struct DictElements<'a>(Vec<(&'a &'a str, &'a ast::Expr, &'a ast::Expr)>);
impl<'a> DictElements<'a> {
fn new(elements: &'a [&str], key_elts: &'a [ast::Expr], value_elts: &'a [ast::Expr]) -> Self {
assert_eq!(key_elts.len(), elements.len());
assert_eq!(elements.len(), value_elts.len());
assert!(
elements.len() >= 2,
"A sequence with < 2 elements cannot be unsorted"
);
Self(izip!(elements, key_elts, value_elts).collect())
}
fn last_item_index(&self) -> usize {
// Safe from underflow, as the constructor guarantees
// that the underlying vector has length >= 2
self.0.len() - 1
}
fn into_sorted_elts(mut self) -> impl Iterator<Item = (&'a ast::Expr, &'a ast::Expr)> {
self.0
.sort_by(|(elem1, _, _), (elem2, _, _)| SORTING_STYLE.compare(elem1, elem2));
self.0.into_iter().map(|(_, key, value)| (key, value))
}
}
/// Create a string representing a fixed-up single-line
/// definition of a `__slots__` dictionary that can be
/// inserted into the source code as a `range_replacement`
/// autofix.
///
/// N.B. This function could potentially be moved into
/// `sequence_sorting.rs` if any other modules need it,
/// but stays here for now, since this is currently the
/// only module that needs it
fn sort_single_line_elements_dict(
key_elts: &[ast::Expr],
elements: &[&str],
value_elts: &[ast::Expr],
locator: &Locator,
) -> String {
let element_trios = DictElements::new(elements, key_elts, value_elts);
let last_item_index = element_trios.last_item_index();
let mut result = String::from('{');
// We grab the original source-code ranges using `locator.slice()`
// rather than using the expression generator, as this approach allows
// us to easily preserve stylistic choices in the original source code
// such as whether double or single quotes were used.
for (i, (key, value)) in element_trios.into_sorted_elts().enumerate() {
result.push_str(locator.slice(key));
result.push_str(": ");
result.push_str(locator.slice(value));
if i < last_item_index {
result.push_str(", ");
}
}
result.push('}');
result
}

View file

@ -0,0 +1,546 @@
---
source: crates/ruff_linter/src/rules/ruff/mod.rs
---
RUF023.py:6:17: RUF023 [*] `Klass.__slots__` is not sorted
|
5 | class Klass:
6 | __slots__ = ["d", "c", "b", "a"] # a comment that is untouched
| ^^^^^^^^^^^^^^^^^^^^ RUF023
7 | __match_args__ = ("d", "c", "b", "a")
|
= help: Apply a natural sort to `Klass.__slots__`
Safe fix
3 3 | #########################
4 4 |
5 5 | class Klass:
6 |- __slots__ = ["d", "c", "b", "a"] # a comment that is untouched
6 |+ __slots__ = ["a", "b", "c", "d"] # a comment that is untouched
7 7 | __match_args__ = ("d", "c", "b", "a")
8 8 |
9 9 | # Quoting style is retained,
RUF023.py:7:22: RUF023 [*] `Klass.__match_args__` is not sorted
|
5 | class Klass:
6 | __slots__ = ["d", "c", "b", "a"] # a comment that is untouched
7 | __match_args__ = ("d", "c", "b", "a")
| ^^^^^^^^^^^^^^^^^^^^ RUF023
8 |
9 | # Quoting style is retained,
|
= help: Apply a natural sort to `Klass.__match_args__`
Safe fix
4 4 |
5 5 | class Klass:
6 6 | __slots__ = ["d", "c", "b", "a"] # a comment that is untouched
7 |- __match_args__ = ("d", "c", "b", "a")
7 |+ __match_args__ = ("a", "b", "c", "d")
8 8 |
9 9 | # Quoting style is retained,
10 10 | # but unnecessary parens are not
RUF023.py:11:22: RUF023 [*] `Klass.__slots__` is not sorted
|
9 | # Quoting style is retained,
10 | # but unnecessary parens are not
11 | __slots__: set = {'b', "c", ((('a')))}
| ^^^^^^^^^^^^^^^^^^^^^ RUF023
12 | # Trailing commas are also not retained for single-line definitions
13 | # (but they are in multiline definitions)
|
= help: Apply a natural sort to `Klass.__slots__`
Safe fix
8 8 |
9 9 | # Quoting style is retained,
10 10 | # but unnecessary parens are not
11 |- __slots__: set = {'b', "c", ((('a')))}
11 |+ __slots__: set = {'a', 'b', "c"}
12 12 | # Trailing commas are also not retained for single-line definitions
13 13 | # (but they are in multiline definitions)
14 14 | __match_args__: tuple = ("b", "c", "a",)
RUF023.py:14:29: RUF023 [*] `Klass.__match_args__` is not sorted
|
12 | # Trailing commas are also not retained for single-line definitions
13 | # (but they are in multiline definitions)
14 | __match_args__: tuple = ("b", "c", "a",)
| ^^^^^^^^^^^^^^^^ RUF023
15 |
16 | class Klass2:
|
= help: Apply a natural sort to `Klass.__match_args__`
Safe fix
11 11 | __slots__: set = {'b', "c", ((('a')))}
12 12 | # Trailing commas are also not retained for single-line definitions
13 13 | # (but they are in multiline definitions)
14 |- __match_args__: tuple = ("b", "c", "a",)
14 |+ __match_args__: tuple = ("a", "b", "c")
15 15 |
16 16 | class Klass2:
17 17 | if bool():
RUF023.py:18:21: RUF023 [*] `Klass2.__slots__` is not sorted
|
16 | class Klass2:
17 | if bool():
18 | __slots__ = {"x": "docs for x", "m": "docs for m", "a": "docs for a"}
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RUF023
19 | else:
20 | __slots__ = "foo3", "foo2", "foo1" # NB: an implicit tuple (without parens)
|
= help: Apply a natural sort to `Klass2.__slots__`
Safe fix
15 15 |
16 16 | class Klass2:
17 17 | if bool():
18 |- __slots__ = {"x": "docs for x", "m": "docs for m", "a": "docs for a"}
18 |+ __slots__ = {"a": "docs for a", "m": "docs for m", "x": "docs for x"}
19 19 | else:
20 20 | __slots__ = "foo3", "foo2", "foo1" # NB: an implicit tuple (without parens)
21 21 |
RUF023.py:20:21: RUF023 [*] `Klass2.__slots__` is not sorted
|
18 | __slots__ = {"x": "docs for x", "m": "docs for m", "a": "docs for a"}
19 | else:
20 | __slots__ = "foo3", "foo2", "foo1" # NB: an implicit tuple (without parens)
| ^^^^^^^^^^^^^^^^^^^^^^ RUF023
21 |
22 | __match_args__: list[str] = ["the", "three", "little", "pigs"]
|
= help: Apply a natural sort to `Klass2.__slots__`
Safe fix
17 17 | if bool():
18 18 | __slots__ = {"x": "docs for x", "m": "docs for m", "a": "docs for a"}
19 19 | else:
20 |- __slots__ = "foo3", "foo2", "foo1" # NB: an implicit tuple (without parens)
20 |+ __slots__ = "foo1", "foo2", "foo3" # NB: an implicit tuple (without parens)
21 21 |
22 22 | __match_args__: list[str] = ["the", "three", "little", "pigs"]
23 23 | __slots__ = ("parenthesized_item"), "in", ("an_unparenthesized_tuple")
RUF023.py:22:33: RUF023 [*] `Klass2.__match_args__` is not sorted
|
20 | __slots__ = "foo3", "foo2", "foo1" # NB: an implicit tuple (without parens)
21 |
22 | __match_args__: list[str] = ["the", "three", "little", "pigs"]
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RUF023
23 | __slots__ = ("parenthesized_item"), "in", ("an_unparenthesized_tuple")
24 | # we use natural sort,
|
= help: Apply a natural sort to `Klass2.__match_args__`
Safe fix
19 19 | else:
20 20 | __slots__ = "foo3", "foo2", "foo1" # NB: an implicit tuple (without parens)
21 21 |
22 |- __match_args__: list[str] = ["the", "three", "little", "pigs"]
22 |+ __match_args__: list[str] = ["little", "pigs", "the", "three"]
23 23 | __slots__ = ("parenthesized_item"), "in", ("an_unparenthesized_tuple")
24 24 | # we use natural sort,
25 25 | # not alphabetical sort or "isort-style" sort
RUF023.py:23:17: RUF023 [*] `Klass2.__slots__` is not sorted
|
22 | __match_args__: list[str] = ["the", "three", "little", "pigs"]
23 | __slots__ = ("parenthesized_item"), "in", ("an_unparenthesized_tuple")
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RUF023
24 | # we use natural sort,
25 | # not alphabetical sort or "isort-style" sort
|
= help: Apply a natural sort to `Klass2.__slots__`
Safe fix
20 20 | __slots__ = "foo3", "foo2", "foo1" # NB: an implicit tuple (without parens)
21 21 |
22 22 | __match_args__: list[str] = ["the", "three", "little", "pigs"]
23 |- __slots__ = ("parenthesized_item"), "in", ("an_unparenthesized_tuple")
23 |+ __slots__ = "an_unparenthesized_tuple", "in", "parenthesized_item"
24 24 | # we use natural sort,
25 25 | # not alphabetical sort or "isort-style" sort
26 26 | __slots__ = {"aadvark237", "aadvark10092", "aadvark174", "aadvark532"}
RUF023.py:26:17: RUF023 [*] `Klass2.__slots__` is not sorted
|
24 | # we use natural sort,
25 | # not alphabetical sort or "isort-style" sort
26 | __slots__ = {"aadvark237", "aadvark10092", "aadvark174", "aadvark532"}
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RUF023
27 |
28 | ############################
|
= help: Apply a natural sort to `Klass2.__slots__`
Safe fix
23 23 | __slots__ = ("parenthesized_item"), "in", ("an_unparenthesized_tuple")
24 24 | # we use natural sort,
25 25 | # not alphabetical sort or "isort-style" sort
26 |- __slots__ = {"aadvark237", "aadvark10092", "aadvark174", "aadvark532"}
26 |+ __slots__ = {"aadvark174", "aadvark237", "aadvark532", "aadvark10092"}
27 27 |
28 28 | ############################
29 29 | # Neat multiline definitions
RUF023.py:33:17: RUF023 [*] `Klass3.__slots__` is not sorted
|
32 | class Klass3:
33 | __slots__ = (
| _________________^
34 | | "d0",
35 | | "c0", # a comment regarding 'c0'
36 | | "b0",
37 | | # a comment regarding 'a0':
38 | | "a0"
39 | | )
| |_____^ RUF023
40 | __match_args__ = [
41 | "d",
|
= help: Apply a natural sort to `Klass3.__slots__`
Safe fix
31 31 |
32 32 | class Klass3:
33 33 | __slots__ = (
34 |- "d0",
34 |+ # a comment regarding 'a0':
35 |+ "a0",
36 |+ "b0",
35 37 | "c0", # a comment regarding 'c0'
36 |- "b0",
37 |- # a comment regarding 'a0':
38 |- "a0"
38 |+ "d0"
39 39 | )
40 40 | __match_args__ = [
41 41 | "d",
RUF023.py:40:22: RUF023 [*] `Klass3.__match_args__` is not sorted
|
38 | "a0"
39 | )
40 | __match_args__ = [
| ______________________^
41 | | "d",
42 | | "c", # a comment regarding 'c'
43 | | "b",
44 | | # a comment regarding 'a':
45 | | "a"
46 | | ]
| |_____^ RUF023
47 |
48 | ##########################################
|
= help: Apply a natural sort to `Klass3.__match_args__`
Safe fix
38 38 | "a0"
39 39 | )
40 40 | __match_args__ = [
41 |- "d",
41 |+ # a comment regarding 'a':
42 |+ "a",
43 |+ "b",
42 44 | "c", # a comment regarding 'c'
43 |- "b",
44 |- # a comment regarding 'a':
45 |- "a"
45 |+ "d"
46 46 | ]
47 47 |
48 48 | ##########################################
RUF023.py:54:17: RUF023 [*] `Klass4.__slots__` is not sorted
|
52 | class Klass4:
53 | # comment0
54 | __slots__ = ("d", "a", # comment1
| _________________^
55 | | # comment2
56 | | "f", "b",
57 | | "strangely", # comment3
58 | | # comment4
59 | | "formatted",
60 | | # comment5
61 | | ) # comment6
| |_____^ RUF023
62 | # comment7
|
= help: Apply a natural sort to `Klass4.__slots__`
Safe fix
51 51 |
52 52 | class Klass4:
53 53 | # comment0
54 |- __slots__ = ("d", "a", # comment1
55 |- # comment2
56 |- "f", "b",
57 |- "strangely", # comment3
58 |- # comment4
54 |+ __slots__ = (
55 |+ "a",
56 |+ "b",
57 |+ "d", # comment1
58 |+ # comment2
59 |+ "f",
60 |+ # comment4
59 61 | "formatted",
62 |+ "strangely", # comment3
60 63 | # comment5
61 64 | ) # comment6
62 65 | # comment7
RUF023.py:64:22: RUF023 [*] `Klass4.__match_args__` is not sorted
|
62 | # comment7
63 |
64 | __match_args__ = [ # comment0
| ______________________^
65 | | # comment1
66 | | # comment2
67 | | "dx", "cx", "bx", "ax" # comment3
68 | | # comment4
69 | | # comment5
70 | | # comment6
71 | | ] # comment7
| |_____^ RUF023
72 |
73 | # from cpython/Lib/pathlib/__init__.py
|
= help: Apply a natural sort to `Klass4.__match_args__`
Safe fix
62 62 | # comment7
63 63 |
64 64 | __match_args__ = [ # comment0
65 |+ "ax",
66 |+ "bx",
67 |+ "cx",
65 68 | # comment1
66 69 | # comment2
67 |- "dx", "cx", "bx", "ax" # comment3
70 |+ "dx" # comment3
68 71 | # comment4
69 72 | # comment5
70 73 | # comment6
RUF023.py:75:17: RUF023 [*] `PurePath.__slots__` is not sorted
|
73 | # from cpython/Lib/pathlib/__init__.py
74 | class PurePath:
75 | __slots__ = (
| _________________^
76 | | # The `_raw_paths` slot stores unnormalized string paths. This is set
77 | | # in the `__init__()` method.
78 | | '_raw_paths',
79 | |
80 | | # The `_drv`, `_root` and `_tail_cached` slots store parsed and
81 | | # normalized parts of the path. They are set when any of the `drive`,
82 | | # `root` or `_tail` properties are accessed for the first time. The
83 | | # three-part division corresponds to the result of
84 | | # `os.path.splitroot()`, except that the tail is further split on path
85 | | # separators (i.e. it is a list of strings), and that the root and
86 | | # tail are normalized.
87 | | '_drv', '_root', '_tail_cached',
88 | |
89 | | # The `_str` slot stores the string representation of the path,
90 | | # computed from the drive, root and tail when `__str__()` is called
91 | | # for the first time. It's used to implement `_str_normcase`
92 | | '_str',
93 | |
94 | | # The `_str_normcase_cached` slot stores the string path with
95 | | # normalized case. It is set when the `_str_normcase` property is
96 | | # accessed for the first time. It's used to implement `__eq__()`
97 | | # `__hash__()`, and `_parts_normcase`
98 | | '_str_normcase_cached',
99 | |
100 | | # The `_parts_normcase_cached` slot stores the case-normalized
101 | | # string path after splitting on path separators. It's set when the
102 | | # `_parts_normcase` property is accessed for the first time. It's used
103 | | # to implement comparison methods like `__lt__()`.
104 | | '_parts_normcase_cached',
105 | |
106 | | # The `_hash` slot stores the hash of the case-normalized string
107 | | # path. It's set when `__hash__()` is called for the first time.
108 | | '_hash',
109 | | )
| |_____^ RUF023
110 |
111 | # From cpython/Lib/pickletools.py
|
= help: Apply a natural sort to `PurePath.__slots__`
Safe fix
73 73 | # from cpython/Lib/pathlib/__init__.py
74 74 | class PurePath:
75 75 | __slots__ = (
76 |- # The `_raw_paths` slot stores unnormalized string paths. This is set
77 |- # in the `__init__()` method.
78 |- '_raw_paths',
79 |-
80 76 | # The `_drv`, `_root` and `_tail_cached` slots store parsed and
81 77 | # normalized parts of the path. They are set when any of the `drive`,
82 78 | # `root` or `_tail` properties are accessed for the first time. The
--------------------------------------------------------------------------------
84 80 | # `os.path.splitroot()`, except that the tail is further split on path
85 81 | # separators (i.e. it is a list of strings), and that the root and
86 82 | # tail are normalized.
87 |- '_drv', '_root', '_tail_cached',
88 |-
83 |+ '_drv',
84 |+ # The `_hash` slot stores the hash of the case-normalized string
85 |+ # path. It's set when `__hash__()` is called for the first time.
86 |+ '_hash',
87 |+ # The `_parts_normcase_cached` slot stores the case-normalized
88 |+ # string path after splitting on path separators. It's set when the
89 |+ # `_parts_normcase` property is accessed for the first time. It's used
90 |+ # to implement comparison methods like `__lt__()`.
91 |+ '_parts_normcase_cached',
92 |+ # The `_raw_paths` slot stores unnormalized string paths. This is set
93 |+ # in the `__init__()` method.
94 |+ '_raw_paths',
95 |+ '_root',
89 96 | # The `_str` slot stores the string representation of the path,
90 97 | # computed from the drive, root and tail when `__str__()` is called
91 98 | # for the first time. It's used to implement `_str_normcase`
92 99 | '_str',
93 |-
94 100 | # The `_str_normcase_cached` slot stores the string path with
95 101 | # normalized case. It is set when the `_str_normcase` property is
96 102 | # accessed for the first time. It's used to implement `__eq__()`
97 103 | # `__hash__()`, and `_parts_normcase`
98 104 | '_str_normcase_cached',
99 |-
100 |- # The `_parts_normcase_cached` slot stores the case-normalized
101 |- # string path after splitting on path separators. It's set when the
102 |- # `_parts_normcase` property is accessed for the first time. It's used
103 |- # to implement comparison methods like `__lt__()`.
104 |- '_parts_normcase_cached',
105 |-
106 |- # The `_hash` slot stores the hash of the case-normalized string
107 |- # path. It's set when `__hash__()` is called for the first time.
108 |- '_hash',
105 |+ '_tail_cached',
109 106 | )
110 107 |
111 108 | # From cpython/Lib/pickletools.py
RUF023.py:113:17: RUF023 [*] `ArgumentDescriptor.__slots__` is not sorted
|
111 | # From cpython/Lib/pickletools.py
112 | class ArgumentDescriptor(object):
113 | __slots__ = (
| _________________^
114 | | # name of descriptor record, also a module global name; a string
115 | | 'name',
116 | |
117 | | # length of argument, in bytes; an int; UP_TO_NEWLINE and
118 | | # TAKEN_FROM_ARGUMENT{1,4,8} are negative values for variable-length
119 | | # cases
120 | | 'n',
121 | |
122 | | # a function taking a file-like object, reading this kind of argument
123 | | # from the object at the current position, advancing the current
124 | | # position by n bytes, and returning the value of the argument
125 | | 'reader',
126 | |
127 | | # human-readable docs for this arg descriptor; a string
128 | | 'doc',
129 | | )
| |_____^ RUF023
130 |
131 | ####################################
|
= help: Apply a natural sort to `ArgumentDescriptor.__slots__`
Safe fix
111 111 | # From cpython/Lib/pickletools.py
112 112 | class ArgumentDescriptor(object):
113 113 | __slots__ = (
114 |- # name of descriptor record, also a module global name; a string
115 |- 'name',
116 |-
114 |+ # human-readable docs for this arg descriptor; a string
115 |+ 'doc',
117 116 | # length of argument, in bytes; an int; UP_TO_NEWLINE and
118 117 | # TAKEN_FROM_ARGUMENT{1,4,8} are negative values for variable-length
119 118 | # cases
120 119 | 'n',
121 |-
120 |+ # name of descriptor record, also a module global name; a string
121 |+ 'name',
122 122 | # a function taking a file-like object, reading this kind of argument
123 123 | # from the object at the current position, advancing the current
124 124 | # position by n bytes, and returning the value of the argument
125 125 | 'reader',
126 |-
127 |- # human-readable docs for this arg descriptor; a string
128 |- 'doc',
129 126 | )
130 127 |
131 128 | ####################################
RUF023.py:138:17: RUF023 `SlotUser.__slots__` is not sorted
|
136 | # Multiline dicts are out of scope.
137 | class SlotUser:
138 | __slots__ = {'power': 'measured in kilowatts',
| _________________^
139 | | 'distance': 'measured in kilometers'}
| |______________________________________________________^ RUF023
140 |
141 | class Klass5:
|
= help: Apply a natural sort to `SlotUser.__slots__`
RUF023.py:142:22: RUF023 `Klass5.__match_args__` is not sorted
|
141 | class Klass5:
142 | __match_args__ = (
| ______________________^
143 | | "look",
144 | | (
145 | | "a_veeeeeeeeeeeeeeeeeeery_long_parenthesized_item"
146 | | ),
147 | | )
| |_____^ RUF023
148 | __slots__ = (
149 | "b",
|
= help: Apply a natural sort to `Klass5.__match_args__`
RUF023.py:148:17: RUF023 `Klass5.__slots__` is not sorted
|
146 | ),
147 | )
148 | __slots__ = (
| _________________^
149 | | "b",
150 | | ((
151 | | "c"
152 | | )),
153 | | "a"
154 | | )
| |_____^ RUF023
155 | __slots__ = ("don't" "care" "about", "__slots__" "with", "concatenated" "strings")
|
= help: Apply a natural sort to `Klass5.__slots__`
RUF023.py:155:17: RUF023 `Klass5.__slots__` is not sorted
|
153 | "a"
154 | )
155 | __slots__ = ("don't" "care" "about", "__slots__" "with", "concatenated" "strings")
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RUF023
156 |
157 | ###################################
|
= help: Apply a natural sort to `Klass5.__slots__`

1
ruff.schema.json generated
View file

@ -3449,6 +3449,7 @@
"RUF020",
"RUF021",
"RUF022",
"RUF023",
"RUF024",
"RUF1",
"RUF10",