## Summary
Modify the (external) signature of instance methods such that the first
parameter uses `Self` unless it is explicitly annotated. This allows us
to correctly type-check more code, and allows us to infer correct return
types for many functions that return `Self`. For example:
```py
from pathlib import Path
from datetime import datetime, timedelta
reveal_type(Path(".config") / ".ty") # now Path, previously Unknown
def _(dt: datetime, delta: timedelta):
reveal_type(dt - delta) # now datetime, previously Unknown
```
part of https://github.com/astral-sh/ty/issues/159
## Performance
I ran benchmarks locally on `attrs`, `freqtrade` and `colour`, the
projects with the largest regressions on CodSpeed. I see much smaller
effects locally, but can definitely reproduce the regression on `attrs`.
From looking at the profiling results (on Codspeed), it seems that we
simply do more type inference work, which seems plausible, given that we
now understand much more return types (of many stdlib functions). In
particular, whenever a function uses an implicit `self` and returns
`Self` (without mentioning `Self` anywhere else in its signature), we
will now infer the correct type, whereas we would previously return
`Unknown`. This also means that we need to invoke the generics solver in
more cases. Comparing half a million lines of log output on attrs, I can
see that we do 5% more "work" (number of lines in the log), and have a
lot more `apply_specialization` events (7108 vs 4304). On freqtrade, I
see similar numbers for `apply_specialization` (11360 vs 5138 calls).
Given these results, I'm not sure if it's generally worth doing more
performance work, especially since none of the code modifications
themselves seem to be likely candidates for regressions.
| Command | Mean [ms] | Min [ms] | Max [ms] | Relative |
|:---|---:|---:|---:|---:|
| `./ty_main check /home/shark/ecosystem/attrs` | 92.6 ± 3.6 | 85.9 |
102.6 | 1.00 |
| `./ty_self check /home/shark/ecosystem/attrs` | 101.7 ± 3.5 | 96.9 |
113.8 | 1.10 ± 0.06 |
| Command | Mean [ms] | Min [ms] | Max [ms] | Relative |
|:---|---:|---:|---:|---:|
| `./ty_main check /home/shark/ecosystem/freqtrade` | 599.0 ± 20.2 |
568.2 | 627.5 | 1.00 |
| `./ty_self check /home/shark/ecosystem/freqtrade` | 607.9 ± 11.5 |
594.9 | 626.4 | 1.01 ± 0.04 |
| Command | Mean [ms] | Min [ms] | Max [ms] | Relative |
|:---|---:|---:|---:|---:|
| `./ty_main check /home/shark/ecosystem/colour` | 423.9 ± 17.9 | 394.6
| 447.4 | 1.00 |
| `./ty_self check /home/shark/ecosystem/colour` | 426.9 ± 24.9 | 373.8
| 456.6 | 1.01 ± 0.07 |
## Test Plan
New Markdown tests
## Ecosystem report
* apprise: ~300 new diagnostics related to problematic stubs in apprise
😩
* attrs: a new true positive, since [this
function](4e2c89c823/tests/test_make.py (L2135))
is missing a `@staticmethod`?
* Some legitimate true positives
* sympy: lots of new `invalid-operator` false positives in [matrix
multiplication](cf9f4b6805/sympy/matrices/matrixbase.py (L3267-L3269))
due to our limited understanding of [generic `Callable[[Callable[[T1,
T2], T3]], Callable[[T1, T2], T3]]` "identity"
types](cf9f4b6805/sympy/core/decorators.py (L83-L84))
of decorators. This is not related to type-of-self.
## Typing conformance results
The changes are all correct, except for
```diff
+generics_self_usage.py:50:5: error[invalid-assignment] Object of type `def foo(self) -> int` is not assignable to `(typing.Self, /) -> int`
```
which is related to an assignability problem involving type variables on
both sides:
```py
class CallableAttribute:
def foo(self) -> int:
return 0
bar: Callable[[Self], int] = foo # <- we currently error on this assignment
```
---------
Co-authored-by: Shaygan Hooshyari <sh.hooshyari@gmail.com>
`Type::TypeVar` now distinguishes whether the typevar in question is
inferable or not.
A typevar is _not inferable_ inside the body of the generic class or
function that binds it:
```py
def f[T](t: T) -> T:
return t
```
The infered type of `t` in the function body is `TypeVar(T,
NotInferable)`. This represents how e.g. assignability checks need to be
valid for all possible specializations of the typevar. Most of the
existing assignability/etc logic only applies to non-inferable typevars.
Outside of the function body, the typevar is _inferable_:
```py
f(4)
```
Here, the parameter type of `f` is `TypeVar(T, Inferable)`. This
represents how e.g. assignability doesn't need to hold for _all_
specializations; instead, we need to find the constraints under which
this specific assignability check holds.
This is in support of starting to perform specialization inference _as
part of_ performing the assignability check at the call site.
In the [[POPL2015][]] paper, this concept is called _monomorphic_ /
_polymorphic_, but I thought _non-inferable_ / _inferable_ would be
clearer for us.
Depends on #19784
[POPL2015]: https://doi.org/10.1145/2676726.2676991
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
This fixes our logic for binding a legacy typevar with its binding
context. (To recap, a legacy typevar starts out "unbound" when it is
first created, and each time it's used in a generic class or function,
we "bind" it with the corresponding `Definition`.)
We treat `typing.Self` the same as a legacy typevar, and so we apply
this binding logic to it too. Before, we were using the enclosing class
as its binding context. But that's not correct — it's the method where
`typing.Self` is used that binds the typevar. (Each invocation of the
method will find a new specialization of `Self` based on the specific
instance type containing the invoked method.)
This required plumbing through some additional state to the
`in_type_expression` method.
This also revealed that we weren't handling `Self`-typed instance
attributes correctly (but were coincidentally not getting the expected
false positive diagnostics).
This PR introduces a few related changes:
- We now keep track of each time a legacy typevar is bound in a
different generic context (e.g. class, function), and internally create
a new `TypeVarInstance` for each usage. This means the rest of the code
can now assume that salsa-equivalent `TypeVarInstance`s refer to the
same typevar, even taking into account that legacy typevars can be used
more than once.
- We also go ahead and track the binding context of PEP 695 typevars.
That's _much_ easier to track since we have the binding context right
there during type inference.
- With that in place, we can now include the name of the binding context
when rendering typevars (e.g. `T@f` instead of `T`)
## Summary
An issue seen here https://github.com/astral-sh/ty/issues/500
The `__init__` method of dataclasses had no inherited generic context,
so we could not infer the type of an instance from a constructor call
with generics
## Test Plan
Add tests to classes.md` in generics folder
## Summary
Add various attributes to `NamedTuple` classes/instances that are
available at runtime.
closes https://github.com/astral-sh/ty/issues/417
## Test Plan
New Markdown tests
## Summary
Dunder methods are never looked up on instances. We do this implicitly
in `try_call_dunder`, but the corresponding flag was missing in the
instance-construction code where we use `member_lookup_with_policy`
directly.
fixes https://github.com/astral-sh/ty/issues/322
## Test Plan
Added regression test.