This trait should eventually go away, so we rename it (and supporting
types) to make room for a new concrete `Diagnostic` type.
This commit is just the rename. In the next commit, we'll move it to a
different module.
## Summary
This PR does a small refactor to avoid double
`symbol_table(...).symbol(...)` call to check for `__slots__` and
`TYPE_CHECKING`. It merges them into a single call.
I noticed this while looking at
https://github.com/astral-sh/ruff/pull/16468.
## Summary
This PR adds more features to #16468.
* Adds a new error rule `invalid-type-checking-constant`, which occurs
when we try to assign a value other than `False` to a user-defined
`TYPE_CHECKING` variable (it is possible to assign `...` in a stub
file).
* Allows annotated assignment to `TYPE_CHECKING`. Only types that
`False` can be assigned to are allowed. However, the type of
`TYPE_CHECKING` will be inferred to be `Literal[True]` regardless of
what the type is specified.
## Test plan
I ran the tests with `cargo test -p red_knot_python_semantic` and
confirmed that all tests passed.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
This PR closes#15722.
The change is that if the variable `TYPE_CHECKING` is defined/imported,
the type of the variable is interpreted as `Literal[True]` regardless of
what the value is.
This is compatible with the behavior of other type checkers (e.g. mypy,
pyright).
## Test Plan
I ran the tests with `cargo test -p red_knot_python_semantic` and
confirmed that all tests passed.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
Regardless of whether #16408 and #16311 pan out, this part is worth
pulling out as a separate PR.
Before, you had to define a new `IndexVec` index type for each type of
association list you wanted to create. Now there's a single index type
that's internal to the alist implementation, and you use `List<K, V>` to
store a handle to a particular list.
This also adds some property tests for the alist implementation.
We currently keep two separate pieces of state regarding the current
loop on `SemanticIndexBuilder`. One is an enum simply reflecting whether
we are currently inside a loop, and the other is the saved flow states
for `break` statements found in the current loop.
For adding loopy control flow, I'll need to add some additional loop
state (`continue` states, for example). Prepare for this by
consolidating our existing loop state into a single struct and
simplifying the API for pushing and popping a loop.
This is purely a refactor, so tests are not changed.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Minor follow-up to https://github.com/astral-sh/ruff/pull/16161
This `not_callable` flag wasn't functional, because it could never be
`false`. It was initialized to `true` and then only ever updated with
`|=`, which can never make it `false`.
Add a test that exercises the case where it _should_ be `false` (all of
the union elements are callable) but `bindings` is also empty (all union
elements have binding errors). Before this PR, the added test wrongly
emits a diagnostic that the union `Literal[f1] | Literal[f2]` is not
callable.
And add a test where a union call results in one binding error and one
not-callable error, where we currently give the wrong result (we show
only the binding error), with a TODO.
Also add TODO comments in a couple other tests where ideally we'd report
more than just one error out of a union call.
Also update the flag name to `all_errors_not_callable` to more clearly
indicate the semantics of the flag.
In https://github.com/astral-sh/ruff/pull/16306#discussion_r1966290700,
@carljm pointed out that #16306 introduced a terminology problem, with
too many things called a "constraint". This is a follow-up PR that
renames `Constraint` to `Predicate` to hopefully clear things up a bit.
So now we have that:
- a _predicate_ is a Python expression that might influence type
inference
- a _narrowing constraint_ is a list of predicates that constraint the
type of a binding that is visible at a use
- a _visibility constraint_ is a ternary formula of predicates that
define whether a binding is visible or a statement is reachable
This is a pure renaming, with no behavioral changes.
## Summary
Model dunder-calls correctly (and in one single place), by implementing
this behavior (using `__getitem__` as an example).
```py
def getitem_desugared(obj: object, key: object) -> object:
getitem_callable = find_in_mro(type(obj), "__getitem__")
if hasattr(getitem_callable, "__get__"):
getitem_callable = getitem_callable.__get__(obj, type(obj))
return getitem_callable(key)
```
See the new `calls/dunder.md` test suite for more information. The new
behavior also needs much fewer lines of code (the diff is positive due
to new tests).
## Test Plan
New tests; fix TODOs in existing tests.
This PR adds an implementation of [association
lists](https://en.wikipedia.org/wiki/Association_list), and uses them to
replace the previous `BitSet`/`SmallVec` representation for narrowing
constraints.
An association list is a linked list of key/value pairs. We additionally
guarantee that the elements of an association list are sorted (by their
keys), and that they do not contain any entries with duplicate keys.
Association lists have fallen out of favor in recent decades, since you
often need operations that are inefficient on them. In particular,
looking up a random element by index is O(n), just like a linked list;
and looking up an element by key is also O(n), since you must do a
linear scan of the list to find the matching element. Luckily we don't
need either of those operations for narrowing constraints!
The typical implementation also suffers from poor cache locality and
high memory allocation overhead, since individual list cells are
typically allocated separately from the heap. We solve that last problem
by storing the cells of an association list in an `IndexVec` arena.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
Add a diagnostic if a pure instance variable is accessed on a class object. For example
```py
class C:
instance_only: str
def __init__(self):
self.instance_only = "a"
# error: Attribute `instance_only` can only be accessed on instances, not on the class object `Literal[C]` itself.
C.instance_only
```
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
Add support for `@classmethod`s.
```py
class C:
@classmethod
def f(cls, x: int) -> str:
return "a"
reveal_type(C.f(1)) # revealed: str
```
## Test Plan
New Markdown tests
## Summary
I spotted a minor mistake in my descriptor protocol implementation where
`C.descriptor` would pass the meta type (`type`) of the type of `C`
(`Literal[C]`) as the owner argument to `__get__`, instead of passing
`Literal[C]` directly.
## Test Plan
New test.
Two related changes. For context:
1. We were maintaining two separate arenas of `Constraint`s in each
use-def map. One was used for narrowing constraints, and the other for
visibility constraints. The visibility constraint arena was interned,
ensuring that we always used the same ID for any particular
`Constraint`. The narrowing constraint arena was not interned.
2. The TDD code relies on _all_ TDD nodes being interned and reduced.
This is an important requirement for TDDs to be a canonical form, which
allows us to use a single int comparison to test for "always true/false"
and to compare two TDDs for equivalence. But we also need to support an
individual `Constraint` having multiple values in a TDD evaluation (e.g.
to handle a `while` condition having different values the first time
it's evaluated vs later times). Previously, we handled that by
introducing a "copy" number, which was only there as a disambiguator, to
allow an interned, deduplicated constraint ID to appear in the TDD
formula multiple times.
A better way to handle (2) is to not intern the constraints in the
visibility constraint arena! The caller now gets to decide: if they add
a `Constraint` to the arena more than once, they get distinct
`ScopedConstraintId`s — which the TDD code will treat as distinct
variables, allowing them to take on different values in the ternary
function.
With that in place, we can then consolidate on a single (non-interned)
arena, which is shared for both narrowing and visibility constraints.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
This PR achieves the following:
* Add support for checking method calls, and inferring return types from
method calls. For example:
```py
reveal_type("abcde".find("abc")) # revealed: int
reveal_type("foo".encode(encoding="utf-8")) # revealed: bytes
"abcde".find(123) # error: [invalid-argument-type]
class C:
def f(self) -> int:
pass
reveal_type(C.f) # revealed: <function `f`>
reveal_type(C().f) # revealed: <bound method: `f` of `C`>
C.f() # error: [missing-argument]
reveal_type(C().f()) # revealed: int
```
* Implement the descriptor protocol, i.e. properly call the `__get__`
method when a descriptor object is accessed through a class object or an
instance of a class. For example:
```py
from typing import Literal
class Ten:
def __get__(self, instance: object, owner: type | None = None) ->
Literal[10]:
return 10
class C:
ten: Ten = Ten()
reveal_type(C.ten) # revealed: Literal[10]
reveal_type(C().ten) # revealed: Literal[10]
```
* Add support for member lookup on intersection types.
* Support type inference for `inspect.getattr_static(obj, attr)` calls.
This was mostly used as a debugging tool during development, but seems
more generally useful. It can be used to bypass the descriptor protocol.
For the example above:
```py
from inspect import getattr_static
reveal_type(getattr_static(C, "ten")) # revealed: Ten
```
* Add a new `Type::Callable(…)` variant with the following sub-variants:
* `Type::Callable(CallableType::BoundMethod(…))` — represents bound
method objects, e.g. `C().f` above
* `Type::Callable(CallableType::MethodWrapperDunderGet(…))` — represents
`f.__get__` where `f` is a function
* `Type::Callable(WrapperDescriptorDunderGet)` — represents
`FunctionType.__get__`
* Add new known classes:
* `types.MethodType`
* `types.MethodWrapperType`
* `types.WrapperDescriptorType`
* `builtins.range`
## Performance analysis
On this branch, we do more work. We need to do more call checking, since
we now check all method calls. We also need to do ~twice as many member
lookups, because we need to check if a `__get__` attribute exists on
accessed members.
A brief analysis on `tomllib` shows that we now call `Type::call` 1780
times, compared to 612 calls before.
## Limitations
* Data descriptors are not yet supported, i.e. we do not infer correct
types for descriptor attribute accesses in `Store` context and do not
check writes to descriptor attributes. I felt like this was something
that could be split out as a follow-up without risking a major
architectural change.
* We currently distinguish between `Type::member` (with descriptor
protocol) and `Type::static_member` (without descriptor protocol). The
former corresponds to `obj.attr`, the latter corresponds to
`getattr_static(obj, "attr")`. However, to model some details correctly,
we would also need to distinguish between a static member lookup *with*
and *without* instance variables. The lookup without instance variables
corresponds to `find_name_in_mro`
[here](https://docs.python.org/3/howto/descriptor.html#invocation-from-an-instance).
We currently approximate both using `member_static`, which leads to two
open TODOs. Changing this would be a larger refactoring of
`Type::own_instance_member`, so I chose to leave it out of this PR.
## Test Plan
* New `call/methods.md` test suite for method calls
* New tests in `descriptor_protocol.md`
* New `call/getattr_static.md` test suite for `inspect.getattr_static`
* Various updated tests
## Summary
This avoids looking up `__bool__` on class `bool` for every
`Type::Instance(bool).bool()` call. 1% performance win on cold cache, 4%
win on incremental performance.
This updates the `SymbolBindings` and `SymbolDeclarations` types to use
a single smallvec of live bindings/declarations, instead of splitting
that out into separate containers for each field.
I'm seeing an 11-13% `cargo bench` performance improvement with this
locally (for both cold and incremental). I'm interested to see if
Codspeed agrees!
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
A minor cleanup that breaks up a `HashMap` of an enum into separate
`HashMap`s for each variant. (These separate fields were already how
this cache was being described in the big comment at the top of the
file!)
This is a small tweak to avoid adding the callable `Type` on the error
value itself. Namely, it's always available regardless of the error, and
it's easy to pass it down explicitly to the diagnostic generating code.
It's likely that the other `CallBindingError` variants will also want
the callable `Type` to improve diagnostics too. This way, we don't have
to duplicate the `Type` on each variant. It's just available to all of
them.
Ref https://github.com/astral-sh/ruff/pull/16239#discussion_r1962352646
## Summary
Follow up on the discussion
[here](https://github.com/astral-sh/ruff/pull/16121#discussion_r1962973298).
Replace builtin classes with custom placeholder names, which should
hopefully make the tests a bit easier to understand.
I carefully renamed things one after the other, to make sure that there
is no functional change in the tests.
We now resolve references in "eager" scopes correctly — using the
bindings and declarations that are visible at the point where the eager
scope is created, not the "public" type of the symbol (typically the
bindings visible at the end of the scope).
---------
Co-authored-by: Alex Waygood <alex.waygood@gmail.com>
This uses the refactoring and support for secondary diagnostic messages
to improve the diagnostic for "invalid argument type." The main
improvement here is that we show where the function being called is
defined, and annotate the span corresponding to the invalid parameter.
This is a small little hack to make the `Diagnostic` trait
capable of supporting attaching multiple spans.
This design should be considered transient. This was just the
quickest way that I could see to pass multiple spans through from
the type checker to the diagnostic renderer.
It seems nothing is using it, and I'm not sure if it makes semantic
sense. Particularly if we want to support multiple ranges. One could
make an argument that this ought to correspond to the "primary"
range (which we should have), but I think such a concept is better
expressed as an explicit routine if possible.
## Summary
This PR updates the formatter and linter to use the `PythonVersion`
struct from the `ruff_python_ast` crate internally. While this doesn't
remove the need for the `linter::PythonVersion` enum, it does remove the
`formatter::PythonVersion` enum and limits the use in the linter to
deserializing from CLI arguments and config files and moves most of the
remaining methods to the `ast::PythonVersion` struct.
## Test Plan
Existing tests, with some inputs and outputs updated to reflect the new
(de)serialization format. I think these are test-specific and shouldn't
affect any external (de)serialization.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>