## Summary
This allows us to handle self-referential bounds/constraints/defaults
without panicking.
Handles more cases from https://github.com/astral-sh/ty/issues/256
This also changes the way we infer the types of legacy TypeVars. Rather
than understanding a constructor call to `typing[_extension].TypeVar`
inside of any (arbitrarily nested) expression, and having to use a
special `assigned_to` field of the semantic index to try to best-effort
figure out what name the typevar was assigned to, we instead understand
the creation of a legacy `TypeVar` only in the supported syntactic
position (RHS of a simple un-annotated assignment with one target). In
any other position, we just infer it as creating an opaque instance of
`typing.TypeVar`. (This behavior matches all other type checkers.)
So we now special-case TypeVar creation in `TypeInferenceBuilder`, as a
special case of an assignment definition, rather than deeper inside call
binding. This does mean we re-implement slightly more of
argument-parsing, but in practice this is minimal and easy to handle
correctly.
This is easier to implement if we also make the RHS of a simple (no
unpacking) one-target assignment statement no longer a standalone
expression. Which is fine to do, because simple one-target assignments
don't need to infer the RHS more than once. This is a bonus performance
(0-3% across various projects) and significant memory-usage win, since
most assignment statements are simple one-target assignment statements,
meaning we now create many fewer standalone-expression salsa
ingredients.
This change does mean that inference of manually-constructed
`TypeAliasType` instances can no longer find its Definition in
`assigned_to`, which regresses go-to-definition for these aliases. In a
future PR, `TypeAliasType` will receive the same treatment that
`TypeVar` did in this PR (moving its special-case inference into
`TypeInferenceBuilder` and supporting it only in the correct syntactic
position, and lazily inferring its value type to support recursion),
which will also fix the go-to-definition regression. (I decided a
temporary edge-case regression is better in this case than doubling the
size of this PR.)
This PR also tightens up and fixes various aspects of the validation of
`TypeVar` creation, as seen in the tests.
We still (for now) treat all typevars as instances of `typing.TypeVar`,
even if they were created using `typing_extensions.TypeVar`. This means
we'll wrongly error on e.g. `T.__default__` on Python 3.11, even if `T`
is a `typing_extensions.TypeVar` instance at runtime. We share this
wrong behavior with both mypy and pyrefly. It will be easier to fix
after we pull in https://github.com/python/typeshed/pull/14840.
There are some issues that showed up here with typevar identity and
`MarkTypeVarsInferable`; the fix here (using the new `original` field
and `is_identical_to` methods on `BoundTypeVarInstance` and
`TypeVarInstance`) is a bit kludgy, but it can go away when we eliminate
`MarkTypeVarsInferable`.
## Test Plan
Added and updated mdtests.
### Conformance suite impact
The impact here is all positive:
* We now correctly error on a legacy TypeVar with exactly one constraint
type given.
* We now correctly error on a legacy TypeVar with both an upper bound
and constraints specified.
### Ecosystem impact
Basically none; in the setuptools case we just issue slightly different
errors on an invalid TypeVar definition, due to the modified validation
code.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
Even disambiguating classes using their fully qualified names is not
enough for some diagnostics. We've seen real-world examples in the
ecosystem (and https://github.com/astral-sh/ruff/pull/20368 introduces
some more!) where two types can be different, but can still have the
same fully qualified name. In these cases, our disambiguation machinery
needs to print the file path and line number of the class in order to
disambiguate classes with similar names in our diagnostics.
Helps with https://github.com/astral-sh/ty/issues/1306
## Test Plan
Mdtests
Reverts astral-sh/ruff#20156. As @sharkdp noted in his post-merge
review, there were several issues with that PR that I didn't spot before
merging — but I'm out for four days now, and would rather not leave
things in an inconsistent state for that long. I'll revisit this on
Wednesday.
## Summary
This error is about assigning to attributes rather than reading
attributes, so I think `invalid-assignment` makes more sense than
`invalid-attribute-access`
## Test Plan
existing mdtests updated
There are some situations that we have a confusing diagnostics due to
identical class names.
## Class with same name from different modules
```python
import pandas
import polars
df: pandas.DataFrame = polars.DataFrame()
```
This yields the following error:
**Actual:**
error: [invalid-assignment] "Object of type `DataFrame` is not
assignable to `DataFrame`"
**Expected**:
error: [invalid-assignment] "Object of type `polars.DataFrame` is not
assignable to `pandas.DataFrame`"
## Nested classes
```python
from enum import Enum
class A:
class B(Enum):
ACTIVE = "active"
INACTIVE = "inactive"
class C:
class B(Enum):
ACTIVE = "active"
INACTIVE = "inactive"
```
**Actual**:
error: [invalid-assignment] "Object of type `Literal[B.ACTIVE]` is not
assignable to `B`"
**Expected**:
error: [invalid-assignment] "Object of type
`Literal[my_module.C.B.ACTIVE]` is not assignable to `my_module.A.B`"
## Solution
In this MR we added an heuristics to detect when to use a fully
qualified name:
- There is an invalid assignment and;
- They are two different classes and;
- They have the same name
The fully qualified name always includes:
- module name
- nested classes name
- actual class name
There was no `QualifiedDisplay` so I had to implement it from scratch.
I'm very new to the codebase, so I might have done things inefficiently,
so I appreciate feedback.
Should we pre-compute the fully qualified name or do it on demand?
## Not implemented
### Function-local classes
Should we approach this in a different PR?
**Example**:
```python
# t.py
from __future__ import annotations
def function() -> A:
class A:
pass
return A()
class A:
pass
a: A = function()
```
#### mypy
```console
t.py:8: error: Incompatible return value type (got "t.A@5", expected "t.A") [return-value]
```
From my testing the 5 in `A@5` comes from the like number.
#### ty
```console
error[invalid-return-type]: Return type does not match returned value
--> t.py:4:19
|
4 | def function() -> A:
| - Expected `A` because of return type
5 | class A:
6 | pass
7 |
8 | return A()
| ^^^ expected `A`, found `A`
|
info: rule `invalid-return-type` is enabled by default
```
Fixes https://github.com/astral-sh/ty/issues/848
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
This PR adds a new lint, `invalid-await`, for all sorts of reasons why
an object may not be `await`able, as discussed in astral-sh/ty#919.
Precisely, `__await__` is guarded against being missing, possibly
unbound, or improperly defined (expects additional arguments or doesn't
return an iterator).
Of course, diagnostics need to be fine-tuned. If `__await__` cannot be
called with no extra arguments, it indicates an error (or a quirk?) in
the method signature, not at the call site. Without any doubt, such an
object is not `Awaitable`, but I feel like talking about arguments for
an *implicit* call is a bit leaky.
I didn't reference any actual diagnostic messages in the lint
definition, because I want to hear feedback first.
Also, there's no mention of the actual required method signature for
`__await__` anywhere in the docs. The only reference I had is the
`typing` stub. I basically ended up linking `[Awaitable]` to ["must
implement
`__await__`"](https://docs.python.org/3/library/collections.abc.html#collections.abc.Awaitable),
which is insufficient on its own.
## Test Plan
The following code was tested:
```python
import asyncio
import typing
class Awaitable:
def __await__(self) -> typing.Generator[typing.Any, None, int]:
yield None
return 5
class NoDunderMethod:
pass
class InvalidAwaitArgs:
def __await__(self, value: int) -> int:
return value
class InvalidAwaitReturn:
def __await__(self) -> int:
return 5
class InvalidAwaitReturnImplicit:
def __await__(self):
pass
async def main() -> None:
result = await Awaitable() # valid
result = await NoDunderMethod() # `__await__` is missing
result = await InvalidAwaitReturn() # `__await__` returns `int`, which is not a valid iterator
result = await InvalidAwaitArgs() # `__await__` expects additional arguments and cannot be called implicitly
result = await InvalidAwaitReturnImplicit() # `__await__` returns `Unknown`, which is not a valid iterator
asyncio.run(main())
```
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
A [passing
comment](https://github.com/astral-sh/ruff/pull/19711#issuecomment-3169312014)
led me to explore why we didn't report a class attribute as possibly
unbound if it was a method and defined in two different conditional
branches.
I found that the reason was because of our handling of "conflicting
declarations" in `place_from_declarations`. It returned a `Result` which
would be `Err` in case of conflicting declarations.
But we only actually care about conflicting declarations when we are
actually doing type inference on that scope and might emit a diagnostic
about it. And in all cases (including that one), we want to otherwise
proceed with the union of the declared types, as if there was no
conflict.
In several cases we were failing to handle the union of declared types
in the same way as a normal declared type if there was a declared-types
conflict. The `Result` return type made this mistake really easy to
make, as we'd match on e.g. `Ok(Place::Type(...))` and do one thing,
then match on `Err(...)` and do another, even though really both of
those cases should be handled the same.
This PR refactors `place_from_declarations` to instead return a struct
which always represents the declared type we should use in the same way,
as well as carrying the conflicting declared types, if any. This struct
has a method to allow us to explicitly ignore the declared-types
conflict (which is what we want in most cases), as well as a method to
get the declared type and the conflict information, in the case where we
want to emit a diagnostic on the conflict.
## Test Plan
Existing CI; added a test showing that we now understand a
multiply-conditionally-defined method as possibly-unbound.
This does trigger issues on a couple new fuzzer seeds, but the issues
are just new instances of an already-known (and rarely occurring)
problem which I already plan to address in a future PR, so I think it's
OK to land as-is.
I happened to build this initially on top of
https://github.com/astral-sh/ruff/pull/19711, which adds invalid-await
diagnostics, so I also updated some invalid-syntax tests to not await on
an invalid type, since the purpose of those tests is to check the
syntactic location of the `await`, not the validity of the awaited type.
## Summary
Add support for `async for` loops and async iterables.
part of https://github.com/astral-sh/ty/issues/151
## Ecosystem impact
```diff
- boostedblob/listing.py:445:54: warning[unused-ignore-comment] Unused blanket `type: ignore` directive
```
This is correct. We now find a true positive in the `# type: ignore`'d
code.
All of the other ecosystem hits are of the type
```diff
trio (https://github.com/python-trio/trio)
+ src/trio/_core/_tests/test_guest_mode.py:532:24: error[not-iterable] Object of type `MemorySendChannel[int] | MemoryReceiveChannel[int]` may not be iterable
```
The message is correct, because only `MemoryReceiveChannel` has an
`__aiter__` method, but `MemorySendChannel` does not. What's not correct
is our inferred type here. It should be `MemoryReceiveChannel[int]`, not
the union of the two. This is due to missing unpacking support for tuple
subclasses, which @AlexWaygood is working on. I don't think this should
block merging this PR, because those wrong types are already there,
without this PR.
## Test Plan
New Markdown tests and snapshot tests for diagnostics.
## Summary
This PR resolves the way diagnostics are reported for an invalid call to
an overloaded function.
If any of the steps in the overload call evaluation algorithm yields a
matching overload but it's type checking that failed, the
`no-matching-overload` diagnostic is incorrect because there is a
matching overload, it's the arguments passed that are invalid as per the
signature. So, this PR improves that by surfacing the diagnostics on the
matching overload directly.
It also provides additional context, specifically the matching overload
where this error occurred and other non-matching overloads. Consider the
following example:
```py
from typing import overload
@overload
def f() -> None: ...
@overload
def f(x: int) -> int: ...
@overload
def f(x: int, y: int) -> int: ...
def f(x: int | None = None, y: int | None = None) -> int | None:
return None
f("a")
```
We get:
<img width="857" alt="Screenshot 2025-06-18 at 11 07 10"
src="https://github.com/user-attachments/assets/8dbcaf13-2a74-4661-aa94-1225c9402ea6"
/>
## Test Plan
Update test cases, resolve existing todos and validate the updated
snapshots.
This makes an easy tweak to allow our diagnostics for unmatched
overloads to apply to method calls. Previously, they only worked for
function calls.
There is at least one other case worth addressing too, namely, class
literals. e.g., `type()`. We had a diagnostic snapshot test case to
track it.
Closesastral-sh/ty#274
The diagnostic now includes a pointer to the implementation definition
along with each possible overload.
This doesn't include information about *why* each overload failed. But
given the emphasis on concise output (since there can be *many*
unmatched overloads), it's not totally clear how to include that
additional information.
Fixes#274
## Summary
If the user tries to use a new builtin on an old Python version, tell
them what Python version the builtin was added on, what our inferred
Python version is for their project, and what configuration settings
they can tweak to fix the error.
## Test Plan
Snapshots and screenshots:

Re: #17526
## Summary
Add integration test for semantic syntax for `IrrefutableCasePattern`,
`SingleStarredAssignment`, `WriteToDebug`, and `InvalidExpression`.
## Notes
- Following @ntBre's suggestion, I will keep the test coming in batches
like this over the next few days in separate PRs to keep the review load
per PR manageable while also not spamming too many.
- I did not add a test for `del __debug__` which is one of the examples
in `crates/ruff_python_parser/src/semantic_errors.rs:1051`.
For python version `<= 3.8` there is no error and for `>=3.9` the error
is not `WriteToDebug` but `SyntaxError: cannot delete __debug__ on
Python 3.9 (syntax was removed in 3.9)`.
- The `blacken-docs` bypass is necessary because otherwise the test does
not pass pre-commit checks; but we want to check for this faulty syntax.
<!-- What's the purpose of the change? What does it do, and why? -->
## Test Plan
This is a test.
This makes one very simple change: we report all call binding
errors from each union variant.
This does result in duplicate-seeming diagnostics. For example,
when two union variants are invalid for the same reason.
Summary
--
This PR resolves both the typing-related and syntax error TODOs added in
#17563 by tracking a set of `global` bindings for each scope. As
discussed below, we avoid the additional AST traversal from ruff by
collecting `Name`s from `global` statements while building the semantic
index and emit a syntax error if the `Name` is already bound in the
current scope at the point of the `global` statement. This has the
downside of separating the error from the `SemanticSyntaxChecker`, but I
plan to explore using this approach in the `SemanticSyntaxChecker`
itself as a follow-up. It seems like this may be a better approach for
ruff as well.
Test Plan
--
Updated all of the related mdtests to remove the TODOs (and add quotes I
forgot on the messages).
There is one remaining TODO, but it requires `nonlocal` support, which
isn't even incorporated into the `SemanticSyntaxChecker` yet.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Co-authored-by: Carl Meyer <carl@astral.sh>
Re: #17526
## Summary
Add integration tests for Python Semantic Syntax for
`InvalidStarExpression`, `DuplicateMatchKey`, and
`DuplicateMatchClassAttribute`.
## Note
- Red knot integration tests for `DuplicateMatchKey` exist already in
line 89-101.
<!-- What's the purpose of the change? What does it do, and why? -->
## Test Plan
This is a test.
<!-- How was it tested? -->