## Summary
Previously, the checks for implicit attribute assignments didn't
properly account for method decorators. This PR fixes that by:
- Adding a decorator check in `implicit_instance_attribute`. This allows
it to filter out methods with mismatching decorators when analyzing
attribute assignments.
- Adding attribute search for implicit class attributes: if an attribute
can't be found directly in the class body, the
`ClassLiteral::own_class_member` function will now search in
classmethods.
- Adding `staticmethod`: it has been added into `KnownClass` and
together with the new decorator check, it will no longer expose
attributes when the assignment target name is the same as the first
method name.
If accepted, it should fix https://github.com/astral-sh/ty/issues/205
and https://github.com/astral-sh/ty/issues/207.
## Test Plan
This is tested with existing mdtest suites and is able to get most of
the TODO marks for implicit assignments in classmethods and
staticmethods removed.
However, there's one specific test case I failed to figure out how to
correctly resolve:
b279508bdc/crates/ty_python_semantic/resources/mdtest/attributes.md (L754-L755)
I tried to add `instance_member().is_unbound()` check in this [else
branch](b279508bdc/crates/ty_python_semantic/src/types/infer.rs (L3299-L3301))
but it causes tests with class attributes defined in class body to fail.
While it's possible to implicitly add `ClassVar` to qualifiers to make
this assignment fail and keep everything else passing, it doesn't feel
like the right solution.
We already had support for homogeneous tuples (`tuple[int, ...]`). This
PR extends this to also support mixed tuples (`tuple[str, str,
*tuple[int, ...], str str]`).
A mixed tuple consists of a fixed-length (possibly empty) prefix and
suffix, and a variable-length portion in the middle. Every element of
the variable-length portion must be of the same type. A homogeneous
tuple is then just a mixed tuple with an empty prefix and suffix.
The new data representation uses different Rust types for a fixed-length
(aka heterogeneous) tuple. Another option would have been to use the
`VariableLengthTuple` representation for all tuples, and to wrap the
"variable + suffix" portion in an `Option`. I don't think that would
simplify the method implementations much, though, since we would still
have a 2×2 case analysis for most of them.
One wrinkle is that the definition of the `tuple` class in the typeshed
has a single typevar, and canonically represents a homogeneous tuple.
When getting the class of a tuple instance, that means that we have to
summarize our detailed mixed tuple type information into its
"homogeneous supertype". (We were already doing this for heterogeneous
types.)
A similar thing happens when concatenating two mixed tuples: the
variable-length portion and suffix of the LHS, and the prefix and
variable-length portion of the RHS, all get unioned into the
variable-length portion of the result. The LHS prefix and RHS suffix
carry through unchanged.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
This PR closesastral-sh/ty#164.
This PR introduces a basic type narrowing mechanism for
attribute/subscript expressions.
Member accesses, int literal subscripts, string literal subscripts are
supported (same as mypy and pyright).
## Test Plan
New test cases are added to `mdtest/narrow/complex_target.md`.
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
This PR partially solves https://github.com/astral-sh/ty/issues/164
(derived from #17643).
Currently, the definitions we manage are limited to those for simple
name (symbol) targets, but we expand this to track definitions for
attribute and subscript targets as well.
This was originally planned as part of the work in #17643, but the
changes are significant, so I made it a separate PR.
After merging this PR, I will reflect this changes in #17643.
There is still some incomplete work remaining, but the basic features
have been implemented, so I am publishing it as a draft PR.
Here is the TODO list (there may be more to come):
* [x] Complete rewrite and refactoring of documentation (removing
`Symbol` and replacing it with `Place`)
* [x] More thorough testing
* [x] Consolidation of duplicated code (maybe we can consolidate the
handling related to name, attribute, and subscript)
This PR replaces the current `Symbol` API with the `Place` API, which is
a concept that includes attributes and subscripts (the term is borrowed
from Rust).
## Test Plan
`mdtest/narrow/assignment.md` is added.
---------
Co-authored-by: David Peter <sharkdp@users.noreply.github.com>
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
Closes https://github.com/astral-sh/ty/issues/502.
In the following example:
```py
class Foo:
x: int
def method(self):
y = x
```
The user may intended to use `y = self.x` in `method`.
This is now added as a subdiagnostic in the following form :
`info: An attribute with the same name as 'x' is defined, consider using
'self.x'`
## Test Plan
Added mdtest with snapshot diagnostics.
## Summary
`Type::member_lookup_with_policy` now falls back to calling
`__getattribute__` when a member cannot be found as a second fallback
after `__getattr__`.
closes https://github.com/astral-sh/ty/issues/441
## Test Plan
Added markdown tests.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
Fix a bug that involved writes to attributes on union/intersection types
that included modules as elements.
This is a prerequisite to avoid some ecosystem false positives in
https://github.com/astral-sh/ruff/pull/18312
## Test Plan
Added regression test
## Summary
Make sure that the following definitions all lead to the same outcome
(bug originally noticed by @AlexWaygood)
```py
from typing import ClassVar
class Descriptor:
def __get__(self, instance, owner) -> int:
return 42
class C:
a: ClassVar[Descriptor]
b: Descriptor = Descriptor()
c: ClassVar[Descriptor] = Descriptor()
reveal_type(C().a) # revealed: int (previously: int | Descriptor)
reveal_type(C().b) # revealed: int
reveal_type(C().c) # revealed: int
```
## Test Plan
New Markdown tests
## Summary
Dunder methods are never looked up on instances. We do this implicitly
in `try_call_dunder`, but the corresponding flag was missing in the
instance-construction code where we use `member_lookup_with_policy`
directly.
fixes https://github.com/astral-sh/ty/issues/322
## Test Plan
Added regression test.
It's possible for a typevar to list another typevar as its default
value:
```py
class C[T, U = T]: ...
```
When specializing this class, if a type isn't provided for `U`, we would
previously use the default as-is, leaving an unspecialized `T` typevar
in the specialization. Instead, we want to use what `T` is mapped to as
the type of `U`.
```py
reveal_type(C()) # revealed: C[Unknown, Unknown]
reveal_type(C[int]()) # revealed: C[int, int]
reveal_type(C[int, str]()) # revealed: C[int, str]
```
This is especially important for the `slice` built-in type.