## Summary
This is the second PR out of three that adds support for
enabling/disabling lint rules in Red Knot. You may want to take a look
at the [first PR](https://github.com/astral-sh/ruff/pull/14869) in this
stack to familiarize yourself with the used terminology.
This PR adds a new syntax to define a lint:
```rust
declare_lint! {
/// ## What it does
/// Checks for references to names that are not defined.
///
/// ## Why is this bad?
/// Using an undefined variable will raise a `NameError` at runtime.
///
/// ## Example
///
/// ```python
/// print(x) # NameError: name 'x' is not defined
/// ```
pub(crate) static UNRESOLVED_REFERENCE = {
summary: "detects references to names that are not defined",
status: LintStatus::preview("1.0.0"),
default_level: Level::Warn,
}
}
```
A lint has a name and metadata about its status (preview, stable,
removed, deprecated), the default diagnostic level (unless the
configuration changes), and documentation. I use a macro here to derive
the kebab-case name and extract the documentation automatically.
This PR doesn't yet add any mechanism to discover all known lints. This
will be added in the next and last PR in this stack.
## Documentation
I documented some rules but then decided that it's probably not my best
use of time if I document all of them now (it also means that I play
catch-up with all of you forever). That's why I left some rules
undocumented (marked with TODO)
## Where is the best place to define all lints?
I'm not sure. I think what I have in this PR is fine but I also don't
love it because most lints are in a single place but not all of them. If
you have ideas, let me know.
## Why is the message not part of the lint, unlike Ruff's `Violation`
I understand that the main motivation for defining `message` on
`Violation` in Ruff is to remove the need to repeat the same message
over and over again. I'm not sure if this is an actual problem. Most
rules only emit a diagnostic in a single place and they commonly use
different messages if they emit diagnostics in different code paths,
requiring extra fields on the `Violation` struct.
That's why I'm not convinced that there's an actual need for it and
there are alternatives that can reduce the repetition when creating a
diagnostic:
* Create a helper function. We already do this in red knot with the
`add_xy` methods
* Create a custom `Diagnostic` implementation that tailors the entire
diagnostic and pre-codes e.g. the message
Avoiding an extra field on the `Violation` also removes the need to
allocate intermediate strings as it is commonly the place in Ruff.
Instead, Red Knot can use a borrowed string with `format_args`
## Test Plan
`cargo test`
## Summary
This PR adds support for parsing and inferring types within string
annotations.
### Implementation (attempt 1)
This is preserved in
6217f48924.
The implementation here would separate the inference of string
annotations in the deferred query. This requires the following:
* Two ways of evaluating the deferred definitions - lazily and eagerly.
* An eager evaluation occurs right outside the definition query which in
this case would be in `binding_ty` and `declaration_ty`.
* A lazy evaluation occurs on demand like using the
`definition_expression_ty` to determine the function return type and
class bases.
* The above point means that when trying to get the binding type for a
variable in an annotated assignment, the definition query won't include
the type. So, it'll require going through the deferred query to get the
type.
This has the following limitations:
* Nested string annotations, although not necessarily a useful feature,
is difficult to implement unless we convert the implementation in an
infinite loop
* Partial string annotations require complex layout because inferring
the types for stringified and non-stringified parts of the annotation
are done in separate queries. This means we need to maintain additional
information
### Implementation (attempt 2)
This is the final diff in this PR.
The implementation here does the complete inference of string annotation
in the same definition query by maintaining certain state while trying
to infer different parts of an expression and take decisions
accordingly. These are:
* Allow names that are part of a string annotation to not exists in the
symbol table. For example, in `x: "Foo"`, if the "Foo" symbol is not
defined then it won't exists in the symbol table even though it's being
used. This is an invariant which is being allowed only for symbols in a
string annotation.
* Similarly, lookup name is updated to do the same and if the symbol
doesn't exists, then it's not bounded.
* Store the final type of a string annotation on the string expression
itself and not for any of the sub-expressions that are created after
parsing. This is because those sub-expressions won't exists in the
semantic index.
Design document:
https://www.notion.so/astral-sh/String-Annotations-12148797e1ca801197a9f146641e5b71?pvs=4Closes: #13796
## Test Plan
* Add various test cases in our markdown framework
* Run `red_knot` on LibCST (contains a lot of string annotations,
specifically
https://github.com/Instagram/LibCST/blob/main/libcst/matchers/_matcher_base.py),
FastAPI (good amount of annotated code including `typing.Literal`) and
compare against the `main` branch output