## Summary
This PR re-introduces the control-flow graph implementation which was
first introduced in #5384, and then removed in #9463 due to not being
feature complete. Mainly, it lacked the ability to process
`try`-`except` blocks, along with some more minor bugs.
Closes#8958 and #8959 and #14881.
## Overview of Changes
I will now highlight the major changes implemented in this PR, in order
of implementation.
1. Introduced a post-processing step in loop handling to find any
`continue` or `break` statements within the loop body and redirect them
appropriately.
2. Introduced a loop-continue block which is always placed at the end of
loop blocks, and ensures proper looping regardless of the internal logic
of the block. This resolves#8958.
3. Implemented `try` processing with the following logic (resolves
#8959):
1. In the example below the cfg first encounters a conditional
`ExceptionRaised` forking if an exception was (or will be) raised in the
try block. This is not possible to know (except for trivial cases) so we
assume both paths can be taken unconditionally.
2. Going down the `try` path the cfg goes `try`->`else`->`finally`
unconditionally.
3. Going down the `except` path the cfg will meet several conditional
`ExceptionCaught` which fork depending on the nature of the exception
caught. Again there's no way to know which exceptions may be raised so
both paths are assumed to be taken unconditionally.
4. If none of the exception blocks catch the exception then the cfg
terminates by raising a new exception.
5. A post-processing step is also implemented to redirect any `raises`
or `returns` within the blocks appropriately.
```python
def func():
try:
print("try")
except Exception:
print("Exception")
except OtherException as e:
print("OtherException")
else:
print("else")
finally:
print("finally")
```
```mermaid
flowchart TD
start(("Start"))
return(("End"))
block0[["`*(empty)*`"]]
block1["print(#quot;finally#quot;)\n"]
block2["print(#quot;else#quot;)\n"]
block3["print(#quot;try#quot;)\n"]
block4[["Exception raised"]]
block5["print(#quot;OtherException#quot;)\n"]
block6["try:
print(#quot;try#quot;)
except Exception:
print(#quot;Exception#quot;)
except OtherException as e:
print(#quot;OtherException#quot;)
else:
print(#quot;else#quot;)
finally:
print(#quot;finally#quot;)\n"]
block7["print(#quot;Exception#quot;)\n"]
block8["try:
print(#quot;try#quot;)
except Exception:
print(#quot;Exception#quot;)
except OtherException as e:
print(#quot;OtherException#quot;)
else:
print(#quot;else#quot;)
finally:
print(#quot;finally#quot;)\n"]
block9["try:
print(#quot;try#quot;)
except Exception:
print(#quot;Exception#quot;)
except OtherException as e:
print(#quot;OtherException#quot;)
else:
print(#quot;else#quot;)
finally:
print(#quot;finally#quot;)\n"]
start --> block9
block9 -- "Exception raised" --> block8
block9 -- "else" --> block3
block8 -- "Exception" --> block7
block8 -- "else" --> block6
block7 --> block1
block6 -- "OtherException" --> block5
block6 -- "else" --> block4
block5 --> block1
block4 --> return
block3 --> block2
block2 --> block1
block1 --> block0
block0 --> return
```
6. Implemented `with` processing with the following logic:
1. `with` statements have no conditional execution (apart from the
hidden logic handling the enter and exit), so the block is assumed to
execute unconditionally.
2. The one exception is that exceptions raised within the block may
result in control flow resuming at the end of the block. Since it is not
possible know if an exception will be raised, or if it will be handled
by the context manager, we assume that execution always continues after
`with` blocks even if the blocks contain `raise` or `return` statements.
This is handled in a post-processing step.
## Test Plan
Additional test fixtures and control-flow fixtures were added.
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
Co-authored-by: dylwil3 <dylwil3@gmail.com>