Commit graph

6 commits

Author SHA1 Message Date
Douglas Creager
7673d46b71
[ty] Splat variadic arguments into parameter list (#18996)
This PR updates our call binding logic to handle splatted arguments.

Complicating matters is that we have separated call bind analysis into
two phases: parameter matching and type checking. Parameter matching
looks at the arity of the function signature and call site, and assigns
arguments to parameters. Importantly, we don't yet know the type of each
argument! This is needed so that we can decide whether to infer the type
of each argument as a type form or value form, depending on the
requirements of the parameter that the argument was matched to.

This is an issue when splatting an argument, since we need to know how
many elements the splatted argument contains to know how many positional
parameters to match it against. And to know how many elements the
splatted argument has, we need to know its type.

To get around this, we now make the assumption that splatted arguments
can only be used with value-form parameters. (If you end up splatting an
argument into a type-form parameter, we will silently pass in its
value-form type instead.) That allows us to preemptively infer the
(value-form) type of any splatted argument, so that we have its arity
available during parameter matching. We defer inference of non-splatted
arguments until after parameter matching has finished, as before.

We reuse a lot of the new tuple machinery to make this happen — in
particular resizing the tuple spec representing the number of arguments
passed in with the tuple length representing the number of parameters
the splat was matched with.

This work also shows that we might need to change how we are performing
argument expansion during overload resolution. At the moment, when we
expand parameters, we assume that each argument will still be matched to
the same parameters as before, and only retry the type-checking phase.
With splatted arguments, this is no longer the case, since the inferred
arity of each union element might be different than the arity of the
union as a whole, which can affect how many parameters the splatted
argument is matched to. See the regression test case in
`mdtest/call/function.md` for more details.
2025-07-22 14:33:08 -04:00
David Peter
dc66019fbc
[ty] Expansion of enums into unions of literals (#19382)
## Summary

Implement expansion of enums into unions of enum literals (and the
reverse operation). For the enum below, this allows us to understand
that `Color = Literal[Color.RED, Color.GREEN, Color.BLUE]`, or that
`Color & ~Literal[Color.RED] = Literal[Color.GREEN, Color.BLUE]`. This
helps in exhaustiveness checking, which is why we see some removed
`assert_never` false positives. And since exhaustiveness checking also
helps with understanding terminal control flow, we also see a few
removed `invalid-return-type` and `possibly-unresolved-reference` false
positives. This PR also adds expansion of enums in overload resolution
and type narrowing constructs.

```py
from enum import Enum
from typing_extensions import Literal, assert_never
from ty_extensions import Intersection, Not, static_assert, is_equivalent_to

class Color(Enum):
    RED = 1
    GREEN = 2
    BLUE = 3

type Red = Literal[Color.RED]
type Green = Literal[Color.GREEN]
type Blue = Literal[Color.BLUE]

static_assert(is_equivalent_to(Red | Green | Blue, Color))
static_assert(is_equivalent_to(Intersection[Color, Not[Red]], Green | Blue))


def color_name(color: Color) -> str:  # no error here (we detect that this can not implicitly return None)
    if color is Color.RED:
        return "Red"
    elif color is Color.GREEN:
        return "Green"
    elif color is Color.BLUE:
        return "Blue"
    else:
        assert_never(color)  # no error here
```

## Performance

I avoided an initial regression here for large enums, but the
`UnionBuilder` and `IntersectionBuilder` parts can certainly still be
optimized. We might want to use the same technique that we also use for
unions of other literals. I didn't see any problems in our benchmarks so
far, so this is not included yet.

## Test Plan

Many new Markdown tests
2025-07-21 19:37:55 +02:00
David Peter
a1edb69ea5
[ty] Enum literal types (#19328)
## Summary

Add a new `Type::EnumLiteral(…)` variant and infer this type for member
accesses on enums.

**Example**: No more `@Todo` types here:
```py
from enum import Enum

class Answer(Enum):
    YES = 1
    NO = 2

    def is_yes(self) -> bool:
        return self == Answer.YES

reveal_type(Answer.YES)  # revealed: Literal[Answer.YES]
reveal_type(Answer.YES == Answer.NO)  # revealed: Literal[False]
reveal_type(Answer.YES.is_yes())  # revealed: bool
```

## Test Plan

* Many new Markdown tests for the new type variant
* Added enum literal types to property tests, ran property tests

## Ecosystem analysis

Summary:

Lots of false positives removed. All of the new diagnostics are
either new true positives (the majority) or known problems. Click for
detailed analysis</summary>

Details:

```diff
AutoSplit (https://github.com/Toufool/AutoSplit)
+ error[call-non-callable] src/capture_method/__init__.py:137:9: Method `__getitem__` of type `bound method CaptureMethodDict.__getitem__(key: Never, /) -> type[CaptureMethodBase]` is not callable on object of type `CaptureMethodDict`
+ error[call-non-callable] src/capture_method/__init__.py:147:9: Method `__getitem__` of type `bound method CaptureMethodDict.__getitem__(key: Never, /) -> type[CaptureMethodBase]` is not callable on object of type `CaptureMethodDict`
+ error[call-non-callable] src/capture_method/__init__.py:148:1: Method `__getitem__` of type `bound method CaptureMethodDict.__getitem__(key: Never, /) -> type[CaptureMethodBase]` is not callable on object of type `CaptureMethodDict`
```

New true positives. That `__getitem__` method is apparently annotated
with `Never` to prevent developers from using it.


```diff
dd-trace-py (https://github.com/DataDog/dd-trace-py)
+ error[invalid-assignment] ddtrace/vendor/psutil/_common.py:29:5: Object of type `None` is not assignable to `Literal[AddressFamily.AF_INET6]`
+ error[invalid-assignment] ddtrace/vendor/psutil/_common.py:33:5: Object of type `None` is not assignable to `Literal[AddressFamily.AF_UNIX]`
```

Arguably true positives:
e0a772c28b/ddtrace/vendor/psutil/_common.py (L29)

```diff
ignite (https://github.com/pytorch/ignite)
+ error[invalid-argument-type] tests/ignite/engine/test_custom_events.py:190:34: Argument to bound method `__call__` is incorrect: Expected `((...) -> Unknown) | None`, found `Literal["123"]`
+ error[invalid-argument-type] tests/ignite/engine/test_custom_events.py:220:37: Argument to function `default_event_filter` is incorrect: Expected `Engine`, found `None`
+ error[invalid-argument-type] tests/ignite/engine/test_custom_events.py:220:43: Argument to function `default_event_filter` is incorrect: Expected `int`, found `None`
+ error[call-non-callable] tests/ignite/engine/test_custom_events.py:561:9: Object of type `CustomEvents` is not callable
+ error[invalid-argument-type] tests/ignite/metrics/test_frequency.py:50:38: Argument to bound method `attach` is incorrect: Expected `Events`, found `CallableEventWithFilter`
```

All true positives. Some of them are inside `pytest.raises(TypeError,
…)` blocks 🙃

```diff
meson (https://github.com/mesonbuild/meson)
+ error[invalid-argument-type] unittests/internaltests.py:243:51: Argument to bound method `__init__` is incorrect: Expected `bool`, found `Literal[MachineChoice.HOST]`
+ error[invalid-argument-type] unittests/internaltests.py:271:51: Argument to bound method `__init__` is incorrect: Expected `bool`, found `Literal[MachineChoice.HOST]`
```

New true positives. Enum literals can not be assigned to `bool`, even if
their value types are `0` and `1`.

```diff
poetry (https://github.com/python-poetry/poetry)
+ error[invalid-assignment] src/poetry/console/exceptions.py:101:5: Object of type `Literal[""]` is not assignable to `InitVar[str]`
```

New false positive, missing support for `InitVar`.

```diff
prefect (https://github.com/PrefectHQ/prefect)
+ error[invalid-argument-type] src/integrations/prefect-dask/tests/test_task_runners.py:193:17: Argument is incorrect: Expected `StateType`, found `Literal[StateType.COMPLETED]`
```

This is confusing. There are two definitions
([one](74d8cd93ee/src/prefect/client/schemas/objects.py (L89-L100)),
[two](https://github.com/PrefectHQ/prefect/blob/main/src/prefect/server/schemas/states.py#L40))
of the `StateType` enum. Here, we're trying to assign one to the other.
I don't think that should be allowed, so this is a true positive (?).

```diff
python-htmlgen (https://github.com/srittau/python-htmlgen)
+ error[invalid-assignment] test_htmlgen/form.py:51:9: Object of type `str` is not assignable to attribute `autocomplete` of type `Autocomplete | None`
+ error[invalid-assignment] test_htmlgen/video.py:38:9: Object of type `str` is not assignable to attribute `preload` of type `Preload | None`
```

True positives. [The stubs are
wrong](01e3b911ac/htmlgen/form.pyi (L8-L10)).
These should not contain type annotations, but rather just `OFF = ...`.

```diff
rotki (https://github.com/rotki/rotki)
+ error[invalid-argument-type] rotkehlchen/tests/unit/test_serialization.py:62:30: Argument to bound method `deserialize` is incorrect: Expected `str`, found `Literal[15]`
```

New true positive.

```diff
vision (https://github.com/pytorch/vision)
+ error[unresolved-attribute] test/test_extended_models.py:302:17: Type `type[WeightsEnum]` has no attribute `DEFAULT`
+ error[unresolved-attribute] test/test_extended_models.py:302:58: Type `type[WeightsEnum]` has no attribute `DEFAULT`
```

Also new true positives. No `DEFAULT` member exists on `WeightsEnum`.
2025-07-15 21:31:53 +02:00
Dhruv Manilawala
22177e6915
[ty] Surface matched overload diagnostic directly (#18452)
Some checks are pending
CI / cargo fuzz build (push) Blocked by required conditions
CI / Determine changes (push) Waiting to run
CI / cargo fmt (push) Waiting to run
CI / cargo clippy (push) Blocked by required conditions
CI / cargo test (linux) (push) Blocked by required conditions
CI / cargo test (linux, release) (push) Blocked by required conditions
CI / cargo test (windows) (push) Blocked by required conditions
CI / cargo test (wasm) (push) Blocked by required conditions
CI / cargo build (release) (push) Waiting to run
CI / cargo build (msrv) (push) Blocked by required conditions
CI / fuzz parser (push) Blocked by required conditions
CI / test scripts (push) Blocked by required conditions
CI / ecosystem (push) Blocked by required conditions
CI / Fuzz for new ty panics (push) Blocked by required conditions
CI / cargo shear (push) Blocked by required conditions
CI / python package (push) Waiting to run
CI / pre-commit (push) Waiting to run
CI / mkdocs (push) Waiting to run
CI / formatter instabilities and black similarity (push) Blocked by required conditions
CI / test ruff-lsp (push) Blocked by required conditions
CI / check playground (push) Blocked by required conditions
CI / benchmarks-instrumented (push) Blocked by required conditions
CI / benchmarks-walltime (push) Blocked by required conditions
[ty Playground] Release / publish (push) Waiting to run
## Summary

This PR resolves the way diagnostics are reported for an invalid call to
an overloaded function.

If any of the steps in the overload call evaluation algorithm yields a
matching overload but it's type checking that failed, the
`no-matching-overload` diagnostic is incorrect because there is a
matching overload, it's the arguments passed that are invalid as per the
signature. So, this PR improves that by surfacing the diagnostics on the
matching overload directly.

It also provides additional context, specifically the matching overload
where this error occurred and other non-matching overloads. Consider the
following example:

```py
from typing import overload


@overload
def f() -> None: ...
@overload
def f(x: int) -> int: ...
@overload
def f(x: int, y: int) -> int: ...
def f(x: int | None = None, y: int | None = None) -> int | None:
    return None


f("a")
```

We get:

<img width="857" alt="Screenshot 2025-06-18 at 11 07 10"
src="https://github.com/user-attachments/assets/8dbcaf13-2a74-4661-aa94-1225c9402ea6"
/>


## Test Plan

Update test cases, resolve existing todos and validate the updated
snapshots.
2025-06-20 08:36:49 +05:30
Dhruv Manilawala
c7e020df6b
[ty] Filter overloads based on Any / Unknown (#18607)
## Summary

Closes: astral-sh/ty#552

This PR adds support for step 5 of the overload call evaluation
algorithm which specifies:

> For all arguments, determine whether all possible materializations of
the argument’s type are
> assignable to the corresponding parameter type for each of the
remaining overloads. If so,
> eliminate all of the subsequent remaining overloads.

The algorithm works in two parts:

1. Find out the participating parameter indexes. These are the
parameters that aren't gradual equivalent to one or more parameter types
at the same index in other overloads.
2. Loop over each overload and check whether that would be the _final_
overload for the argument types i.e., the remaining overloads will never
be matched against these argument types

For step 1, the participating parameter indexes are computed by just
comparing whether all the parameter types at the corresponding index for
all the overloads are **gradual equivalent**.

The step 2 of the algorithm used is described in [this
comment](https://github.com/astral-sh/ty/issues/552#issuecomment-2969165421).

## Test Plan

Update the overload call tests.
2025-06-17 15:35:09 +05:30
Dhruv Manilawala
7ea773daf2
[ty] Argument type expansion for overload call evaluation (#18382)
## Summary

Part of astral-sh/ty#104, closes: astral-sh/ty#468

This PR implements the argument type expansion which is step 3 of the
overload call evaluation algorithm.

Specifically, this step needs to be taken if type checking resolves to
no matching overload and there are argument types that can be expanded.

## Test Plan

Add new test cases.

## Ecosystem analysis

This PR removes 174 `no-matching-overload` false positives -- I looked
at a lot of them and they all are false positives.

One thing that I'm not able to understand is that in
2b7e3adf27/sphinx/ext/autodoc/preserve_defaults.py (L179)
the inferred type of `value` is `str | None` by ty and Pyright, which is
correct, but it's only ty that raises `invalid-argument-type` error
while Pyright doesn't. The constructor method of `DefaultValue` has
declared type of `str` which is invalid.

There are few cases of false positives resulting due to the fact that ty
doesn't implement narrowing on attribute expressions.
2025-06-04 02:12:00 +00:00