mirror of
https://github.com/astral-sh/ruff.git
synced 2025-11-02 12:58:27 +00:00
3 commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
06cd249a9b
|
[ty] Track different uses of legacy typevars, including context when rendering typevars (#19604)
Some checks are pending
CI / mkdocs (push) Waiting to run
CI / Determine changes (push) Waiting to run
CI / cargo fmt (push) Waiting to run
CI / cargo clippy (push) Blocked by required conditions
CI / cargo test (linux) (push) Blocked by required conditions
CI / cargo test (linux, release) (push) Blocked by required conditions
CI / cargo test (windows) (push) Blocked by required conditions
CI / cargo test (wasm) (push) Blocked by required conditions
CI / cargo build (release) (push) Waiting to run
CI / formatter instabilities and black similarity (push) Blocked by required conditions
CI / cargo build (msrv) (push) Blocked by required conditions
CI / cargo fuzz build (push) Blocked by required conditions
CI / fuzz parser (push) Blocked by required conditions
CI / test scripts (push) Blocked by required conditions
CI / test ruff-lsp (push) Blocked by required conditions
CI / ecosystem (push) Blocked by required conditions
CI / Fuzz for new ty panics (push) Blocked by required conditions
CI / cargo shear (push) Blocked by required conditions
CI / python package (push) Waiting to run
CI / pre-commit (push) Waiting to run
CI / check playground (push) Blocked by required conditions
CI / benchmarks-instrumented (push) Blocked by required conditions
CI / benchmarks-walltime (push) Blocked by required conditions
[ty Playground] Release / publish (push) Waiting to run
This PR introduces a few related changes: - We now keep track of each time a legacy typevar is bound in a different generic context (e.g. class, function), and internally create a new `TypeVarInstance` for each usage. This means the rest of the code can now assume that salsa-equivalent `TypeVarInstance`s refer to the same typevar, even taking into account that legacy typevars can be used more than once. - We also go ahead and track the binding context of PEP 695 typevars. That's _much_ easier to track since we have the binding context right there during type inference. - With that in place, we can now include the name of the binding context when rendering typevars (e.g. `T@f` instead of `T`) |
||
|
|
ea812d0813
|
[ty] Homogeneous and mixed tuples (#18600)
Some checks are pending
CI / Determine changes (push) Waiting to run
CI / cargo fmt (push) Waiting to run
CI / cargo clippy (push) Blocked by required conditions
CI / cargo test (linux) (push) Blocked by required conditions
CI / cargo test (linux, release) (push) Blocked by required conditions
CI / cargo test (windows) (push) Blocked by required conditions
CI / cargo test (wasm) (push) Blocked by required conditions
CI / cargo build (release) (push) Waiting to run
CI / cargo build (msrv) (push) Blocked by required conditions
CI / cargo fuzz build (push) Blocked by required conditions
CI / fuzz parser (push) Blocked by required conditions
CI / test scripts (push) Blocked by required conditions
CI / ecosystem (push) Blocked by required conditions
CI / Fuzz for new ty panics (push) Blocked by required conditions
CI / cargo shear (push) Blocked by required conditions
CI / python package (push) Waiting to run
CI / pre-commit (push) Waiting to run
CI / mkdocs (push) Waiting to run
CI / formatter instabilities and black similarity (push) Blocked by required conditions
CI / test ruff-lsp (push) Blocked by required conditions
CI / check playground (push) Blocked by required conditions
CI / benchmarks-instrumented (push) Blocked by required conditions
CI / benchmarks-walltime (push) Blocked by required conditions
[ty Playground] Release / publish (push) Waiting to run
We already had support for homogeneous tuples (`tuple[int, ...]`). This PR extends this to also support mixed tuples (`tuple[str, str, *tuple[int, ...], str str]`). A mixed tuple consists of a fixed-length (possibly empty) prefix and suffix, and a variable-length portion in the middle. Every element of the variable-length portion must be of the same type. A homogeneous tuple is then just a mixed tuple with an empty prefix and suffix. The new data representation uses different Rust types for a fixed-length (aka heterogeneous) tuple. Another option would have been to use the `VariableLengthTuple` representation for all tuples, and to wrap the "variable + suffix" portion in an `Option`. I don't think that would simplify the method implementations much, though, since we would still have a 2×2 case analysis for most of them. One wrinkle is that the definition of the `tuple` class in the typeshed has a single typevar, and canonically represents a homogeneous tuple. When getting the class of a tuple instance, that means that we have to summarize our detailed mixed tuple type information into its "homogeneous supertype". (We were already doing this for heterogeneous types.) A similar thing happens when concatenating two mixed tuples: the variable-length portion and suffix of the LHS, and the prefix and variable-length portion of the RHS, all get unioned into the variable-length portion of the result. The LHS prefix and RHS suffix carry through unchanged. --------- Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com> |
||
|
|
342b2665db
|
[ty] basic narrowing on attribute and subscript expressions (#17643)
## Summary This PR closes astral-sh/ty#164. This PR introduces a basic type narrowing mechanism for attribute/subscript expressions. Member accesses, int literal subscripts, string literal subscripts are supported (same as mypy and pyright). ## Test Plan New test cases are added to `mdtest/narrow/complex_target.md`. --------- Co-authored-by: David Peter <mail@david-peter.de> |