This PR adds an implementation of [association
lists](https://en.wikipedia.org/wiki/Association_list), and uses them to
replace the previous `BitSet`/`SmallVec` representation for narrowing
constraints.
An association list is a linked list of key/value pairs. We additionally
guarantee that the elements of an association list are sorted (by their
keys), and that they do not contain any entries with duplicate keys.
Association lists have fallen out of favor in recent decades, since you
often need operations that are inefficient on them. In particular,
looking up a random element by index is O(n), just like a linked list;
and looking up an element by key is also O(n), since you must do a
linear scan of the list to find the matching element. Luckily we don't
need either of those operations for narrowing constraints!
The typical implementation also suffers from poor cache locality and
high memory allocation overhead, since individual list cells are
typically allocated separately from the heap. We solve that last problem
by storing the cells of an association list in an `IndexVec` arena.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
Add a diagnostic if a pure instance variable is accessed on a class object. For example
```py
class C:
instance_only: str
def __init__(self):
self.instance_only = "a"
# error: Attribute `instance_only` can only be accessed on instances, not on the class object `Literal[C]` itself.
C.instance_only
```
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
Add support for `@classmethod`s.
```py
class C:
@classmethod
def f(cls, x: int) -> str:
return "a"
reveal_type(C.f(1)) # revealed: str
```
## Test Plan
New Markdown tests
## Summary
I spotted a minor mistake in my descriptor protocol implementation where
`C.descriptor` would pass the meta type (`type`) of the type of `C`
(`Literal[C]`) as the owner argument to `__get__`, instead of passing
`Literal[C]` directly.
## Test Plan
New test.
Two related changes. For context:
1. We were maintaining two separate arenas of `Constraint`s in each
use-def map. One was used for narrowing constraints, and the other for
visibility constraints. The visibility constraint arena was interned,
ensuring that we always used the same ID for any particular
`Constraint`. The narrowing constraint arena was not interned.
2. The TDD code relies on _all_ TDD nodes being interned and reduced.
This is an important requirement for TDDs to be a canonical form, which
allows us to use a single int comparison to test for "always true/false"
and to compare two TDDs for equivalence. But we also need to support an
individual `Constraint` having multiple values in a TDD evaluation (e.g.
to handle a `while` condition having different values the first time
it's evaluated vs later times). Previously, we handled that by
introducing a "copy" number, which was only there as a disambiguator, to
allow an interned, deduplicated constraint ID to appear in the TDD
formula multiple times.
A better way to handle (2) is to not intern the constraints in the
visibility constraint arena! The caller now gets to decide: if they add
a `Constraint` to the arena more than once, they get distinct
`ScopedConstraintId`s — which the TDD code will treat as distinct
variables, allowing them to take on different values in the ternary
function.
With that in place, we can then consolidate on a single (non-interned)
arena, which is shared for both narrowing and visibility constraints.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
This PR achieves the following:
* Add support for checking method calls, and inferring return types from
method calls. For example:
```py
reveal_type("abcde".find("abc")) # revealed: int
reveal_type("foo".encode(encoding="utf-8")) # revealed: bytes
"abcde".find(123) # error: [invalid-argument-type]
class C:
def f(self) -> int:
pass
reveal_type(C.f) # revealed: <function `f`>
reveal_type(C().f) # revealed: <bound method: `f` of `C`>
C.f() # error: [missing-argument]
reveal_type(C().f()) # revealed: int
```
* Implement the descriptor protocol, i.e. properly call the `__get__`
method when a descriptor object is accessed through a class object or an
instance of a class. For example:
```py
from typing import Literal
class Ten:
def __get__(self, instance: object, owner: type | None = None) ->
Literal[10]:
return 10
class C:
ten: Ten = Ten()
reveal_type(C.ten) # revealed: Literal[10]
reveal_type(C().ten) # revealed: Literal[10]
```
* Add support for member lookup on intersection types.
* Support type inference for `inspect.getattr_static(obj, attr)` calls.
This was mostly used as a debugging tool during development, but seems
more generally useful. It can be used to bypass the descriptor protocol.
For the example above:
```py
from inspect import getattr_static
reveal_type(getattr_static(C, "ten")) # revealed: Ten
```
* Add a new `Type::Callable(…)` variant with the following sub-variants:
* `Type::Callable(CallableType::BoundMethod(…))` — represents bound
method objects, e.g. `C().f` above
* `Type::Callable(CallableType::MethodWrapperDunderGet(…))` — represents
`f.__get__` where `f` is a function
* `Type::Callable(WrapperDescriptorDunderGet)` — represents
`FunctionType.__get__`
* Add new known classes:
* `types.MethodType`
* `types.MethodWrapperType`
* `types.WrapperDescriptorType`
* `builtins.range`
## Performance analysis
On this branch, we do more work. We need to do more call checking, since
we now check all method calls. We also need to do ~twice as many member
lookups, because we need to check if a `__get__` attribute exists on
accessed members.
A brief analysis on `tomllib` shows that we now call `Type::call` 1780
times, compared to 612 calls before.
## Limitations
* Data descriptors are not yet supported, i.e. we do not infer correct
types for descriptor attribute accesses in `Store` context and do not
check writes to descriptor attributes. I felt like this was something
that could be split out as a follow-up without risking a major
architectural change.
* We currently distinguish between `Type::member` (with descriptor
protocol) and `Type::static_member` (without descriptor protocol). The
former corresponds to `obj.attr`, the latter corresponds to
`getattr_static(obj, "attr")`. However, to model some details correctly,
we would also need to distinguish between a static member lookup *with*
and *without* instance variables. The lookup without instance variables
corresponds to `find_name_in_mro`
[here](https://docs.python.org/3/howto/descriptor.html#invocation-from-an-instance).
We currently approximate both using `member_static`, which leads to two
open TODOs. Changing this would be a larger refactoring of
`Type::own_instance_member`, so I chose to leave it out of this PR.
## Test Plan
* New `call/methods.md` test suite for method calls
* New tests in `descriptor_protocol.md`
* New `call/getattr_static.md` test suite for `inspect.getattr_static`
* Various updated tests
## Summary
This avoids looking up `__bool__` on class `bool` for every
`Type::Instance(bool).bool()` call. 1% performance win on cold cache, 4%
win on incremental performance.
This updates the `SymbolBindings` and `SymbolDeclarations` types to use
a single smallvec of live bindings/declarations, instead of splitting
that out into separate containers for each field.
I'm seeing an 11-13% `cargo bench` performance improvement with this
locally (for both cold and incremental). I'm interested to see if
Codspeed agrees!
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
A minor cleanup that breaks up a `HashMap` of an enum into separate
`HashMap`s for each variant. (These separate fields were already how
this cache was being described in the big comment at the top of the
file!)
This is a small tweak to avoid adding the callable `Type` on the error
value itself. Namely, it's always available regardless of the error, and
it's easy to pass it down explicitly to the diagnostic generating code.
It's likely that the other `CallBindingError` variants will also want
the callable `Type` to improve diagnostics too. This way, we don't have
to duplicate the `Type` on each variant. It's just available to all of
them.
Ref https://github.com/astral-sh/ruff/pull/16239#discussion_r1962352646
## Summary
Follow up on the discussion
[here](https://github.com/astral-sh/ruff/pull/16121#discussion_r1962973298).
Replace builtin classes with custom placeholder names, which should
hopefully make the tests a bit easier to understand.
I carefully renamed things one after the other, to make sure that there
is no functional change in the tests.
We now resolve references in "eager" scopes correctly — using the
bindings and declarations that are visible at the point where the eager
scope is created, not the "public" type of the symbol (typically the
bindings visible at the end of the scope).
---------
Co-authored-by: Alex Waygood <alex.waygood@gmail.com>
This uses the refactoring and support for secondary diagnostic messages
to improve the diagnostic for "invalid argument type." The main
improvement here is that we show where the function being called is
defined, and annotate the span corresponding to the invalid parameter.
This is a small little hack to make the `Diagnostic` trait
capable of supporting attaching multiple spans.
This design should be considered transient. This was just the
quickest way that I could see to pass multiple spans through from
the type checker to the diagnostic renderer.
It seems nothing is using it, and I'm not sure if it makes semantic
sense. Particularly if we want to support multiple ranges. One could
make an argument that this ought to correspond to the "primary"
range (which we should have), but I think such a concept is better
expressed as an explicit routine if possible.
## Summary
This PR updates the formatter and linter to use the `PythonVersion`
struct from the `ruff_python_ast` crate internally. While this doesn't
remove the need for the `linter::PythonVersion` enum, it does remove the
`formatter::PythonVersion` enum and limits the use in the linter to
deserializing from CLI arguments and config files and moves most of the
remaining methods to the `ast::PythonVersion` struct.
## Test Plan
Existing tests, with some inputs and outputs updated to reflect the new
(de)serialization format. I think these are test-specific and shouldn't
affect any external (de)serialization.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
This PR does the following:
* Moves the following from `types.rs` in `symbol.rs`:
* `symbol`
* `global_symbol`
* `imported_symbol`
* `symbol_from_bindings`
* `symbol_from_declarations`
* `SymbolAndQualifiers`
* `SymbolFromDeclarationsResult`
* Moves the following from `stdlib.rs` in `symbol.rs` and removes
`stdlib.rs`:
* `known_module_symbol`
* `builtins_symbol`
* `typing_symbol` (only for tests)
* `typing_extensions_symbol`
* `builtins_module_scope`
* `core_module_scope`
* Add `symbol_from_bindings_impl` and `symbol_from_declarations_impl` to
keep `RequiresExplicitReExport` an implementation detail
* Make `declaration_type` a `pub(crate)` as it's required in
`symbol_from_declarations` (`binding_type` is already `pub(crate)`
The main motivation is to keep the implementation details private and
only expose an ergonomic API which uses sane defaults for various
scenario to avoid any mistakes from the caller. Refer to
https://github.com/astral-sh/ruff/pull/16133#discussion_r1955262772,
https://github.com/astral-sh/ruff/pull/16133#issue-2850146612 for
details.
## Summary
This PR makes the following changes:
- It adjusts various callsites to use the new
`ast::StringLiteral::contents_range()` method that was introduced in
https://github.com/astral-sh/ruff/pull/16183. This is less verbose and
more type-safe than using the `ast::str::raw_contents()` helper
function.
- It adds a new `ast::ExprStringLiteral::as_unconcatenated_literal()`
helper method, and adjusts various callsites to use it. This addresses
@MichaReiser's review comment at
https://github.com/astral-sh/ruff/pull/16183#discussion_r1957334365.
There is no functional change here, but it helps readability to make it
clearer that we're differentiating between implicitly concatenated
strings and unconcatenated strings at various points.
- It renames the `StringLiteralValue::flags()` method to
`StringLiteralFlags::first_literal_flags()`. If you're dealing with an
implicitly concatenated string `string_node`,
`string_node.value.flags().closer_len()` could give an incorrect result;
this renaming makes it clearer that the `StringLiteralFlags` instance
returned by the method is only guaranteed to give accurate information
for the first `StringLiteral` contained in the `ExprStringLiteral` node.
- It deletes the unused `BytesLiteralValue::flags()` method. This seems
prone to misuse in the same way as `StringLiteralValue::flags()`: if
it's an implicitly concatenated bytestring, the `BytesLiteralFlags`
instance returned by the method would only give accurate information for
the first `BytesLiteral` in the bytestring.
## Test Plan
`cargo test`
## Summary
Running `cargo test -p red_knot_python_semantic` failed because of a
missing serde feature. This PR enables the `ruff_python_ast`'`s `serde`
if the crate's `serde` feature is enabled
## Test Plan
`cargo test -p red_knot_python_semantic` compiles again
When adjusting the existing tests, I aimed to avoid dealing with the
special case in other tests if it's not necessary to do so (that is,
avoid using `float` and `complex` as examples where we just need "some
type"), and keep the tests for the special case mostly collected in the
mdtest dedicated to that purpose.
Fixes https://github.com/astral-sh/ruff/issues/14932
## Summary
This PR moves the `PythonVersion` struct from the
`red_knot_python_semantic` crate to the `ruff_python_ast` crate so that
it can be used more easily in the syntax error detection work. Compared
to that [prototype](https://github.com/astral-sh/ruff/pull/16090/) these
changes reduce us from 2 `PythonVersion` structs to 1.
This does not unify any of the `PythonVersion` *enums*, but I hope to
make some progress on that in a follow-up.
## Test Plan
Existing tests, this should not change any external behavior.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
This PR refactors the symbol lookup APIs to better facilitate the
re-export implementation. Specifically,
* Add `module_type_symbol` which returns the `Symbol` that's a member of
`types.ModuleType`
* Rename `symbol` -> `symbol_impl`; add `symbol` which delegates to
`symbol_impl` with `RequireExplicitReExport::No`
* Update `global_symbol` to do `symbol_impl` -> fall back to
`module_type_symbol` and default to `RequireExplicitReExport::No`
* Add `imported_symbol` to do `symbol_impl` with
`RequireExplicitReExport` as `Yes` if the module is in a stub file else
`No`
* Update `known_module_symbol` to use `imported_symbol` with a fallback
to `module_type_symbol`
* Update `ModuleLiteralType::member` to use `imported_symbol` with a
custom fallback
We could potentially also update `symbol_from_declarations` and
`symbol_from_bindings` to avoid passing in the `RequireExplicitReExport`
as it would be always `No` if called directly. We could add
`symbol_from_declarations_impl` and `symbol_from_bindings_impl`.
Looking at the `_impl` functions, I think we should move all of these
symbol related logic into `symbol.rs` where `Symbol` is defined and the
`_impl` could be private while we expose the public APIs at the crate
level. This would also make the `RequireExplicitReExport` an
implementation detail and the caller doesn't need to worry about it.
This is an alternative implementation to #15848.
## Summary
This PR adds support for re-export conventions for imports for stub
files.
**How does this work?**
* Add a new flag on the `Import` and `ImportFrom` definitions to
indicate whether they're being exported or not
* Add a new enum to indicate whether the symbol lookup is happening
within the same file or is being queried from another file (e.g., an
import statement)
* When a `Symbol` is being queried, we'll skip the definitions that are
(a) coming from a stub file (b) external lookup and (c) check the
re-export flag on the definition
This implementation does not yet support `__all__` and `*` imports as
both are features that needs to be implemented independently.
closes: #14099closes: #15476
## Test Plan
Add test cases, update existing ones if required.