## Summary
For PEP 695 generic functions and classes, there is an extra "type
params scope" (a child of the outer scope, and wrapping the body scope)
in which the type parameters are defined; class bases and function
parameter/return annotations are resolved in that type-params scope.
This PR fixes some longstanding bugs in how we resolve name loads from
inside these PEP 695 type parameter scopes, and also defers type
inference of PEP 695 typevar bounds/constraints/default, so we can
handle cycles without panicking.
We were previously treating these type-param scopes as lazy nested
scopes, which is wrong. In fact they are eager nested scopes; the class
`C` here inherits `int`, not `str`, and previously we got that wrong:
```py
Base = int
class C[T](Base): ...
Base = str
```
But certain syntactic positions within type param scopes (typevar
bounds/constraints/defaults) are lazy at runtime, and we should use
deferred name resolution for them. This also means they can have cycles;
in order to handle that without panicking in type inference, we need to
actually defer their type inference until after we have constructed the
`TypeVarInstance`.
PEP 695 does specify that typevar bounds and constraints cannot be
generic, and that typevar defaults can only reference prior typevars,
not later ones. This reduces the scope of (valid from the type-system
perspective) cycles somewhat, although cycles are still possible (e.g.
`class C[T: list[C]]`). And this is a type-system-only restriction; from
the runtime perspective an "invalid" case like `class C[T: T]` actually
works fine.
I debated whether to implement the PEP 695 restrictions as a way to
avoid some cycles up-front, but I ended up deciding against that; I'd
rather model the runtime name-resolution semantics accurately, and
implement the PEP 695 restrictions as a separate diagnostic on top.
(This PR doesn't yet implement those diagnostics, thus some `# TODO:
error` in the added tests.)
Introducing the possibility of cyclic typevars made typevar display
potentially stack overflow. For now I've handled this by simply removing
typevar details (bounds/constraints/default) from typevar display. This
impacts display of two kinds of types. If you `reveal_type(T)` on an
unbound `T` you now get just `typing.TypeVar` instead of
`typing.TypeVar("T", ...)` where `...` is the bound/constraints/default.
This matches pyright and mypy; pyrefly uses `type[TypeVar[T]]` which
seems a bit confusing, but does include the name. (We could easily
include the name without cycle issues, if there's a syntax we like for
that.)
It also means that displaying a generic function type like `def f[T:
int](x: T) -> T: ...` now displays as `f[T](x: T) -> T` instead of `f[T:
int](x: T) -> T`. This matches pyright and pyrefly; mypy does include
bound/constraints/defaults of typevars in function/callable type
display. If we wanted to add this, we would either need to thread a
visitor through all the type display code, or add a `decycle` type
transformation that replaced recursive reoccurrence of a type with a
marker.
## Test Plan
Added mdtests and modified existing tests to improve their correctness.
After this PR, there's only a single remaining py-fuzzer seed in the
0-500 range that panics! (Before this PR, there were 10; the fuzzer
likes to generate cyclic PEP 695 syntax.)
## Ecosystem report
It's all just the changes to `TypeVar` display.
Co-authored-by: David Peter <sharkdp@users.noreply.github.com>
Co-authored-by: Carl Meyer <carl@oddbird.net>
Co-authored-by: Micha Reiser <micha@reiser.io>
## Summary
This PR includes a behavioral change to how we infer types for public
uses of symbols within a module. Where we would previously use the type
that a use at the end of the scope would see, we now consider all
reachable bindings and union the results:
```py
x = None
def f():
reveal_type(x) # previously `Unknown | Literal[1]`, now `Unknown | None | Literal[1]`
f()
x = 1
f()
```
This helps especially in cases where the the end of the scope is not
reachable:
```py
def outer(x: int):
def inner():
reveal_type(x) # previously `Unknown`, now `int`
raise ValueError
```
This PR also proposes to skip the boundness analysis of public uses.
This is consistent with the "all reachable bindings" strategy, because
the implicit `x = <unbound>` binding is also always reachable, and we
would have to emit "possibly-unresolved" diagnostics for every public
use otherwise. Changing this behavior allows common use-cases like the
following to type check without any errors:
```py
def outer(flag: bool):
if flag:
x = 1
def inner():
print(x) # previously: possibly-unresolved-reference, now: no error
```
closes https://github.com/astral-sh/ty/issues/210
closes https://github.com/astral-sh/ty/issues/607
closes https://github.com/astral-sh/ty/issues/699
## Follow up
It is now possible to resolve the following TODO, but I would like to do
that as a follow-up, because it requires some changes to how we treat
implicit attribute assignments, which could result in ecosystem changes
that I'd like to see separately.
315fb0f3da/crates/ty_python_semantic/src/semantic_index/builder.rs (L1095-L1117)
## Ecosystem analysis
[**Full report**](https://shark.fish/diff-public-types.html)
* This change obviously removes a lot of `possibly-unresolved-reference`
diagnostics (7818) because we do not analyze boundness for public uses
of symbols inside modules anymore.
* As the primary goal here, this change also removes a lot of
false-positive `unresolved-reference` diagnostics (231) in scenarios
like this:
```py
def _(flag: bool):
if flag:
x = 1
def inner():
x
raise
```
* This change also introduces some new false positives for cases like:
```py
def _():
x = None
x = "test"
def inner():
x.upper() # Attribute `upper` on type `Unknown | None | Literal["test"]`
is possibly unbound
```
We have test cases for these situations and it's plausible that we can
improve this in a follow-up.
## Test Plan
New Markdown tests