"Why would you do this? This looks like you just replaced `bool` with an
overly complex trait"
Yes that's correct!
This should be a no-op refactoring. It replaces all of the logic in our
assignability, subtyping, equivalence, and disjointness methods to work
over an arbitrary `Constraints` trait instead of only working on `bool`.
The methods that `Constraints` provides looks very much like what we get
from `bool`. But soon we will add a new impl of this trait, and some new
methods, that let us express "fuzzy" constraints that aren't always true
or false. (In particular, a constraint will express the upper and lower
bounds of the allowed specializations of a typevar.)
Even once we have that, most of the operations that we perform on
constraint sets will be the usual boolean operations, just on sets.
(`false` becomes empty/never; `true` becomes universe/always; `or`
becomes union; `and` becomes intersection; `not` becomes negation.) So
it's helpful to have this separate PR to refactor how we invoke those
operations without introducing the new functionality yet.
Note that we also have translations of `Option::is_some_and` and
`is_none_or`, and of `Iterator::any` and `all`, and that the `and`,
`or`, `when_any`, and `when_all` methods are meant to short-circuit,
just like the corresponding boolean operations. For constraint sets,
that depends on being able to implement the `is_always` and `is_never`
trait methods.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
For PEP 695 generic functions and classes, there is an extra "type
params scope" (a child of the outer scope, and wrapping the body scope)
in which the type parameters are defined; class bases and function
parameter/return annotations are resolved in that type-params scope.
This PR fixes some longstanding bugs in how we resolve name loads from
inside these PEP 695 type parameter scopes, and also defers type
inference of PEP 695 typevar bounds/constraints/default, so we can
handle cycles without panicking.
We were previously treating these type-param scopes as lazy nested
scopes, which is wrong. In fact they are eager nested scopes; the class
`C` here inherits `int`, not `str`, and previously we got that wrong:
```py
Base = int
class C[T](Base): ...
Base = str
```
But certain syntactic positions within type param scopes (typevar
bounds/constraints/defaults) are lazy at runtime, and we should use
deferred name resolution for them. This also means they can have cycles;
in order to handle that without panicking in type inference, we need to
actually defer their type inference until after we have constructed the
`TypeVarInstance`.
PEP 695 does specify that typevar bounds and constraints cannot be
generic, and that typevar defaults can only reference prior typevars,
not later ones. This reduces the scope of (valid from the type-system
perspective) cycles somewhat, although cycles are still possible (e.g.
`class C[T: list[C]]`). And this is a type-system-only restriction; from
the runtime perspective an "invalid" case like `class C[T: T]` actually
works fine.
I debated whether to implement the PEP 695 restrictions as a way to
avoid some cycles up-front, but I ended up deciding against that; I'd
rather model the runtime name-resolution semantics accurately, and
implement the PEP 695 restrictions as a separate diagnostic on top.
(This PR doesn't yet implement those diagnostics, thus some `# TODO:
error` in the added tests.)
Introducing the possibility of cyclic typevars made typevar display
potentially stack overflow. For now I've handled this by simply removing
typevar details (bounds/constraints/default) from typevar display. This
impacts display of two kinds of types. If you `reveal_type(T)` on an
unbound `T` you now get just `typing.TypeVar` instead of
`typing.TypeVar("T", ...)` where `...` is the bound/constraints/default.
This matches pyright and mypy; pyrefly uses `type[TypeVar[T]]` which
seems a bit confusing, but does include the name. (We could easily
include the name without cycle issues, if there's a syntax we like for
that.)
It also means that displaying a generic function type like `def f[T:
int](x: T) -> T: ...` now displays as `f[T](x: T) -> T` instead of `f[T:
int](x: T) -> T`. This matches pyright and pyrefly; mypy does include
bound/constraints/defaults of typevars in function/callable type
display. If we wanted to add this, we would either need to thread a
visitor through all the type display code, or add a `decycle` type
transformation that replaced recursive reoccurrence of a type with a
marker.
## Test Plan
Added mdtests and modified existing tests to improve their correctness.
After this PR, there's only a single remaining py-fuzzer seed in the
0-500 range that panics! (Before this PR, there were 10; the fuzzer
likes to generate cyclic PEP 695 syntax.)
## Ecosystem report
It's all just the changes to `TypeVar` display.
This PR introduces a few related changes:
- We now keep track of each time a legacy typevar is bound in a
different generic context (e.g. class, function), and internally create
a new `TypeVarInstance` for each usage. This means the rest of the code
can now assume that salsa-equivalent `TypeVarInstance`s refer to the
same typevar, even taking into account that legacy typevars can be used
more than once.
- We also go ahead and track the binding context of PEP 695 typevars.
That's _much_ easier to track since we have the binding context right
there during type inference.
- With that in place, we can now include the name of the binding context
when rendering typevars (e.g. `T@f` instead of `T`)
## Summary
Having a recursive type method to check whether a type is fully static
is inefficient, unnecessary, and makes us overly strict about subtyping
relations.
It's inefficient because we end up re-walking the same types many times
to check for fully-static-ness.
It's unnecessary because we can check relations involving the dynamic
type appropriately, depending whether the relation is subtyping or
assignability.
We use the subtyping relation to simplify unions and intersections. We
can usefully consider that `S <: T` for gradual types also, as long as
it remains true that `S | T` is equivalent to `T` and `S & T` is
equivalent to `S`.
One conservative definition (implemented here) that satisfies this
requirement is that we consider `S <: T` if, for every possible pair of
materializations `S'` and `T'`, `S' <: T'`. Or put differently the top
materialization of `S` (`S+` -- the union of all possible
materializations of `S`) is a subtype of the bottom materialization of
`T` (`T-` -- the intersection of all possible materializations of `T`).
In the most basic cases we can usefully say that `Any <: object` and
that `Never <: Any`, and we can handle more complex cases inductively
from there.
This definition of subtyping for gradual subtypes is not reflexive
(`Any` is not a subtype of `Any`).
As a corollary, we also remove `is_gradual_equivalent_to` --
`is_equivalent_to` now has the meaning that `is_gradual_equivalent_to`
used to have. If necessary, we could restore an
`is_fully_static_equivalent_to` or similar (which would not do an
`is_fully_static` pre-check of the types, but would instead pass a
relation-kind enum down through a recursive equivalence check, similar
to `has_relation_to`), but so far this doesn't appear to be necessary.
Credit to @JelleZijlstra for the observation that `is_fully_static` is
unnecessary and overly restrictive on subtyping.
There is another possible definition of gradual subtyping: instead of
requiring that `S+ <: T-`, we could instead require that `S+ <: T+` and
`S- <: T-`. In other words, instead of requiring all materializations of
`S` to be a subtype of every materialization of `T`, we just require
that every materialization of `S` be a subtype of _some_ materialization
of `T`, and that every materialization of `T` be a supertype of some
materialization of `S`. This definition also preserves the core
invariant that `S <: T` implies that `S | T = T` and `S & T = S`, and it
restores reflexivity: under this definition, `Any` is a subtype of
`Any`, and for any equivalent types `S` and `T`, `S <: T` and `T <: S`.
But unfortunately, this definition breaks transitivity of subtyping,
because nominal subclasses in Python use assignability ("consistent
subtyping") to define acceptable overrides. This means that we may have
a class `A` with `def method(self) -> Any` and a subtype `B(A)` with
`def method(self) -> int`, since `int` is assignable to `Any`. This
means that if we have a protocol `P` with `def method(self) -> Any`, we
would have `B <: A` (from nominal subtyping) and `A <: P` (`Any` is a
subtype of `Any`), but not `B <: P` (`int` is not a subtype of `Any`).
Breaking transitivity of subtyping is not tenable, so we don't use this
definition of subtyping.
## Test Plan
Existing tests (modified in some cases to account for updated
semantics.)
Stable property tests pass at a million iterations:
`QUICKCHECK_TESTS=1000000 cargo test -p ty_python_semantic -- --ignored
types::property_tests::stable`
### Changes to property test type generation
Since we no longer have a method of categorizing built types as
fully-static or not-fully-static, I had to add a previously-discussed
feature to the property tests so that some tests can build types that
are known by construction to be fully static, because there are still
properties that only apply to fully-static types (for example,
reflexiveness of subtyping.)
## Changes to handling of `*args, **kwargs` signatures
This PR "discovered" that, once we allow non-fully-static types to
participate in subtyping under the above definitions, `(*args: Any,
**kwargs: Any) -> Any` is now a subtype of `() -> object`. This is true,
if we take a literal interpretation of the former signature: all
materializations of the parameters `*args: Any, **kwargs: Any` can
accept zero arguments, making the former signature a subtype of the
latter. But the spec actually says that `*args: Any, **kwargs: Any`
should be interpreted as equivalent to `...`, and that makes a
difference here: `(...) -> Any` is not a subtype of `() -> object`,
because (unlike a literal reading of `(*args: Any, **kwargs: Any)`),
`...` can materialize to _any_ signature, including a signature with
required positional arguments.
This matters for this PR because it makes the "any two types are both
assignable to their union" property test fail if we don't implement the
equivalence to `...`. Because `FunctionType.__call__` has the signature
`(*args: Any, **kwargs: Any) -> Any`, and if we take that at face value
it's a subtype of `() -> object`, making `FunctionType` a subtype of `()
-> object)` -- but then a function with a required argument is also a
subtype of `FunctionType`, but not a subtype of `() -> object`. So I
went ahead and implemented the equivalence to `...` in this PR.
## Ecosystem analysis
* Most of the ecosystem report are cases of improved union/intersection
simplification. For example, we can now simplify a union like `bool |
(bool & Unknown) | Unknown` to simply `bool | Unknown`, because we can
now observe that every possible materialization of `bool & Unknown` is
still a subtype of `bool` (whereas before we would set aside `bool &
Unknown` as a not-fully-static type.) This is clearly an improvement.
* The `possibly-unresolved-reference` errors in sockeye, pymongo,
ignite, scrapy and others are true positives for conditional imports
that were formerly silenced by bogus conflicting-declarations (which we
currently don't issue a diagnostic for), because we considered two
different declarations of `Unknown` to be conflicting (we used
`is_equivalent_to` not `is_gradual_equivalent_to`). In this PR that
distinction disappears and all equivalence is gradual, so a declaration
of `Unknown` no longer conflicts with a declaration of `Unknown`, which
then results in us surfacing the possibly-unbound error.
* We will now issue "redundant cast" for casting from a typevar with a
gradual bound to the same typevar (the hydra-zen diagnostic). This seems
like an improvement.
* The new diagnostics in bandersnatch are interesting. For some reason
primer in CI seems to be checking bandersnatch on Python 3.10 (not yet
sure why; this doesn't happen when I run it locally). But bandersnatch
uses `enum.StrEnum`, which doesn't exist on 3.10. That makes the `class
SimpleDigest(StrEnum)` a class that inherits from `Unknown` (and
bypasses our current TODO handling for accessing attributes on enum
classes, since we don't recognize it as an enum class at all). This PR
improves our understanding of assignability to classes that inherit from
`Any` / `Unknown`, and we now recognize that a string literal is not
assignable to a class inheriting `Any` or `Unknown`.
## Summary
Came across this while debugging some ecosystem changes in
https://github.com/astral-sh/ruff/pull/18347. I think the meta-type of a
typevar-annotated variable should be equal to `type`, not `<class
'object'>`.
## Test Plan
New Markdown tests.
## Summary
Allow a typevar to be callable if it is bound to a callable type, or
constrained to callable types.
I spent some time digging into why this support didn't fall out
naturally, and ultimately the reason is that we look up `__call__` on
the meta type (since its a dunder), and our implementation of
`Type::to_meta_type` for `Type::Callable` does not return a type with
`__call__`.
A more general solution here would be to have `Type::to_meta_type` for
`Type::Callable` synthesize a protocol with `__call__` and return an
intersection with that protocol (since for a type to be callable, we
know its meta-type must have `__call__`). That solution could in
principle also replace the special-case handling of `Type::Callable`
itself, here in `Type::bindings`. But that more general approach would
also be slower, and our protocol support isn't quite ready for that yet,
and handling this directly in `Type::bindings` is really not bad.
Fixes https://github.com/astral-sh/ty/issues/480
## Test Plan
Added mdtests.
It's possible for a typevar to list another typevar as its default
value:
```py
class C[T, U = T]: ...
```
When specializing this class, if a type isn't provided for `U`, we would
previously use the default as-is, leaving an unspecialized `T` typevar
in the specialization. Instead, we want to use what `T` is mapped to as
the type of `U`.
```py
reveal_type(C()) # revealed: C[Unknown, Unknown]
reveal_type(C[int]()) # revealed: C[int, int]
reveal_type(C[int, str]()) # revealed: C[int, str]
```
This is especially important for the `slice` built-in type.