You can now use subscript expressions in a type expression to explicitly
specialize generic classes, just like you could already do in value
expressions.
This still does not implement bidirectional checking, so a type
annotation on an assignment does not influence how we infer a
specialization for a (not explicitly specialized) constructor call. You
might get an `invalid-assignment` error if (a) we cannot infer a class
specialization from the constructor call (in which case you end up e.g.
trying to assign `C[Unknown]` to `C[int]`) or if (b) we can infer a
specialization, but it doesn't match the annotation.
Closes https://github.com/astral-sh/ruff/issues/17432
## Summary
Catch some Instances, but raise type error for the rest of them
Fixes#16851
## Test Plan
Extend invalid.md in annotations
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
This PR reworks `TypeInferenceBuilder::infer_type_expression()` so that
we emit diagnostics when encountering a list literal in a type
expression. The only place where a list literal is allowed in a type
expression is if it appears as the first argument to `Callable[]`, and
`Callable` is already heavily special-cased in our type-expression
parsing.
In order to ensure that list literals are _always_ allowed as the
_first_ argument to `Callabler` (but never allowed as the second, third,
etc. argument), I had to do some refactoring of our type-expression
parsing for `Callable` annotations.
## Test Plan
New mdtests added, and existing ones updated
## Summary
Add error messages for invalid nodes in type expressions
Fixes#16816
## Test Plan
Extend annotations/invalid.md to handle these invalid AST nodes error
messages