Commit graph

2 commits

Author SHA1 Message Date
Brent Westbrook
9c47b6dbb0
[red-knot] Detect version-related syntax errors (#16379)
## Summary
This PR extends version-related syntax error detection to red-knot. The
main changes here are:

1. Passing `ParseOptions` specifying a `PythonVersion` to parser calls
2. Adding a `python_version` method to the `Db` trait to make this
possible
3. Converting `UnsupportedSyntaxError`s to `Diagnostic`s
4. Updating existing mdtests  to avoid unrelated syntax errors

My initial draft of (1) and (2) in #16090 instead tried passing a
`PythonVersion` down to every parser call, but @MichaReiser suggested
the `Db` approach instead
[here](https://github.com/astral-sh/ruff/pull/16090#discussion_r1969198407),
and I think it turned out much nicer.

All of the new `python_version` methods look like this:

```rust
fn python_version(&self) -> ruff_python_ast::PythonVersion {
    Program::get(self).python_version(self)
}
```

with the exception of the `TestDb` in `ruff_db`, which hard-codes
`PythonVersion::latest()`.

## Test Plan

Existing mdtests, plus a new mdtest to see at least one of the new
diagnostics.
2025-04-17 14:00:30 -04:00
cake-monotone
649610cc98
[red-knot] Support super (#17174)
## Summary

closes #16615 

This PR includes:

- Introduces a new type: `Type::BoundSuper`
- Implements member lookup for `Type::BoundSuper`, resolving attributes
by traversing the MRO starting from the specified class
- Adds support for inferring appropriate arguments (`pivot_class` and
`owner`) for `super()` when it is used without arguments

When `super(..)` appears in code, it can be inferred into one of the
following:

- `Type::Unknown`: when a runtime error would occur (e.g. calling
`super()` out of method scope, or when parameter validation inside
`super` fails)
- `KnownClass::Super::to_instance()`: when the result is an *unbound
super object* or when a dynamic type is used as parameters (MRO
traversing is meaningless)
- `Type::BoundSuper`: the common case, representing a properly
constructed `super` instance that is ready for MRO traversal and
attribute resolution

### Terminology

Python defines the terms *bound super object* and *unbound super
object*.

An **unbound super object** is created when `super` is called with only
one argument (e.g.
`super(A)`). This object may later be bound via the `super.__get__`
method. However, this form is rarely used in practice.

A **bound super object** is created either by calling
`super(pivot_class, owner)` or by using the implicit form `super()`,
where both arguments are inferred from the context. This is the most
common usage.

### Follow-ups

- Add diagnostics for `super()` calls that would result in runtime
errors (marked as TODO)
- Add property tests for `Type::BoundSuper`

## Test Plan

- Added `mdtest/class/super.md`

---------

Co-authored-by: Carl Meyer <carl@astral.sh>
2025-04-16 18:41:55 +00:00