You can now use subscript expressions in a type expression to explicitly
specialize generic classes, just like you could already do in value
expressions.
This still does not implement bidirectional checking, so a type
annotation on an assignment does not influence how we infer a
specialization for a (not explicitly specialized) constructor call. You
might get an `invalid-assignment` error if (a) we cannot infer a class
specialization from the constructor call (in which case you end up e.g.
trying to assign `C[Unknown]` to `C[int]`) or if (b) we can infer a
specialization, but it doesn't match the annotation.
Closes https://github.com/astral-sh/ruff/issues/17432
## Summary
* Partial #17238
* Flyby from discord discussion - `todo_type!` now statically checks for
no parens in the message to avoid issues between debug & release build
tests
## Test Plan
many mdtests are changing
## Summary
Add support for decorators on function as well as support
for properties by adding special handling for `@property` and `@<name of
property>.setter`/`.getter` decorators.
closes https://github.com/astral-sh/ruff/issues/16987
## Ecosystem results
- ✔️ A lot of false positives are fixed by our new
understanding of properties
- 🔴 A bunch of new false positives (typically
`possibly-unbound-attribute` or `invalid-argument-type`) occur because
we currently do not perform type narrowing on attributes. And with the
new understanding of properties, this becomes even more relevant. In
many cases, the narrowing occurs through an assertion, so this is also
something that we need to implement to get rid of these false positives.
- 🔴 A few new false positives occur because we do not
understand generics, and therefore some calls to custom setters fail.
- 🔴 Similarly, some false positives occur because we do not
understand protocols yet.
- ✔️ Seems like a true positive to me. [The
setter](e624d8edfa/src/packaging/specifiers.py (L752-L754))
only accepts `bools`, but `None` is assigned in [this
line](e624d8edfa/tests/test_specifiers.py (L688)).
```
+ error[lint:invalid-assignment]
/tmp/mypy_primer/projects/packaging/tests/test_specifiers.py:688:9:
Invalid assignment to data descriptor attribute `prereleases` on type
`SpecifierSet` with custom `__set__` method
```
- ✔️ This is arguable also a true positive. The setter
[here](0c6c75644f/rich/table.py (L359-L363))
returns `Table`, but typeshed wants [setters to return
`None`](bf8d2a9912/stdlib/builtins.pyi (L1298)).
```
+ error[lint:invalid-argument-type]
/tmp/mypy_primer/projects/rich/rich/table.py:359:5: Object of type
`Literal[padding]` cannot be assigned to parameter 2 (`fset`) of bound
method `setter`; expected type `(Any, Any, /) -> None`
```
## Follow ups
- Fix the `@no_type_check` regression
- Implement class decorators
## Test Plan
New Markdown test suites for decorators and properties.
## Summary
From #16861, and the continuation of #16915.
This PR fixes the incorrect behavior of
`TypeInferenceBuilder::infer_name_load` in eager nested scopes.
And this PR closes#16341.
## Test Plan
New test cases are added in `annotations/deferred.md`.
## Summary
This PR adds initial support for `*` imports to red-knot. The approach
is to implement a standalone query, called from semantic indexing, that
visits the module referenced by the `*` import and collects all
global-scope public names that will be imported by the `*` import. The
`SemanticIndexBuilder` then adds separate definitions for each of these
names, all keyed to the same `ast::Alias` node that represents the `*`
import.
There are many pieces of `*`-import semantics that are still yet to be
done, even with this PR:
- This PR does not attempt to implement any of the semantics to do with
`__all__`. (If a module defines `__all__`, then only the symbols
included in `__all__` are imported, _not_ all public global-scope
symbols.
- With the logic implemented in this PR as it currently stands, we
sometimes incorrectly consider a symbol bound even though it is defined
in a branch that is statically known to be dead code, e.g. (assuming the
target Python version is set to 3.11):
```py
# a.py
import sys
if sys.version_info < (3, 10):
class Foo: ...
```
```py
# b.py
from a import *
print(Foo) # this is unbound at runtime on 3.11,
# but we currently consider it bound with the logic in this PR
```
Implementing these features is important, but is for now deferred to
followup PRs.
Many thanks to @ntBre, who contributed to this PR in a pairing session
on Friday!
## Test Plan
Assertions in existing mdtests are adjusted, and several new ones are
added.
## Summary
Here I fix the last English spelling errors I could find in the repo.
Again, I am trying not to touch variable/function names, or anything
that might be misspelled in the API. The goal is to make this PR safe
and easy to merge.
## Test Plan
I have run all the unit tests. Though, again, all of the changes I make
here are to docs and docstrings. I make no code changes, which I believe
should greatly mitigate the testing concerns.
## Summary
* Attributes/method are now properly looked up on metaclasses, when
called on class objects
* We properly distinguish between data descriptors and non-data
descriptors (but we do not yet support them in store-context, i.e.
`obj.data_descr = …`)
* The descriptor protocol is now implemented in a single unified place
for instances, classes and dunder-calls. Unions and possibly-unbound
symbols are supported in all possible stages of the process by creating
union types as results.
* In general, the handling of "possibly-unbound" symbols has been
improved in a lot of places: meta-class attributes, attributes,
descriptors with possibly-unbound `__get__` methods, instance
attributes, …
* We keep track of type qualifiers in a lot more places. I anticipate
that this will be useful if we import e.g. `Final` symbols from other
modules (see relevant change to typing spec:
https://github.com/python/typing/pull/1937).
* Detection and special-casing of the `typing.Protocol` special form in
order to avoid lots of changes in the test suite due to new `@Todo`
types when looking up attributes on builtin types which have `Protocol`
in their MRO. We previously
looked up attributes in a wrong way, which is why this didn't come up
before.
closes#16367closes#15966
## Context
The way attribute lookup in `Type::member` worked before was simply
wrong (mostly my own fault). The whole instance-attribute lookup should
probably never have been integrated into `Type::member`. And the
`Type::static_member` function that I introduced in my last descriptor
PR was the wrong abstraction. It's kind of fascinating how far this
approach took us, but I am pretty confident that the new approach
proposed here is what we need to model this correctly.
There are three key pieces that are required to implement attribute
lookups:
- **`Type::class_member`**/**`Type::find_in_mro`**: The
`Type::find_in_mro` method that can look up attributes on class bodies
(and corresponding bases). This is a partial function on types, as it
can not be called on instance types like`Type::Instance(…)` or
`Type::IntLiteral(…)`. For this reason, we usually call it through
`Type::class_member`, which is essentially just
`type.to_meta_type().find_in_mro(…)` plus union/intersection handling.
- **`Type::instance_member`**: This new function is basically the
type-level equivalent to `obj.__dict__[name]` when called on
`Type::Instance(…)`. We use this to discover instance attributes such as
those that we see as declarations on class bodies or as (annotated)
assignments to `self.attr` in methods of a class.
- The implementation of the descriptor protocol. It works slightly
different for instances and for class objects, but it can be described
by the general framework:
- Call `type.class_member("attribute")` to look up "attribute" in the
MRO of the meta type of `type`. Call the resulting `Symbol` `meta_attr`
(even if it's unbound).
- Use `meta_attr.class_member("__get__")` to look up `__get__` on the
*meta type* of `meta_attr`. Call it with `__get__(meta_attr, self,
self.to_meta_type())`. If this fails (either the lookup or the call),
just proceed with `meta_attr`. Otherwise, replace `meta_attr` in the
following with the return type of `__get__`. In this step, we also probe
if a `__set__` or `__delete__` method exists and store it in
`meta_attr_kind` (can be either "data descriptor" or "normal attribute
or non-data descriptor").
- Compute a `fallback` type.
- For instances, we use `self.instance_member("attribute")`
- For class objects, we use `class_attr =
self.find_in_mro("attribute")`, and then try to invoke the descriptor
protocol on `class_attr`, i.e. we look up `__get__` on the meta type of
`class_attr` and call it with `__get__(class_attr, None, self)`. This
additional invocation of the descriptor protocol on the fallback type is
one major asymmetry in the otherwise universal descriptor protocol
implementation.
- Finally, we look at `meta_attr`, `meta_attr_kind` and `fallback`, and
handle various cases of (possible) unboundness of these symbols.
- If `meta_attr` is bound and a data descriptor, just return `meta_attr`
- If `meta_attr` is not a data descriptor, and `fallback` is bound, just
return `fallback`
- If `meta_attr` is not a data descriptor, and `fallback` is unbound,
return `meta_attr`
- Return unions of these three possibilities for partially-bound
symbols.
This allows us to handle class objects and instances within the same
framework. There is a minor additional detail where for instances, we do
not allow the fallback type (the instance attribute) to completely
shadow the non-data descriptor. We do this because we (currently) don't
want to pretend that we can statically infer that an instance attribute
is always set.
Dunder method calls can also be embedded into this framework. The only
thing that changes is that *there is no fallback type*. If a dunder
method is called on an instance, we do not fall back to instance
variables. If a dunder method is called on a class object, we only look
it up on the meta class, never on the class itself.
## Test Plan
New Markdown tests.
## Summary
Add a diagnostic if a pure instance variable is accessed on a class object. For example
```py
class C:
instance_only: str
def __init__(self):
self.instance_only = "a"
# error: Attribute `instance_only` can only be accessed on instances, not on the class object `Literal[C]` itself.
C.instance_only
```
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
This PR achieves the following:
* Add support for checking method calls, and inferring return types from
method calls. For example:
```py
reveal_type("abcde".find("abc")) # revealed: int
reveal_type("foo".encode(encoding="utf-8")) # revealed: bytes
"abcde".find(123) # error: [invalid-argument-type]
class C:
def f(self) -> int:
pass
reveal_type(C.f) # revealed: <function `f`>
reveal_type(C().f) # revealed: <bound method: `f` of `C`>
C.f() # error: [missing-argument]
reveal_type(C().f()) # revealed: int
```
* Implement the descriptor protocol, i.e. properly call the `__get__`
method when a descriptor object is accessed through a class object or an
instance of a class. For example:
```py
from typing import Literal
class Ten:
def __get__(self, instance: object, owner: type | None = None) ->
Literal[10]:
return 10
class C:
ten: Ten = Ten()
reveal_type(C.ten) # revealed: Literal[10]
reveal_type(C().ten) # revealed: Literal[10]
```
* Add support for member lookup on intersection types.
* Support type inference for `inspect.getattr_static(obj, attr)` calls.
This was mostly used as a debugging tool during development, but seems
more generally useful. It can be used to bypass the descriptor protocol.
For the example above:
```py
from inspect import getattr_static
reveal_type(getattr_static(C, "ten")) # revealed: Ten
```
* Add a new `Type::Callable(…)` variant with the following sub-variants:
* `Type::Callable(CallableType::BoundMethod(…))` — represents bound
method objects, e.g. `C().f` above
* `Type::Callable(CallableType::MethodWrapperDunderGet(…))` — represents
`f.__get__` where `f` is a function
* `Type::Callable(WrapperDescriptorDunderGet)` — represents
`FunctionType.__get__`
* Add new known classes:
* `types.MethodType`
* `types.MethodWrapperType`
* `types.WrapperDescriptorType`
* `builtins.range`
## Performance analysis
On this branch, we do more work. We need to do more call checking, since
we now check all method calls. We also need to do ~twice as many member
lookups, because we need to check if a `__get__` attribute exists on
accessed members.
A brief analysis on `tomllib` shows that we now call `Type::call` 1780
times, compared to 612 calls before.
## Limitations
* Data descriptors are not yet supported, i.e. we do not infer correct
types for descriptor attribute accesses in `Store` context and do not
check writes to descriptor attributes. I felt like this was something
that could be split out as a follow-up without risking a major
architectural change.
* We currently distinguish between `Type::member` (with descriptor
protocol) and `Type::static_member` (without descriptor protocol). The
former corresponds to `obj.attr`, the latter corresponds to
`getattr_static(obj, "attr")`. However, to model some details correctly,
we would also need to distinguish between a static member lookup *with*
and *without* instance variables. The lookup without instance variables
corresponds to `find_name_in_mro`
[here](https://docs.python.org/3/howto/descriptor.html#invocation-from-an-instance).
We currently approximate both using `member_static`, which leads to two
open TODOs. Changing this would be a larger refactoring of
`Type::own_instance_member`, so I chose to leave it out of this PR.
## Test Plan
* New `call/methods.md` test suite for method calls
* New tests in `descriptor_protocol.md`
* New `call/getattr_static.md` test suite for `inspect.getattr_static`
* Various updated tests
We now resolve references in "eager" scopes correctly — using the
bindings and declarations that are visible at the point where the eager
scope is created, not the "public" type of the symbol (typically the
bindings visible at the end of the scope).
---------
Co-authored-by: Alex Waygood <alex.waygood@gmail.com>
## Summary
Allow for literate style in Markdown tests and merge multiple (unnamed)
code blocks into a single embedded file.
closes#15941
## Test Plan
- Interactively made sure that error-lines were reported correctly in
multi-snippet sections.
## Summary
Resolves#15695, rework of #15704.
This change modifies the Mdtests framework so that:
* Paths must now be specified in a separate preceding line:
`````markdown
`a.py`:
```py
x = 1
```
`````
If the path of a file conflicts with its `lang`, an error will be
thrown.
* Configs are no longer accepted. The pattern still take them into
account, however, to avoid "Unterminated code block" errors.
* Unnamed files are now assigned unique, `lang`-respecting paths
automatically.
Additionally, all legacy usages have been updated.
## Test Plan
Unit tests and Markdown tests.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
Use `Unknown | T_inferred` as the type for *undeclared* public symbols.
## Test Plan
- Updated existing tests
- New test for external `__slots__` modifications.
- New tests for external modifications of public symbols.
## Summary
Another small PR to focus #15674 solely on the relevant changes. This
makes our Markdown tests less dependent on precise types of public
symbols, without actually changing anything semantically in these tests.
Best reviewed using ignore-whitespace-mode.
## Test Plan
Tested these changes on `main` and on the branch from #15674.
## Summary
- Port "deferred annotations" unit tests to Markdown
- Port `implicit_global_in_function` unit test to Markdown
- Removed `resolve_method` and `local_inference` unit tests. These seem
like relics from a time where type inference was in it's early stages.
There is no way that these tests would fail today without lots of other
things going wrong as well.
part of #13696
based on #15683
## Test Plan
New MD tests for existing Rust unit tests.
## Summary
This is a small, tentative step towards the bigger goal of understanding
instance attributes.
- Adds partial support for pure instance variables declared in the class
body, i.e. this case:
```py
class C:
variable1: str = "a"
variable2 = "b"
reveal_type(C().variable1) # str
reveal_type(C().variable2) # Unknown | Literal["b"]
```
- Adds `property` as a known class to query for `@property` decorators
- Splits up various `@Todo(instance attributes)` cases into
sub-categories.
## Test Plan
Modified existing MD tests.
## Summary
Adds meta information to `Type::Todo`, allowing developers to easily
trace back the origin of a particular `@Todo` type they encounter.
Instead of `Type::Todo`, we now write either `type_todo!()` which
creates a `@Todo[path/to/source.rs:123]` type with file and line
information, or using `type_todo!("PEP 604 unions not supported")`,
which creates a variant with a custom message.
`Type::Todo` now contains a `TodoType` field. In release mode, this is
just a zero-sized struct, in order not to create any overhead. In debug
mode, this is an `enum` that contains the meta information.
`Type` implements `Copy`, which means that `TodoType` also needs to be
copyable. This limits the design space. We could intern `TodoType`, but
I discarded this option, as it would require us to have access to the
salsa DB everywhere we want to use `Type::Todo`. And it would have made
the macro invocations less ergonomic (requiring us to pass `db`).
So for now, the meta information is simply a `&'static str` / `u32` for
the file/line variant, or a `&'static str` for the custom message.
Anything involving a chain/backtrace of several `@Todo`s or similar is
therefore currently not implemented. Also because we currently don't see
any direct use cases for this, and because all of this will eventually
go away.
Note that the size of `Type` increases from 16 to 24 bytes, but only in
debug mode.
## Test Plan
- Observed the changes in Markdown tests.
- Added custom messages for all `Type::Todo`s that were revealed in the
tests
- Ran red knot in release and debug mode on the following Python file:
```py
def f(x: int) -> int:
reveal_type(x)
```
Prints `@Todo` in release mode and `@Todo(function parameter type)` in
debug mode.
## Summary
- Emit diagnostics when looking up (possibly) unbound attributes
- More explicit test assertions for unbound symbols
- Review remaining call sites of `Symbol::ignore_possibly_unbound`. Most
of them are something like `builtins_symbol(self.db,
"Ellipsis").ignore_possibly_unbound().unwrap_or(Type::Unknown)` which
look okay to me, unless we want to emit additional diagnostics. There is
one additional case in enum literal handling, which has a TODO comment
anyway.
part of #14022
## Test Plan
New MD tests for (possibly) unbound attributes.
## Summary
I mirrored some of the idioms that @AlexWaygood used in the MRO work.
Closes https://github.com/astral-sh/ruff/issues/14096.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
<!--
Thank you for contributing to Ruff! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title?
- Does this pull request include references to any relevant issues?
-->
## Summary
- Remove `Type::Unbound`
- Handle (potential) unboundness as a concept orthogonal to the type
system (see new `Symbol` type)
- Improve existing and add new diagnostics related to (potential)
unboundness
closes#13671
## Test Plan
- Update existing markdown-based tests
- Add new tests for added/modified functionality
## Summary
Fixes the bug described in #13514 where an unbound public type defaulted
to the type or `Unknown`, whereas it should only be the type if unbound.
## Test Plan
Added a new test case
---------
Co-authored-by: Carl Meyer <carl@astral.sh>