# Do this (new version) from numpy.random import default_rng rng = default_rng() vals = rng.standard_normal(10) more_vals = rng.standard_normal(10) numbers = rng.integers(high, size=5) # instead of this (legacy version) from numpy import random vals = random.standard_normal(10) more_vals = random.standard_normal(10) numbers = random.integers(high, size=5) import numpy numpy.random.seed() numpy.random.get_state() numpy.random.set_state() numpy.random.rand() numpy.random.ranf() numpy.random.sample() numpy.random.randn() numpy.random.randint() numpy.random.random() numpy.random.random_integers() numpy.random.random_sample() numpy.random.choice() numpy.random.bytes() numpy.random.shuffle() numpy.random.permutation() numpy.random.beta() numpy.random.binomial() numpy.random.chisquare() numpy.random.dirichlet() numpy.random.exponential() numpy.random.f() numpy.random.gamma() numpy.random.geometric() numpy.random.gumbel() numpy.random.hypergeometric() numpy.random.laplace() numpy.random.logistic() numpy.random.lognormal() numpy.random.logseries() numpy.random.multinomial() numpy.random.multivariate_normal() numpy.random.negative_binomial() numpy.random.noncentral_chisquare() numpy.random.noncentral_f() numpy.random.normal() numpy.random.pareto() numpy.random.poisson() numpy.random.power() numpy.random.rayleigh() numpy.random.standard_cauchy() numpy.random.standard_exponential() numpy.random.standard_gamma() numpy.random.standard_normal() numpy.random.standard_t() numpy.random.triangular() numpy.random.uniform() numpy.random.vonmises() numpy.random.wald() numpy.random.weibull() numpy.random.zipf()