# Binary operations on instances
Binary operations in Python are implemented by means of magic double-underscore methods.
For references, see:
-
-
## Operations
We support inference for all Python's binary operators: `+`, `-`, `*`, `@`, `/`, `//`, `%`, `**`,
`<<`, `>>`, `&`, `^`, and `|`.
```py
class A:
def __add__(self, other) -> A:
return self
def __sub__(self, other) -> A:
return self
def __mul__(self, other) -> A:
return self
def __matmul__(self, other) -> A:
return self
def __truediv__(self, other) -> A:
return self
def __floordiv__(self, other) -> A:
return self
def __mod__(self, other) -> A:
return self
def __pow__(self, other) -> A:
return self
def __lshift__(self, other) -> A:
return self
def __rshift__(self, other) -> A:
return self
def __and__(self, other) -> A:
return self
def __xor__(self, other) -> A:
return self
def __or__(self, other) -> A:
return self
class B: ...
reveal_type(A() + B()) # revealed: A
reveal_type(A() - B()) # revealed: A
reveal_type(A() * B()) # revealed: A
reveal_type(A() @ B()) # revealed: A
reveal_type(A() / B()) # revealed: A
reveal_type(A() // B()) # revealed: A
reveal_type(A() % B()) # revealed: A
reveal_type(A() ** B()) # revealed: A
reveal_type(A() << B()) # revealed: A
reveal_type(A() >> B()) # revealed: A
reveal_type(A() & B()) # revealed: A
reveal_type(A() ^ B()) # revealed: A
reveal_type(A() | B()) # revealed: A
```
## Reflected
We also support inference for reflected operations:
```py
class A:
def __radd__(self, other) -> A:
return self
def __rsub__(self, other) -> A:
return self
def __rmul__(self, other) -> A:
return self
def __rmatmul__(self, other) -> A:
return self
def __rtruediv__(self, other) -> A:
return self
def __rfloordiv__(self, other) -> A:
return self
def __rmod__(self, other) -> A:
return self
def __rpow__(self, other) -> A:
return self
def __rlshift__(self, other) -> A:
return self
def __rrshift__(self, other) -> A:
return self
def __rand__(self, other) -> A:
return self
def __rxor__(self, other) -> A:
return self
def __ror__(self, other) -> A:
return self
class B: ...
reveal_type(B() + A()) # revealed: A
reveal_type(B() - A()) # revealed: A
reveal_type(B() * A()) # revealed: A
reveal_type(B() @ A()) # revealed: A
reveal_type(B() / A()) # revealed: A
reveal_type(B() // A()) # revealed: A
reveal_type(B() % A()) # revealed: A
reveal_type(B() ** A()) # revealed: A
reveal_type(B() << A()) # revealed: A
reveal_type(B() >> A()) # revealed: A
reveal_type(B() & A()) # revealed: A
reveal_type(B() ^ A()) # revealed: A
reveal_type(B() | A()) # revealed: A
```
## Returning a different type
The magic methods aren't required to return the type of `self`:
```py
class A:
def __add__(self, other) -> int:
return 1
def __rsub__(self, other) -> int:
return 1
class B: ...
reveal_type(A() + B()) # revealed: int
reveal_type(B() - A()) # revealed: int
```
## Non-reflected precedence in general
In general, if the left-hand side defines `__add__` and the right-hand side defines `__radd__` and
the right-hand side is not a subtype of the left-hand side, `lhs.__add__` will take precedence:
```py
class A:
def __add__(self, other: B) -> int:
return 42
class B:
def __radd__(self, other: A) -> str:
return "foo"
reveal_type(A() + B()) # revealed: int
# Edge case: C is a subtype of C, *but* if the two sides are of *equal* types,
# the lhs *still* takes precedence
class C:
def __add__(self, other: C) -> int:
return 42
def __radd__(self, other: C) -> str:
return "foo"
reveal_type(C() + C()) # revealed: int
```
## Reflected precedence for subtypes (in some cases)
If the right-hand operand is a subtype of the left-hand operand and has a different implementation
of the reflected method, the reflected method on the right-hand operand takes precedence.
```py
class A:
def __add__(self, other) -> str:
return "foo"
def __radd__(self, other) -> str:
return "foo"
class MyString(str): ...
class B(A):
def __radd__(self, other) -> MyString:
return MyString()
reveal_type(A() + B()) # revealed: MyString
# N.B. Still a subtype of `A`, even though `A` does not appear directly in the class's `__bases__`
class C(B): ...
reveal_type(A() + C()) # revealed: MyString
```
## Reflected precedence 2
If the right-hand operand is a subtype of the left-hand operand, but does not override the reflected
method, the left-hand operand's non-reflected method still takes precedence:
```py
class A:
def __add__(self, other) -> str:
return "foo"
def __radd__(self, other) -> int:
return 42
class B(A): ...
reveal_type(A() + B()) # revealed: str
```
## Only reflected supported
For example, at runtime, `(1).__add__(1.2)` is `NotImplemented`, but `(1.2).__radd__(1) == 2.2`,
meaning that `1 + 1.2` succeeds at runtime (producing `2.2`). The runtime tries the second one only
if the first one returns `NotImplemented` to signal failure.
Typeshed and other stubs annotate dunder-method calls that would return `NotImplemented` as being
"illegal" calls. `int.__add__` is annotated as only "accepting" `int`s, even though it
strictly-speaking "accepts" any other object without raising an exception -- it will simply return
`NotImplemented`, allowing the runtime to try the `__radd__` method of the right-hand operand as
well.
```py
class A:
def __sub__(self, other: A) -> A:
return A()
class B:
def __rsub__(self, other: A) -> B:
return B()
# TODO: this should be `B` (the return annotation of `B.__rsub__`),
# because `A.__sub__` is annotated as only accepting `A`,
# but `B.__rsub__` will accept `A`.
reveal_type(A() - B()) # revealed: A
```
## Callable instances as dunders
Believe it or not, this is supported at runtime:
```py
class A:
def __call__(self, other) -> int:
return 42
class B:
__add__ = A()
reveal_type(B() + B()) # revealed: int
```
## Integration test: numbers from typeshed
```py
reveal_type(3j + 3.14) # revealed: complex
reveal_type(4.2 + 42) # revealed: float
reveal_type(3j + 3) # revealed: complex
# TODO should be complex, need to check arg type and fall back to `rhs.__radd__`
reveal_type(3.14 + 3j) # revealed: float
# TODO should be float, need to check arg type and fall back to `rhs.__radd__`
reveal_type(42 + 4.2) # revealed: int
# TODO should be complex, need to check arg type and fall back to `rhs.__radd__`
reveal_type(3 + 3j) # revealed: int
def _(x: bool, y: int):
reveal_type(x + y) # revealed: int
reveal_type(4.2 + x) # revealed: float
# TODO should be float, need to check arg type and fall back to `rhs.__radd__`
reveal_type(y + 4.12) # revealed: int
```
## With literal types
When we have a literal type for one operand, we're able to fall back to the instance handling for
its instance super-type.
```py
class A:
def __add__(self, other) -> A:
return self
def __radd__(self, other) -> A:
return self
reveal_type(A() + 1) # revealed: A
# TODO should be `A` since `int.__add__` doesn't support `A` instances
reveal_type(1 + A()) # revealed: int
reveal_type(A() + "foo") # revealed: A
# TODO should be `A` since `str.__add__` doesn't support `A` instances
# TODO overloads
reveal_type("foo" + A()) # revealed: @Todo(return type)
reveal_type(A() + b"foo") # revealed: A
# TODO should be `A` since `bytes.__add__` doesn't support `A` instances
reveal_type(b"foo" + A()) # revealed: bytes
reveal_type(A() + ()) # revealed: A
# TODO this should be `A`, since `tuple.__add__` doesn't support `A` instances
reveal_type(() + A()) # revealed: @Todo(return type)
literal_string_instance = "foo" * 1_000_000_000
# the test is not testing what it's meant to be testing if this isn't a `LiteralString`:
reveal_type(literal_string_instance) # revealed: LiteralString
reveal_type(A() + literal_string_instance) # revealed: A
# TODO should be `A` since `str.__add__` doesn't support `A` instances
# TODO overloads
reveal_type(literal_string_instance + A()) # revealed: @Todo(return type)
```
## Operations involving instances of classes inheriting from `Any`
`Any` and `Unknown` represent a set of possible runtime objects, wherein the bounds of the set are
unknown. Whether the left-hand operand's dunder or the right-hand operand's reflected dunder depends
on whether the right-hand operand is an instance of a class that is a subclass of the left-hand
operand's class and overrides the reflected dunder. In the following example, because of the
unknowable nature of `Any`/`Unknown`, we must consider both possibilities: `Any`/`Unknown` might
resolve to an unknown third class that inherits from `X` and overrides `__radd__`; but it also might
not. Thus, the correct answer here for the `reveal_type` is `int | Unknown`.
```py
from does_not_exist import Foo # error: [unresolved-import]
reveal_type(Foo) # revealed: Unknown
class X:
def __add__(self, other: object) -> int:
return 42
class Y(Foo): ...
# TODO: Should be `int | Unknown`; see above discussion.
reveal_type(X() + Y()) # revealed: int
```
## Unsupported
### Dunder as instance attribute
The magic method must exist on the class, not just on the instance:
```py
def add_impl(self, other) -> int:
return 1
class A:
def __init__(self):
self.__add__ = add_impl
# error: [unsupported-operator] "Operator `+` is unsupported between objects of type `A` and `A`"
# revealed: Unknown
reveal_type(A() + A())
```
### Missing dunder
```py
class A: ...
# error: [unsupported-operator]
# revealed: Unknown
reveal_type(A() + A())
```
### Wrong position
A left-hand dunder method doesn't apply for the right-hand operand, or vice versa:
```py
class A:
def __add__(self, other) -> int: ...
class B:
def __radd__(self, other) -> int: ...
class C: ...
# error: [unsupported-operator]
# revealed: Unknown
reveal_type(C() + A())
# error: [unsupported-operator]
# revealed: Unknown
reveal_type(B() + C())
```
### Reflected dunder is not tried between two objects of the same type
For the specific case where the left-hand operand is the exact same type as the right-hand operand,
the reflected dunder of the right-hand operand is not tried; the runtime short-circuits after trying
the unreflected dunder of the left-hand operand. For context, see
[this mailing list discussion](https://mail.python.org/archives/list/python-dev@python.org/thread/7NZUCODEAPQFMRFXYRMGJXDSIS3WJYIV/).
```py
class Foo:
def __radd__(self, other: Foo) -> Foo:
return self
# error: [unsupported-operator]
# revealed: Unknown
reveal_type(Foo() + Foo())
```
### Wrong type
TODO: check signature and error if `other` is the wrong type