# Generic functions: Legacy syntax ## Typevar must be used at least twice If you're only using a typevar for a single parameter, you don't need the typevar — just use `object` (or the typevar's upper bound): ```py from typing import TypeVar T = TypeVar("T") # TODO: error, should be (x: object) def typevar_not_needed(x: T) -> None: pass BoundedT = TypeVar("BoundedT", bound=int) # TODO: error, should be (x: int) def bounded_typevar_not_needed(x: BoundedT) -> None: pass ``` Typevars are only needed if you use them more than once. For instance, to specify that two parameters must both have the same type: ```py def two_params(x: T, y: T) -> T: return x ``` or to specify that a return value is the same as a parameter: ```py def return_value(x: T) -> T: return x ``` Each typevar must also appear _somewhere_ in the parameter list: ```py def absurd() -> T: # There's no way to construct a T! raise ValueError("absurd") ``` ## Inferring generic function parameter types If the type of a generic function parameter is a typevar, then we can infer what type that typevar is bound to at each call site. ```py from typing import TypeVar T = TypeVar("T") def f(x: T) -> T: return x reveal_type(f(1)) # revealed: Literal[1] reveal_type(f(1.0)) # revealed: float reveal_type(f(True)) # revealed: Literal[True] reveal_type(f("string")) # revealed: Literal["string"] ``` ## Inferring “deep” generic parameter types The matching up of call arguments and discovery of constraints on typevars can be a recursive process for arbitrarily-nested generic types in parameters. ```py from typing import TypeVar T = TypeVar("T") def f(x: list[T]) -> T: return x[0] # TODO: revealed: float reveal_type(f([1.0, 2.0])) # revealed: Unknown ``` ## Inferring a bound typevar ```py from typing import TypeVar from typing_extensions import reveal_type T = TypeVar("T", bound=int) def f(x: T) -> T: return x reveal_type(f(1)) # revealed: Literal[1] reveal_type(f(True)) # revealed: Literal[True] # error: [invalid-argument-type] reveal_type(f("string")) # revealed: Unknown ``` ## Inferring a constrained typevar ```py from typing import TypeVar from typing_extensions import reveal_type T = TypeVar("T", int, None) def f(x: T) -> T: return x reveal_type(f(1)) # revealed: int reveal_type(f(True)) # revealed: int reveal_type(f(None)) # revealed: None # error: [invalid-argument-type] reveal_type(f("string")) # revealed: Unknown ``` ## Typevar constraints If a type parameter has an upper bound, that upper bound constrains which types can be used for that typevar. This effectively adds the upper bound as an intersection to every appearance of the typevar in the function. ```py from typing import TypeVar T = TypeVar("T", bound=int) def good_param(x: T) -> None: reveal_type(x) # revealed: T ``` If the function is annotated as returning the typevar, this means that the upper bound is _not_ assignable to that typevar, since return types are contravariant. In `bad`, we can infer that `x + 1` has type `int`. But `T` might be instantiated with a narrower type than `int`, and so the return value is not guaranteed to be compatible for all `T: int`. ```py def good_return(x: T) -> T: return x def bad_return(x: T) -> T: # error: [invalid-return-type] "Return type does not match returned value: Expected `T`, found `int`" return x + 1 ``` ## All occurrences of the same typevar have the same type If a typevar appears multiple times in a function signature, all occurrences have the same type. ```py from typing import TypeVar T = TypeVar("T") S = TypeVar("S") def different_types(cond: bool, t: T, s: S) -> T: if cond: return t else: # error: [invalid-return-type] "Return type does not match returned value: Expected `T`, found `S`" return s def same_types(cond: bool, t1: T, t2: T) -> T: if cond: return t1 else: return t2 ``` ## All occurrences of the same constrained typevar have the same type The above is true even when the typevars are constrained. Here, both `int` and `str` have `__add__` methods that are compatible with the return type, so the `return` expression is always well-typed: ```py from typing import TypeVar T = TypeVar("T", int, str) def same_constrained_types(t1: T, t2: T) -> T: # TODO: no error # error: [unsupported-operator] "Operator `+` is unsupported between objects of type `T` and `T`" return t1 + t2 ``` This is _not_ the same as a union type, because of this additional constraint that the two occurrences have the same type. In `unions_are_different`, `t1` and `t2` might have different types, and an `int` and a `str` cannot be added together: ```py def unions_are_different(t1: int | str, t2: int | str) -> int | str: # error: [unsupported-operator] "Operator `+` is unsupported between objects of type `int | str` and `int | str`" return t1 + t2 ``` ## Typevar inference is a unification problem When inferring typevar assignments in a generic function call, we cannot simply solve constraints eagerly for each parameter in turn. We must solve a unification problem involving all of the parameters simultaneously. ```py from typing import TypeVar T = TypeVar("T") def two_params(x: T, y: T) -> T: return x reveal_type(two_params("a", "b")) # revealed: Literal["a", "b"] reveal_type(two_params("a", 1)) # revealed: Literal["a", 1] ``` When one of the parameters is a union, we attempt to find the smallest specialization that satisfies all of the constraints. ```py def union_param(x: T | None) -> T: if x is None: raise ValueError return x reveal_type(union_param("a")) # revealed: Literal["a"] reveal_type(union_param(1)) # revealed: Literal[1] reveal_type(union_param(None)) # revealed: Unknown ``` ```py def union_and_nonunion_params(x: T | int, y: T) -> T: return y reveal_type(union_and_nonunion_params(1, "a")) # revealed: Literal["a"] reveal_type(union_and_nonunion_params("a", "a")) # revealed: Literal["a"] reveal_type(union_and_nonunion_params(1, 1)) # revealed: Literal[1] reveal_type(union_and_nonunion_params(3, 1)) # revealed: Literal[1] reveal_type(union_and_nonunion_params("a", 1)) # revealed: Literal["a", 1] ``` ```py S = TypeVar("S") def tuple_param(x: T | S, y: tuple[T, S]) -> tuple[T, S]: return y reveal_type(tuple_param("a", ("a", 1))) # revealed: tuple[Literal["a"], Literal[1]] reveal_type(tuple_param(1, ("a", 1))) # revealed: tuple[Literal["a"], Literal[1]] ``` ## Inferring nested generic function calls We can infer type assignments in nested calls to multiple generic functions. If they use the same type variable, we do not confuse the two; `T@f` and `T@g` have separate types in each example below. ```py from typing import TypeVar T = TypeVar("T") def f(x: T) -> tuple[T, int]: return (x, 1) def g(x: T) -> T | None: return x reveal_type(f(g("a"))) # revealed: tuple[Literal["a"] | None, int] reveal_type(g(f("a"))) # revealed: tuple[Literal["a"], int] | None ```