use ruff_db::files::File; use crate::dunder_all::dunder_all_names; use crate::module_resolver::file_to_module; use crate::semantic_index::definition::Definition; use crate::semantic_index::symbol::{ScopeId, ScopedSymbolId}; use crate::semantic_index::{global_scope, use_def_map, DeclarationWithConstraint}; use crate::semantic_index::{ symbol_table, BindingWithConstraints, BindingWithConstraintsIterator, DeclarationsIterator, }; use crate::types::{ binding_type, declaration_type, todo_type, KnownClass, Truthiness, Type, TypeAndQualifiers, TypeQualifiers, UnionBuilder, UnionType, }; use crate::{resolve_module, Db, KnownModule, Program}; pub(crate) use implicit_globals::module_type_implicit_global_symbol; #[derive(Debug, Clone, Copy, Hash, PartialEq, Eq)] pub(crate) enum Boundness { Bound, PossiblyUnbound, } impl Boundness { pub(crate) const fn max(self, other: Self) -> Self { match (self, other) { (Boundness::Bound, _) | (_, Boundness::Bound) => Boundness::Bound, (Boundness::PossiblyUnbound, Boundness::PossiblyUnbound) => Boundness::PossiblyUnbound, } } } /// The result of a symbol lookup, which can either be a (possibly unbound) type /// or a completely unbound symbol. /// /// Consider this example: /// ```py /// bound = 1 /// /// if flag: /// possibly_unbound = 2 /// ``` /// /// If we look up symbols in this scope, we would get the following results: /// ```rs /// bound: Symbol::Type(Type::IntLiteral(1), Boundness::Bound), /// possibly_unbound: Symbol::Type(Type::IntLiteral(2), Boundness::PossiblyUnbound), /// non_existent: Symbol::Unbound, /// ``` #[derive(Debug, Clone, PartialEq, Eq, salsa::Update)] pub(crate) enum Symbol<'db> { Type(Type<'db>, Boundness), Unbound, } impl<'db> Symbol<'db> { /// Constructor that creates a `Symbol` with boundness [`Boundness::Bound`]. pub(crate) fn bound(ty: impl Into>) -> Self { Symbol::Type(ty.into(), Boundness::Bound) } pub(crate) fn possibly_unbound(ty: impl Into>) -> Self { Symbol::Type(ty.into(), Boundness::PossiblyUnbound) } /// Constructor that creates a [`Symbol`] with a [`crate::types::TodoType`] type /// and boundness [`Boundness::Bound`]. #[allow(unused_variables)] // Only unused in release builds pub(crate) fn todo(message: &'static str) -> Self { Symbol::Type(todo_type!(message), Boundness::Bound) } pub(crate) fn is_unbound(&self) -> bool { matches!(self, Symbol::Unbound) } /// Returns the type of the symbol, ignoring possible unboundness. /// /// If the symbol is *definitely* unbound, this function will return `None`. Otherwise, /// if there is at least one control-flow path where the symbol is bound, return the type. pub(crate) fn ignore_possibly_unbound(&self) -> Option> { match self { Symbol::Type(ty, _) => Some(*ty), Symbol::Unbound => None, } } #[cfg(test)] #[track_caller] pub(crate) fn expect_type(self) -> Type<'db> { self.ignore_possibly_unbound() .expect("Expected a (possibly unbound) type, not an unbound symbol") } #[must_use] pub(crate) fn map_type(self, f: impl FnOnce(Type<'db>) -> Type<'db>) -> Symbol<'db> { match self { Symbol::Type(ty, boundness) => Symbol::Type(f(ty), boundness), Symbol::Unbound => Symbol::Unbound, } } #[must_use] pub(crate) fn with_qualifiers(self, qualifiers: TypeQualifiers) -> SymbolAndQualifiers<'db> { SymbolAndQualifiers { symbol: self, qualifiers, } } /// Try to call `__get__(None, owner)` on the type of this symbol (not on the meta type). /// If it succeeds, return the `__get__` return type. Otherwise, returns the original symbol. /// This is used to resolve (potential) descriptor attributes. pub(crate) fn try_call_dunder_get(self, db: &'db dyn Db, owner: Type<'db>) -> Symbol<'db> { match self { Symbol::Type(Type::Union(union), boundness) => union.map_with_boundness(db, |elem| { Symbol::Type(*elem, boundness).try_call_dunder_get(db, owner) }), Symbol::Type(Type::Intersection(intersection), boundness) => intersection .map_with_boundness(db, |elem| { Symbol::Type(*elem, boundness).try_call_dunder_get(db, owner) }), Symbol::Type(self_ty, boundness) => { if let Some((dunder_get_return_ty, _)) = self_ty.try_call_dunder_get(db, Type::none(db), owner) { Symbol::Type(dunder_get_return_ty, boundness) } else { self } } Symbol::Unbound => Symbol::Unbound, } } } impl<'db> From> for SymbolAndQualifiers<'db> { fn from(value: LookupResult<'db>) -> Self { match value { Ok(type_and_qualifiers) => { Symbol::Type(type_and_qualifiers.inner_type(), Boundness::Bound) .with_qualifiers(type_and_qualifiers.qualifiers()) } Err(LookupError::Unbound(qualifiers)) => Symbol::Unbound.with_qualifiers(qualifiers), Err(LookupError::PossiblyUnbound(type_and_qualifiers)) => { Symbol::Type(type_and_qualifiers.inner_type(), Boundness::PossiblyUnbound) .with_qualifiers(type_and_qualifiers.qualifiers()) } } } } /// Possible ways in which a symbol lookup can (possibly or definitely) fail. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub(crate) enum LookupError<'db> { Unbound(TypeQualifiers), PossiblyUnbound(TypeAndQualifiers<'db>), } impl<'db> LookupError<'db> { /// Fallback (wholly or partially) to `fallback` to create a new [`LookupResult`]. pub(crate) fn or_fall_back_to( self, db: &'db dyn Db, fallback: SymbolAndQualifiers<'db>, ) -> LookupResult<'db> { let fallback = fallback.into_lookup_result(); match (&self, &fallback) { (LookupError::Unbound(_), _) => fallback, (LookupError::PossiblyUnbound { .. }, Err(LookupError::Unbound(_))) => Err(self), (LookupError::PossiblyUnbound(ty), Ok(ty2)) => Ok(TypeAndQualifiers::new( UnionType::from_elements(db, [ty.inner_type(), ty2.inner_type()]), ty.qualifiers().union(ty2.qualifiers()), )), (LookupError::PossiblyUnbound(ty), Err(LookupError::PossiblyUnbound(ty2))) => { Err(LookupError::PossiblyUnbound(TypeAndQualifiers::new( UnionType::from_elements(db, [ty.inner_type(), ty2.inner_type()]), ty.qualifiers().union(ty2.qualifiers()), ))) } } } } /// A [`Result`] type in which the `Ok` variant represents a definitely bound symbol /// and the `Err` variant represents a symbol that is either definitely or possibly unbound. /// /// Note that this type is exactly isomorphic to [`Symbol`]. /// In the future, we could possibly consider removing `Symbol` and using this type everywhere instead. pub(crate) type LookupResult<'db> = Result, LookupError<'db>>; /// Infer the public type of a symbol (its type as seen from outside its scope) in the given /// `scope`. pub(crate) fn symbol<'db>( db: &'db dyn Db, scope: ScopeId<'db>, name: &str, ) -> SymbolAndQualifiers<'db> { symbol_impl(db, scope, name, RequiresExplicitReExport::No) } /// Infer the public type of a class symbol (its type as seen from outside its scope) in the given /// `scope`. pub(crate) fn class_symbol<'db>( db: &'db dyn Db, scope: ScopeId<'db>, name: &str, ) -> SymbolAndQualifiers<'db> { symbol_table(db, scope) .symbol_id_by_name(name) .map(|symbol| { let symbol_and_quals = symbol_by_id(db, scope, symbol, RequiresExplicitReExport::No); if symbol_and_quals.is_class_var() { // For declared class vars we do not need to check if they have bindings, // we just trust the declaration. return symbol_and_quals; } if let SymbolAndQualifiers { symbol: Symbol::Type(ty, _), qualifiers, } = symbol_and_quals { // Otherwise, we need to check if the symbol has bindings let use_def = use_def_map(db, scope); let bindings = use_def.public_bindings(symbol); let inferred = symbol_from_bindings_impl(db, bindings, RequiresExplicitReExport::No); // TODO: we should not need to calculate inferred type second time. This is a temporary // solution until the notion of Boundness and Declaredness is split. See #16036, #16264 match inferred { Symbol::Unbound => Symbol::Unbound.with_qualifiers(qualifiers), Symbol::Type(_, boundness) => { Symbol::Type(ty, boundness).with_qualifiers(qualifiers) } } } else { Symbol::Unbound.into() } }) .unwrap_or_default() } /// Infers the public type of an explicit module-global symbol as seen from within the same file. /// /// Note that all global scopes also include various "implicit globals" such as `__name__`, /// `__doc__` and `__file__`. This function **does not** consider those symbols; it will return /// `Symbol::Unbound` for them. Use the (currently test-only) `global_symbol` query to also include /// those additional symbols. /// /// Use [`imported_symbol`] to perform the lookup as seen from outside the file (e.g. via imports). pub(crate) fn explicit_global_symbol<'db>( db: &'db dyn Db, file: File, name: &str, ) -> SymbolAndQualifiers<'db> { symbol_impl( db, global_scope(db, file), name, RequiresExplicitReExport::No, ) } /// Infers the public type of an explicit module-global symbol as seen from within the same file. /// /// Unlike [`explicit_global_symbol`], this function also considers various "implicit globals" /// such as `__name__`, `__doc__` and `__file__`. These are looked up as attributes on `types.ModuleType` /// rather than being looked up as symbols explicitly defined/declared in the global scope. /// /// Use [`imported_symbol`] to perform the lookup as seen from outside the file (e.g. via imports). #[cfg(test)] pub(crate) fn global_symbol<'db>( db: &'db dyn Db, file: File, name: &str, ) -> SymbolAndQualifiers<'db> { explicit_global_symbol(db, file, name) .or_fall_back_to(db, || module_type_implicit_global_symbol(db, name)) } /// Infers the public type of an imported symbol. /// /// If `requires_explicit_reexport` is [`None`], it will be inferred from the file's source type. /// For stub files, explicit re-export will be required, while for non-stub files, it will not. pub(crate) fn imported_symbol<'db>( db: &'db dyn Db, file: File, name: &str, requires_explicit_reexport: Option, ) -> SymbolAndQualifiers<'db> { let requires_explicit_reexport = requires_explicit_reexport.unwrap_or_else(|| { if file.is_stub(db.upcast()) { RequiresExplicitReExport::Yes } else { RequiresExplicitReExport::No } }); // If it's not found in the global scope, check if it's present as an instance on // `types.ModuleType` or `builtins.object`. // // We do a more limited version of this in `module_type_implicit_global_symbol`, // but there are two crucial differences here: // - If a member is looked up as an attribute, `__init__` is also available on the module, but // it isn't available as a global from inside the module // - If a member is looked up as an attribute, members on `builtins.object` are also available // (because `types.ModuleType` inherits from `object`); these attributes are also not // available as globals from inside the module. // // The same way as in `module_type_implicit_global_symbol`, however, we need to be careful to // ignore `__getattr__`. Typeshed has a fake `__getattr__` on `types.ModuleType` to help out with // dynamic imports; we shouldn't use it for `ModuleLiteral` types where we know exactly which // module we're dealing with. symbol_impl(db, global_scope(db, file), name, requires_explicit_reexport).or_fall_back_to( db, || { if name == "__getattr__" { Symbol::Unbound.into() } else { KnownClass::ModuleType.to_instance(db).member(db, name) } }, ) } /// Lookup the type of `symbol` in the builtins namespace. /// /// Returns `Symbol::Unbound` if the `builtins` module isn't available for some reason. /// /// Note that this function is only intended for use in the context of the builtins *namespace* /// and should not be used when a symbol is being explicitly imported from the `builtins` module /// (e.g. `from builtins import int`). pub(crate) fn builtins_symbol<'db>(db: &'db dyn Db, symbol: &str) -> SymbolAndQualifiers<'db> { resolve_module(db, &KnownModule::Builtins.name()) .map(|module| { symbol_impl( db, global_scope(db, module.file()), symbol, RequiresExplicitReExport::Yes, ) .or_fall_back_to(db, || { // We're looking up in the builtins namespace and not the module, so we should // do the normal lookup in `types.ModuleType` and not the special one as in // `imported_symbol`. module_type_implicit_global_symbol(db, symbol) }) }) .unwrap_or_default() } /// Lookup the type of `symbol` in a given known module. /// /// Returns `Symbol::Unbound` if the given known module cannot be resolved for some reason. pub(crate) fn known_module_symbol<'db>( db: &'db dyn Db, known_module: KnownModule, symbol: &str, ) -> SymbolAndQualifiers<'db> { resolve_module(db, &known_module.name()) .map(|module| imported_symbol(db, module.file(), symbol, None)) .unwrap_or_default() } /// Lookup the type of `symbol` in the `typing` module namespace. /// /// Returns `Symbol::Unbound` if the `typing` module isn't available for some reason. #[inline] #[cfg(test)] pub(crate) fn typing_symbol<'db>(db: &'db dyn Db, symbol: &str) -> SymbolAndQualifiers<'db> { known_module_symbol(db, KnownModule::Typing, symbol) } /// Lookup the type of `symbol` in the `typing_extensions` module namespace. /// /// Returns `Symbol::Unbound` if the `typing_extensions` module isn't available for some reason. #[inline] pub(crate) fn typing_extensions_symbol<'db>( db: &'db dyn Db, symbol: &str, ) -> SymbolAndQualifiers<'db> { known_module_symbol(db, KnownModule::TypingExtensions, symbol) } /// Get the `builtins` module scope. /// /// Can return `None` if a custom typeshed is used that is missing `builtins.pyi`. pub(crate) fn builtins_module_scope(db: &dyn Db) -> Option> { core_module_scope(db, KnownModule::Builtins) } /// Get the scope of a core stdlib module. /// /// Can return `None` if a custom typeshed is used that is missing the core module in question. fn core_module_scope(db: &dyn Db, core_module: KnownModule) -> Option> { resolve_module(db, &core_module.name()).map(|module| global_scope(db, module.file())) } /// Infer the combined type from an iterator of bindings, and return it /// together with boundness information in a [`Symbol`]. /// /// The type will be a union if there are multiple bindings with different types. pub(super) fn symbol_from_bindings<'db>( db: &'db dyn Db, bindings_with_constraints: BindingWithConstraintsIterator<'_, 'db>, ) -> Symbol<'db> { symbol_from_bindings_impl(db, bindings_with_constraints, RequiresExplicitReExport::No) } /// Build a declared type from a [`DeclarationsIterator`]. /// /// If there is only one declaration, or all declarations declare the same type, returns /// `Ok(..)`. If there are conflicting declarations, returns an `Err(..)` variant with /// a union of the declared types as well as a list of all conflicting types. /// /// This function also returns declaredness information (see [`Symbol`]) and a set of /// [`TypeQualifiers`] that have been specified on the declaration(s). pub(crate) fn symbol_from_declarations<'db>( db: &'db dyn Db, declarations: DeclarationsIterator<'_, 'db>, ) -> SymbolFromDeclarationsResult<'db> { symbol_from_declarations_impl(db, declarations, RequiresExplicitReExport::No) } /// The result of looking up a declared type from declarations; see [`symbol_from_declarations`]. pub(crate) type SymbolFromDeclarationsResult<'db> = Result, (TypeAndQualifiers<'db>, Box<[Type<'db>]>)>; /// A type with declaredness information, and a set of type qualifiers. /// /// This is used to represent the result of looking up the declared type. Consider this /// example: /// ```py /// class C: /// if flag: /// variable: ClassVar[int] /// ``` /// If we look up the declared type of `variable` in the scope of class `C`, we will get /// the type `int`, a "declaredness" of [`Boundness::PossiblyUnbound`], and the information /// that this comes with a [`CLASS_VAR`] type qualifier. /// /// [`CLASS_VAR`]: crate::types::TypeQualifiers::CLASS_VAR #[derive(Debug, Clone, PartialEq, Eq, salsa::Update)] pub(crate) struct SymbolAndQualifiers<'db> { pub(crate) symbol: Symbol<'db>, pub(crate) qualifiers: TypeQualifiers, } impl Default for SymbolAndQualifiers<'_> { fn default() -> Self { SymbolAndQualifiers { symbol: Symbol::Unbound, qualifiers: TypeQualifiers::empty(), } } } impl<'db> SymbolAndQualifiers<'db> { /// Constructor that creates a [`SymbolAndQualifiers`] instance with a [`TodoType`] type /// and no qualifiers. /// /// [`TodoType`]: crate::types::TodoType pub(crate) fn todo(message: &'static str) -> Self { Self { symbol: Symbol::todo(message), qualifiers: TypeQualifiers::empty(), } } /// Returns `true` if the symbol has a `ClassVar` type qualifier. pub(crate) fn is_class_var(&self) -> bool { self.qualifiers.contains(TypeQualifiers::CLASS_VAR) } #[must_use] pub(crate) fn map_type( self, f: impl FnOnce(Type<'db>) -> Type<'db>, ) -> SymbolAndQualifiers<'db> { SymbolAndQualifiers { symbol: self.symbol.map_type(f), qualifiers: self.qualifiers, } } /// Transform symbol and qualifiers into a [`LookupResult`], /// a [`Result`] type in which the `Ok` variant represents a definitely bound symbol /// and the `Err` variant represents a symbol that is either definitely or possibly unbound. pub(crate) fn into_lookup_result(self) -> LookupResult<'db> { match self { SymbolAndQualifiers { symbol: Symbol::Type(ty, Boundness::Bound), qualifiers, } => Ok(TypeAndQualifiers::new(ty, qualifiers)), SymbolAndQualifiers { symbol: Symbol::Type(ty, Boundness::PossiblyUnbound), qualifiers, } => Err(LookupError::PossiblyUnbound(TypeAndQualifiers::new( ty, qualifiers, ))), SymbolAndQualifiers { symbol: Symbol::Unbound, qualifiers, } => Err(LookupError::Unbound(qualifiers)), } } /// Safely unwrap the symbol and the qualifiers into a [`TypeQualifiers`]. /// /// If the symbol is definitely unbound or possibly unbound, it will be transformed into a /// [`LookupError`] and `diagnostic_fn` will be applied to the error value before returning /// the result of `diagnostic_fn` (which will be a [`TypeQualifiers`]). This allows the caller /// to ensure that a diagnostic is emitted if the symbol is possibly or definitely unbound. pub(crate) fn unwrap_with_diagnostic( self, diagnostic_fn: impl FnOnce(LookupError<'db>) -> TypeAndQualifiers<'db>, ) -> TypeAndQualifiers<'db> { self.into_lookup_result().unwrap_or_else(diagnostic_fn) } /// Fallback (partially or fully) to another symbol if `self` is partially or fully unbound. /// /// 1. If `self` is definitely bound, return `self` without evaluating `fallback_fn()`. /// 2. Else, evaluate `fallback_fn()`: /// 1. If `self` is definitely unbound, return the result of `fallback_fn()`. /// 2. Else, if `fallback` is definitely unbound, return `self`. /// 3. Else, if `self` is possibly unbound and `fallback` is definitely bound, /// return `Symbol(, Boundness::Bound)` /// 4. Else, if `self` is possibly unbound and `fallback` is possibly unbound, /// return `Symbol(, Boundness::PossiblyUnbound)` #[must_use] pub(crate) fn or_fall_back_to( self, db: &'db dyn Db, fallback_fn: impl FnOnce() -> SymbolAndQualifiers<'db>, ) -> Self { self.into_lookup_result() .or_else(|lookup_error| lookup_error.or_fall_back_to(db, fallback_fn())) .into() } } impl<'db> From> for SymbolAndQualifiers<'db> { fn from(symbol: Symbol<'db>) -> Self { symbol.with_qualifiers(TypeQualifiers::empty()) } } fn symbol_cycle_recover<'db>( _db: &'db dyn Db, _value: &SymbolAndQualifiers<'db>, _count: u32, _scope: ScopeId<'db>, _symbol_id: ScopedSymbolId, _requires_explicit_reexport: RequiresExplicitReExport, ) -> salsa::CycleRecoveryAction> { salsa::CycleRecoveryAction::Iterate } fn symbol_cycle_initial<'db>( _db: &'db dyn Db, _scope: ScopeId<'db>, _symbol_id: ScopedSymbolId, _requires_explicit_reexport: RequiresExplicitReExport, ) -> SymbolAndQualifiers<'db> { Symbol::bound(Type::Never).into() } #[salsa::tracked(cycle_fn=symbol_cycle_recover, cycle_initial=symbol_cycle_initial)] fn symbol_by_id<'db>( db: &'db dyn Db, scope: ScopeId<'db>, symbol_id: ScopedSymbolId, requires_explicit_reexport: RequiresExplicitReExport, ) -> SymbolAndQualifiers<'db> { let use_def = use_def_map(db, scope); // If the symbol is declared, the public type is based on declarations; otherwise, it's based // on inference from bindings. let declarations = use_def.public_declarations(symbol_id); let declared = symbol_from_declarations_impl(db, declarations, requires_explicit_reexport); match declared { // Symbol is declared, trust the declared type Ok( symbol_and_quals @ SymbolAndQualifiers { symbol: Symbol::Type(_, Boundness::Bound), qualifiers: _, }, ) => symbol_and_quals, // Symbol is possibly declared Ok(SymbolAndQualifiers { symbol: Symbol::Type(declared_ty, Boundness::PossiblyUnbound), qualifiers, }) => { let bindings = use_def.public_bindings(symbol_id); let inferred = symbol_from_bindings_impl(db, bindings, requires_explicit_reexport); let symbol = match inferred { // Symbol is possibly undeclared and definitely unbound Symbol::Unbound => { // TODO: We probably don't want to report `Bound` here. This requires a bit of // design work though as we might want a different behavior for stubs and for // normal modules. Symbol::Type(declared_ty, Boundness::Bound) } // Symbol is possibly undeclared and (possibly) bound Symbol::Type(inferred_ty, boundness) => Symbol::Type( UnionType::from_elements(db, [inferred_ty, declared_ty]), boundness, ), }; SymbolAndQualifiers { symbol, qualifiers } } // Symbol is undeclared, return the union of `Unknown` with the inferred type Ok(SymbolAndQualifiers { symbol: Symbol::Unbound, qualifiers: _, }) => { let bindings = use_def.public_bindings(symbol_id); let inferred = symbol_from_bindings_impl(db, bindings, requires_explicit_reexport); // `__slots__` is a symbol with special behavior in Python's runtime. It can be // modified externally, but those changes do not take effect. We therefore issue // a diagnostic if we see it being modified externally. In type inference, we // can assign a "narrow" type to it even if it is not *declared*. This means, we // do not have to call [`widen_type_for_undeclared_public_symbol`]. // // `TYPE_CHECKING` is a special variable that should only be assigned `False` // at runtime, but is always considered `True` in type checking. // See mdtest/known_constants.md#user-defined-type_checking for details. let is_considered_non_modifiable = matches!( symbol_table(db, scope).symbol(symbol_id).name().as_str(), "__slots__" | "TYPE_CHECKING" ); if scope.file(db).is_stub(db.upcast()) { // We generally trust module-level undeclared symbols in stubs and do not union // with `Unknown`. If we don't do this, simple aliases like `IOError = OSError` in // stubs would result in `IOError` being a union of `OSError` and `Unknown`, which // leads to all sorts of downstream problems. Similarly, type variables are often // defined as `_T = TypeVar("_T")`, without being declared. inferred.into() } else { widen_type_for_undeclared_public_symbol(db, inferred, is_considered_non_modifiable) .into() } } // Symbol has conflicting declared types Err((declared, _)) => { // Intentionally ignore conflicting declared types; that's not our problem, // it's the problem of the module we are importing from. Symbol::bound(declared.inner_type()).with_qualifiers(declared.qualifiers()) } } // TODO (ticket: https://github.com/astral-sh/ruff/issues/14297) Our handling of boundness // currently only depends on bindings, and ignores declarations. This is inconsistent, since // we only look at bindings if the symbol may be undeclared. Consider the following example: // ```py // x: int // // if flag: // y: int // else // y = 3 // ``` // If we import from this module, we will currently report `x` as a definitely-bound symbol // (even though it has no bindings at all!) but report `y` as possibly-unbound (even though // every path has either a binding or a declaration for it.) } /// Implementation of [`symbol`]. fn symbol_impl<'db>( db: &'db dyn Db, scope: ScopeId<'db>, name: &str, requires_explicit_reexport: RequiresExplicitReExport, ) -> SymbolAndQualifiers<'db> { let _span = tracing::trace_span!("symbol", ?name).entered(); if name == "platform" && file_to_module(db, scope.file(db)) .is_some_and(|module| module.is_known(KnownModule::Sys)) { match Program::get(db).python_platform(db) { crate::PythonPlatform::Identifier(platform) => { return Symbol::bound(Type::string_literal(db, platform.as_str())).into(); } crate::PythonPlatform::All => { // Fall through to the looked up type } } } symbol_table(db, scope) .symbol_id_by_name(name) .map(|symbol| symbol_by_id(db, scope, symbol, requires_explicit_reexport)) .unwrap_or_default() } /// Implementation of [`symbol_from_bindings`]. /// /// ## Implementation Note /// This function gets called cross-module. It, therefore, shouldn't /// access any AST nodes from the file containing the declarations. fn symbol_from_bindings_impl<'db>( db: &'db dyn Db, bindings_with_constraints: BindingWithConstraintsIterator<'_, 'db>, requires_explicit_reexport: RequiresExplicitReExport, ) -> Symbol<'db> { let predicates = bindings_with_constraints.predicates; let visibility_constraints = bindings_with_constraints.visibility_constraints; let mut bindings_with_constraints = bindings_with_constraints.peekable(); let is_non_exported = |binding: Definition<'db>| { requires_explicit_reexport.is_yes() && !is_reexported(db, binding) }; let unbound_visibility_constraint = match bindings_with_constraints.peek() { Some(BindingWithConstraints { binding, visibility_constraint, narrowing_constraint: _, }) if binding.is_none_or(is_non_exported) => Some(*visibility_constraint), _ => None, }; // Evaluate this lazily because we don't always need it (for example, if there are no visible // bindings at all, we don't need it), and it can cause us to evaluate visibility constraint // expressions, which is extra work and can lead to cycles. let unbound_visibility = || { unbound_visibility_constraint .map(|visibility_constraint| { visibility_constraints.evaluate(db, predicates, visibility_constraint) }) .unwrap_or(Truthiness::AlwaysFalse) }; let mut types = bindings_with_constraints.filter_map( |BindingWithConstraints { binding, narrowing_constraint, visibility_constraint, }| { let binding = binding?; if is_non_exported(binding) { return None; } let static_visibility = visibility_constraints.evaluate(db, predicates, visibility_constraint); if static_visibility.is_always_false() { // We found a binding that we have statically determined to not be visible from // the use of the symbol that we are investigating. There are three interesting // cases to consider: // // ```py // def f1(): // if False: // x = 1 // use(x) // // def f2(): // y = 1 // return // use(y) // // def f3(flag: bool): // z = 1 // if flag: // z = 2 // return // use(z) // ``` // // In the first case, there is a single binding for `x`, and due to the statically // known `False` condition, it is not visible at the use of `x`. However, we *can* // see/reach the start of the scope from `use(x)`. This means that `x` is unbound // and we should return `None`. // // In the second case, `y` is also not visible at the use of `y`, but here, we can // not see/reach the start of the scope. There is only one path of control flow, // and it passes through that binding of `y` (which we can not see). This implies // that we are in an unreachable section of code. We return `Never` in order to // silence the `unresolve-reference` diagnostic that would otherwise be emitted at // the use of `y`. // // In the third case, we have two bindings for `z`. The first one is visible, so we // consider the case that we now encounter the second binding `z = 2`, which is not // visible due to the early return. We *also* can not see the start of the scope // from `use(z)` because both paths of control flow pass through a binding of `z`. // The `z = 1` binding is visible, and so we are *not* in an unreachable section of // code. However, it is still okay to return `Never` in this case, because we will // union the types of all bindings, and `Never` will be eliminated automatically. if unbound_visibility().is_always_false() { // The scope-start is not visible return Some(Type::Never); } return None; } let binding_ty = binding_type(db, binding); Some(narrowing_constraint.narrow(db, binding_ty, binding.symbol(db))) }, ); if let Some(first) = types.next() { let boundness = match unbound_visibility() { Truthiness::AlwaysTrue => { unreachable!("If we have at least one binding, the scope-start should not be definitely visible") } Truthiness::AlwaysFalse => Boundness::Bound, Truthiness::Ambiguous => Boundness::PossiblyUnbound, }; if let Some(second) = types.next() { Symbol::Type( UnionType::from_elements(db, [first, second].into_iter().chain(types)), boundness, ) } else { Symbol::Type(first, boundness) } } else { Symbol::Unbound } } /// Implementation of [`symbol_from_declarations`]. /// /// ## Implementation Note /// This function gets called cross-module. It, therefore, shouldn't /// access any AST nodes from the file containing the declarations. fn symbol_from_declarations_impl<'db>( db: &'db dyn Db, declarations: DeclarationsIterator<'_, 'db>, requires_explicit_reexport: RequiresExplicitReExport, ) -> SymbolFromDeclarationsResult<'db> { let predicates = declarations.predicates; let visibility_constraints = declarations.visibility_constraints; let mut declarations = declarations.peekable(); let is_non_exported = |declaration: Definition<'db>| { requires_explicit_reexport.is_yes() && !is_reexported(db, declaration) }; let undeclared_visibility = match declarations.peek() { Some(DeclarationWithConstraint { declaration, visibility_constraint, }) if declaration.is_none_or(is_non_exported) => { visibility_constraints.evaluate(db, predicates, *visibility_constraint) } _ => Truthiness::AlwaysFalse, }; let mut types = declarations.filter_map( |DeclarationWithConstraint { declaration, visibility_constraint, }| { let declaration = declaration?; if is_non_exported(declaration) { return None; } let static_visibility = visibility_constraints.evaluate(db, predicates, visibility_constraint); if static_visibility.is_always_false() { None } else { Some(declaration_type(db, declaration)) } }, ); if let Some(first) = types.next() { let mut conflicting: Vec> = vec![]; let declared = if let Some(second) = types.next() { let ty_first = first.inner_type(); let mut qualifiers = first.qualifiers(); let mut builder = UnionBuilder::new(db).add(ty_first); for other in std::iter::once(second).chain(types) { let other_ty = other.inner_type(); if !ty_first.is_equivalent_to(db, other_ty) { conflicting.push(other_ty); } builder = builder.add(other_ty); qualifiers = qualifiers.union(other.qualifiers()); } TypeAndQualifiers::new(builder.build(), qualifiers) } else { first }; if conflicting.is_empty() { let boundness = match undeclared_visibility { Truthiness::AlwaysTrue => { unreachable!("If we have at least one declaration, the scope-start should not be definitely visible") } Truthiness::AlwaysFalse => Boundness::Bound, Truthiness::Ambiguous => Boundness::PossiblyUnbound, }; Ok(Symbol::Type(declared.inner_type(), boundness) .with_qualifiers(declared.qualifiers())) } else { Err(( declared, std::iter::once(first.inner_type()) .chain(conflicting) .collect(), )) } } else { Ok(Symbol::Unbound.into()) } } // Returns `true` if the `definition` is re-exported. // // This will first check if the definition is using the "redundant alias" pattern like `import foo // as foo` or `from foo import bar as bar`. If it's not, it will check whether the symbol is being // exported via `__all__`. fn is_reexported(db: &dyn Db, definition: Definition<'_>) -> bool { // This information is computed by the semantic index builder. if definition.is_reexported(db) { return true; } // At this point, the definition should either be an `import` or `from ... import` statement. // This is because the default value of `is_reexported` is `true` for any other kind of // definition. let Some(all_names) = dunder_all_names(db, definition.file(db)) else { return false; }; let table = symbol_table(db, definition.scope(db)); let symbol_name = table.symbol(definition.symbol(db)).name(); all_names.contains(symbol_name) } mod implicit_globals { use ruff_python_ast as ast; use crate::db::Db; use crate::semantic_index::{self, symbol_table}; use crate::symbol::SymbolAndQualifiers; use crate::types::KnownClass; use super::Symbol; /// Looks up the type of an "implicit global symbol". Returns [`Symbol::Unbound`] if /// `name` is not present as an implicit symbol in module-global namespaces. /// /// Implicit global symbols are symbols such as `__doc__`, `__name__`, and `__file__` /// that are implicitly defined in every module's global scope. Because their type is /// always the same, we simply look these up as instance attributes on `types.ModuleType`. /// /// Note that this function should only be used as a fallback if a symbol is being looked /// up in the global scope **from within the same file**. If the symbol is being looked up /// from outside the file (e.g. via imports), use [`super::imported_symbol`] (or fallback logic /// like the logic used in that function) instead. The reason is that this function returns /// [`Symbol::Unbound`] for `__init__` and `__dict__` (which cannot be found in globals if /// the lookup is being done from the same file) -- but these symbols *are* available in the /// global scope if they're being imported **from a different file**. pub(crate) fn module_type_implicit_global_symbol<'db>( db: &'db dyn Db, name: &str, ) -> SymbolAndQualifiers<'db> { // In general we wouldn't check to see whether a symbol exists on a class before doing the // `.member()` call on the instance type -- we'd just do the `.member`() call on the instance // type, since it has the same end result. The reason to only call `.member()` on `ModuleType` // when absolutely necessary is that this function is used in a very hot path (name resolution // in `infer.rs`). We use less idiomatic (and much more verbose) code here as a micro-optimisation. if module_type_symbols(db) .iter() .any(|module_type_member| &**module_type_member == name) { KnownClass::ModuleType.to_instance(db).member(db, name) } else { Symbol::Unbound.into() } } /// An internal micro-optimisation for `module_type_implicit_global_symbol`. /// /// This function returns a list of the symbols that typeshed declares in the /// body scope of the stub for the class `types.ModuleType`. /// /// The returned list excludes the attributes `__dict__` and `__init__`. These are very /// special members that can be accessed as attributes on the module when imported, /// but cannot be accessed as globals *inside* the module. /// /// The list also excludes `__getattr__`. `__getattr__` is even more special: it doesn't /// exist at runtime, but typeshed includes it to reduce false positives associated with /// functions that dynamically import modules and return `Instance(types.ModuleType)`. /// We should ignore it for any known module-literal type. /// /// Conceptually this function could be a `Set` rather than a list, /// but the number of symbols declared in this scope is likely to be very small, /// so the cost of hashing the names is likely to be more expensive than it's worth. #[salsa::tracked(returns(deref))] fn module_type_symbols<'db>(db: &'db dyn Db) -> smallvec::SmallVec<[ast::name::Name; 8]> { let Some(module_type) = KnownClass::ModuleType .to_class_literal(db) .into_class_literal() else { // The most likely way we get here is if a user specified a `--custom-typeshed-dir` // without a `types.pyi` stub in the `stdlib/` directory return smallvec::SmallVec::default(); }; let module_type_scope = module_type.body_scope(db); let module_type_symbol_table = symbol_table(db, module_type_scope); module_type_symbol_table .symbols() .filter(|symbol| symbol.is_declared()) .map(semantic_index::symbol::Symbol::name) .filter(|symbol_name| { !matches!(&***symbol_name, "__dict__" | "__getattr__" | "__init__") }) .cloned() .collect() } #[cfg(test)] mod tests { use super::*; use crate::db::tests::setup_db; #[test] fn module_type_symbols_includes_declared_types_but_not_referenced_types() { let db = setup_db(); let symbol_names = module_type_symbols(&db); let dunder_name_symbol_name = ast::name::Name::new_static("__name__"); assert!(symbol_names.contains(&dunder_name_symbol_name)); let property_symbol_name = ast::name::Name::new_static("property"); assert!(!symbol_names.contains(&property_symbol_name)); } } } #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub(crate) enum RequiresExplicitReExport { Yes, No, } impl RequiresExplicitReExport { const fn is_yes(self) -> bool { matches!(self, RequiresExplicitReExport::Yes) } } /// Computes a possibly-widened type `Unknown | T_inferred` from the inferred type `T_inferred` /// of a symbol, unless the type is a known-instance type (e.g. `typing.Any`) or the symbol is /// considered non-modifiable (e.g. when the symbol is `@Final`). We need this for public uses /// of symbols that have no declared type. fn widen_type_for_undeclared_public_symbol<'db>( db: &'db dyn Db, inferred: Symbol<'db>, is_considered_non_modifiable: bool, ) -> Symbol<'db> { // We special-case known-instance types here since symbols like `typing.Any` are typically // not declared in the stubs (e.g. `Any = object()`), but we still want to treat them as // such. let is_known_instance = inferred .ignore_possibly_unbound() .is_some_and(|ty| matches!(ty, Type::KnownInstance(_))); if is_considered_non_modifiable || is_known_instance { inferred } else { inferred.map_type(|ty| UnionType::from_elements(db, [Type::unknown(), ty])) } } #[cfg(test)] mod tests { use super::*; use crate::db::tests::setup_db; #[test] fn test_symbol_or_fall_back_to() { use Boundness::{Bound, PossiblyUnbound}; let db = setup_db(); let ty1 = Type::IntLiteral(1); let ty2 = Type::IntLiteral(2); let unbound = || Symbol::Unbound.with_qualifiers(TypeQualifiers::empty()); let possibly_unbound_ty1 = || Symbol::Type(ty1, PossiblyUnbound).with_qualifiers(TypeQualifiers::empty()); let possibly_unbound_ty2 = || Symbol::Type(ty2, PossiblyUnbound).with_qualifiers(TypeQualifiers::empty()); let bound_ty1 = || Symbol::Type(ty1, Bound).with_qualifiers(TypeQualifiers::empty()); let bound_ty2 = || Symbol::Type(ty2, Bound).with_qualifiers(TypeQualifiers::empty()); // Start from an unbound symbol assert_eq!(unbound().or_fall_back_to(&db, unbound), unbound()); assert_eq!( unbound().or_fall_back_to(&db, possibly_unbound_ty1), possibly_unbound_ty1() ); assert_eq!(unbound().or_fall_back_to(&db, bound_ty1), bound_ty1()); // Start from a possibly unbound symbol assert_eq!( possibly_unbound_ty1().or_fall_back_to(&db, unbound), possibly_unbound_ty1() ); assert_eq!( possibly_unbound_ty1().or_fall_back_to(&db, possibly_unbound_ty2), Symbol::Type(UnionType::from_elements(&db, [ty1, ty2]), PossiblyUnbound).into() ); assert_eq!( possibly_unbound_ty1().or_fall_back_to(&db, bound_ty2), Symbol::Type(UnionType::from_elements(&db, [ty1, ty2]), Bound).into() ); // Start from a definitely bound symbol assert_eq!(bound_ty1().or_fall_back_to(&db, unbound), bound_ty1()); assert_eq!( bound_ty1().or_fall_back_to(&db, possibly_unbound_ty2), bound_ty1() ); assert_eq!(bound_ty1().or_fall_back_to(&db, bound_ty2), bound_ty1()); } #[track_caller] fn assert_bound_string_symbol<'db>(db: &'db dyn Db, symbol: Symbol<'db>) { assert!(matches!( symbol, Symbol::Type(Type::NominalInstance(_), Boundness::Bound) )); assert_eq!(symbol.expect_type(), KnownClass::Str.to_instance(db)); } #[test] fn implicit_builtin_globals() { let db = setup_db(); assert_bound_string_symbol(&db, builtins_symbol(&db, "__name__").symbol); } #[test] fn implicit_typing_globals() { let db = setup_db(); assert_bound_string_symbol(&db, typing_symbol(&db, "__name__").symbol); } #[test] fn implicit_typing_extensions_globals() { let db = setup_db(); assert_bound_string_symbol(&db, typing_extensions_symbol(&db, "__name__").symbol); } #[test] fn implicit_sys_globals() { let db = setup_db(); assert_bound_string_symbol( &db, known_module_symbol(&db, KnownModule::Sys, "__name__").symbol, ); } }