ruff/crates/ruff_python_ast/src/helpers.rs

1800 lines
59 KiB
Rust

use std::borrow::Cow;
use std::path::Path;
use itertools::Itertools;
use log::error;
use num_traits::Zero;
use once_cell::sync::Lazy;
use regex::Regex;
use ruff_text_size::{TextRange, TextSize};
use rustc_hash::{FxHashMap, FxHashSet};
use rustpython_parser::ast::{
Arguments, Cmpop, Constant, Excepthandler, ExcepthandlerKind, Expr, ExprKind, Keyword,
KeywordData, Located, MatchCase, Pattern, PatternKind, Stmt, StmtKind,
};
use rustpython_parser::{lexer, Mode, Tok};
use smallvec::SmallVec;
use crate::call_path::CallPath;
use crate::newlines::UniversalNewlineIterator;
use crate::source_code::{Generator, Indexer, Locator, Stylist};
use crate::visitor;
use crate::visitor::Visitor;
/// Create an `Expr` with default location from an `ExprKind`.
pub fn create_expr(node: ExprKind) -> Expr {
Expr::with_range(node, TextRange::default())
}
/// Create a `Stmt` with a default location from a `StmtKind`.
pub fn create_stmt(node: StmtKind) -> Stmt {
Stmt::with_range(node, TextRange::default())
}
/// Generate source code from an [`Expr`].
pub fn unparse_expr(expr: &Expr, stylist: &Stylist) -> String {
let mut generator: Generator = stylist.into();
generator.unparse_expr(expr, 0);
generator.generate()
}
/// Generate source code from a [`Stmt`].
pub fn unparse_stmt(stmt: &Stmt, stylist: &Stylist) -> String {
let mut generator: Generator = stylist.into();
generator.unparse_stmt(stmt);
generator.generate()
}
/// Generate source code from an [`Constant`].
pub fn unparse_constant(constant: &Constant, stylist: &Stylist) -> String {
let mut generator: Generator = stylist.into();
generator.unparse_constant(constant);
generator.generate()
}
fn is_iterable_initializer<F>(id: &str, is_builtin: F) -> bool
where
F: Fn(&str) -> bool,
{
matches!(id, "list" | "tuple" | "set" | "dict" | "frozenset") && is_builtin(id)
}
/// Return `true` if the `Expr` contains an expression that appears to include a
/// side-effect (like a function call).
///
/// Accepts a closure that determines whether a given name (e.g., `"list"`) is a Python builtin.
pub fn contains_effect<F>(expr: &Expr, is_builtin: F) -> bool
where
F: Fn(&str) -> bool,
{
any_over_expr(expr, &|expr| {
// Accept empty initializers.
if let ExprKind::Call {
func,
args,
keywords,
} = &expr.node
{
if args.is_empty() && keywords.is_empty() {
if let ExprKind::Name { id, .. } = &func.node {
if !is_iterable_initializer(id.as_str(), |id| is_builtin(id)) {
return true;
}
return false;
}
}
}
// Avoid false positive for overloaded operators.
if let ExprKind::BinOp { left, right, .. } = &expr.node {
if !matches!(
left.node,
ExprKind::Constant { .. }
| ExprKind::JoinedStr { .. }
| ExprKind::List { .. }
| ExprKind::Tuple { .. }
| ExprKind::Set { .. }
| ExprKind::Dict { .. }
| ExprKind::ListComp { .. }
| ExprKind::SetComp { .. }
| ExprKind::DictComp { .. }
) {
return true;
}
if !matches!(
right.node,
ExprKind::Constant { .. }
| ExprKind::JoinedStr { .. }
| ExprKind::List { .. }
| ExprKind::Tuple { .. }
| ExprKind::Set { .. }
| ExprKind::Dict { .. }
| ExprKind::ListComp { .. }
| ExprKind::SetComp { .. }
| ExprKind::DictComp { .. }
) {
return true;
}
return false;
}
// Otherwise, avoid all complex expressions.
matches!(
expr.node,
ExprKind::Await { .. }
| ExprKind::Call { .. }
| ExprKind::DictComp { .. }
| ExprKind::GeneratorExp { .. }
| ExprKind::ListComp { .. }
| ExprKind::SetComp { .. }
| ExprKind::Subscript { .. }
| ExprKind::Yield { .. }
| ExprKind::YieldFrom { .. }
)
})
}
/// Call `func` over every `Expr` in `expr`, returning `true` if any expression
/// returns `true`..
pub fn any_over_expr<F>(expr: &Expr, func: &F) -> bool
where
F: Fn(&Expr) -> bool,
{
if func(expr) {
return true;
}
match &expr.node {
ExprKind::BoolOp { values, .. } | ExprKind::JoinedStr { values } => {
values.iter().any(|expr| any_over_expr(expr, func))
}
ExprKind::NamedExpr { target, value } => {
any_over_expr(target, func) || any_over_expr(value, func)
}
ExprKind::BinOp { left, right, .. } => {
any_over_expr(left, func) || any_over_expr(right, func)
}
ExprKind::UnaryOp { operand, .. } => any_over_expr(operand, func),
ExprKind::Lambda { body, .. } => any_over_expr(body, func),
ExprKind::IfExp { test, body, orelse } => {
any_over_expr(test, func) || any_over_expr(body, func) || any_over_expr(orelse, func)
}
ExprKind::Dict { keys, values } => values
.iter()
.chain(keys.iter().flatten())
.any(|expr| any_over_expr(expr, func)),
ExprKind::Set { elts } | ExprKind::List { elts, .. } | ExprKind::Tuple { elts, .. } => {
elts.iter().any(|expr| any_over_expr(expr, func))
}
ExprKind::ListComp { elt, generators }
| ExprKind::SetComp { elt, generators }
| ExprKind::GeneratorExp { elt, generators } => {
any_over_expr(elt, func)
|| generators.iter().any(|generator| {
any_over_expr(&generator.target, func)
|| any_over_expr(&generator.iter, func)
|| generator.ifs.iter().any(|expr| any_over_expr(expr, func))
})
}
ExprKind::DictComp {
key,
value,
generators,
} => {
any_over_expr(key, func)
|| any_over_expr(value, func)
|| generators.iter().any(|generator| {
any_over_expr(&generator.target, func)
|| any_over_expr(&generator.iter, func)
|| generator.ifs.iter().any(|expr| any_over_expr(expr, func))
})
}
ExprKind::Await { value }
| ExprKind::YieldFrom { value }
| ExprKind::Attribute { value, .. }
| ExprKind::Starred { value, .. } => any_over_expr(value, func),
ExprKind::Yield { value } => value
.as_ref()
.map_or(false, |value| any_over_expr(value, func)),
ExprKind::Compare {
left, comparators, ..
} => any_over_expr(left, func) || comparators.iter().any(|expr| any_over_expr(expr, func)),
ExprKind::Call {
func: call_func,
args,
keywords,
} => {
any_over_expr(call_func, func)
|| args.iter().any(|expr| any_over_expr(expr, func))
|| keywords
.iter()
.any(|keyword| any_over_expr(&keyword.node.value, func))
}
ExprKind::FormattedValue {
value, format_spec, ..
} => {
any_over_expr(value, func)
|| format_spec
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
}
ExprKind::Subscript { value, slice, .. } => {
any_over_expr(value, func) || any_over_expr(slice, func)
}
ExprKind::Slice { lower, upper, step } => {
lower
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
|| upper
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
|| step
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
}
ExprKind::Name { .. } | ExprKind::Constant { .. } => false,
}
}
pub fn any_over_pattern<F>(pattern: &Pattern, func: &F) -> bool
where
F: Fn(&Expr) -> bool,
{
match &pattern.node {
PatternKind::MatchValue { value } => any_over_expr(value, func),
PatternKind::MatchSingleton { .. } => false,
PatternKind::MatchSequence { patterns } => patterns
.iter()
.any(|pattern| any_over_pattern(pattern, func)),
PatternKind::MatchMapping { keys, patterns, .. } => {
keys.iter().any(|key| any_over_expr(key, func))
|| patterns
.iter()
.any(|pattern| any_over_pattern(pattern, func))
}
PatternKind::MatchClass {
cls,
patterns,
kwd_patterns,
..
} => {
any_over_expr(cls, func)
|| patterns
.iter()
.any(|pattern| any_over_pattern(pattern, func))
|| kwd_patterns
.iter()
.any(|pattern| any_over_pattern(pattern, func))
}
PatternKind::MatchStar { .. } => false,
PatternKind::MatchAs { pattern, .. } => pattern
.as_ref()
.map_or(false, |pattern| any_over_pattern(pattern, func)),
PatternKind::MatchOr { patterns } => patterns
.iter()
.any(|pattern| any_over_pattern(pattern, func)),
}
}
pub fn any_over_stmt<F>(stmt: &Stmt, func: &F) -> bool
where
F: Fn(&Expr) -> bool,
{
match &stmt.node {
StmtKind::FunctionDef {
args,
body,
decorator_list,
returns,
..
}
| StmtKind::AsyncFunctionDef {
args,
body,
decorator_list,
returns,
..
} => {
args.defaults.iter().any(|expr| any_over_expr(expr, func))
|| args
.kw_defaults
.iter()
.any(|expr| any_over_expr(expr, func))
|| args.args.iter().any(|arg| {
arg.node
.annotation
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
})
|| args.kwonlyargs.iter().any(|arg| {
arg.node
.annotation
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
})
|| args.posonlyargs.iter().any(|arg| {
arg.node
.annotation
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
})
|| args.vararg.as_ref().map_or(false, |arg| {
arg.node
.annotation
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
})
|| args.kwarg.as_ref().map_or(false, |arg| {
arg.node
.annotation
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
})
|| body.iter().any(|stmt| any_over_stmt(stmt, func))
|| decorator_list.iter().any(|expr| any_over_expr(expr, func))
|| returns
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
}
StmtKind::ClassDef {
bases,
keywords,
body,
decorator_list,
..
} => {
bases.iter().any(|expr| any_over_expr(expr, func))
|| keywords
.iter()
.any(|keyword| any_over_expr(&keyword.node.value, func))
|| body.iter().any(|stmt| any_over_stmt(stmt, func))
|| decorator_list.iter().any(|expr| any_over_expr(expr, func))
}
StmtKind::Return { value } => value
.as_ref()
.map_or(false, |value| any_over_expr(value, func)),
StmtKind::Delete { targets } => targets.iter().any(|expr| any_over_expr(expr, func)),
StmtKind::Assign { targets, value, .. } => {
targets.iter().any(|expr| any_over_expr(expr, func)) || any_over_expr(value, func)
}
StmtKind::AugAssign { target, value, .. } => {
any_over_expr(target, func) || any_over_expr(value, func)
}
StmtKind::AnnAssign {
target,
annotation,
value,
..
} => {
any_over_expr(target, func)
|| any_over_expr(annotation, func)
|| value
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
}
StmtKind::For {
target,
iter,
body,
orelse,
..
}
| StmtKind::AsyncFor {
target,
iter,
body,
orelse,
..
} => {
any_over_expr(target, func)
|| any_over_expr(iter, func)
|| any_over_body(body, func)
|| any_over_body(orelse, func)
}
StmtKind::While { test, body, orelse } => {
any_over_expr(test, func) || any_over_body(body, func) || any_over_body(orelse, func)
}
StmtKind::If { test, body, orelse } => {
any_over_expr(test, func) || any_over_body(body, func) || any_over_body(orelse, func)
}
StmtKind::With { items, body, .. } | StmtKind::AsyncWith { items, body, .. } => {
items.iter().any(|withitem| {
any_over_expr(&withitem.context_expr, func)
|| withitem
.optional_vars
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
}) || any_over_body(body, func)
}
StmtKind::Raise { exc, cause } => {
exc.as_ref()
.map_or(false, |value| any_over_expr(value, func))
|| cause
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
}
StmtKind::Try {
body,
handlers,
orelse,
finalbody,
}
| StmtKind::TryStar {
body,
handlers,
orelse,
finalbody,
} => {
any_over_body(body, func)
|| handlers.iter().any(|handler| {
let ExcepthandlerKind::ExceptHandler { type_, body, .. } = &handler.node;
type_
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
|| any_over_body(body, func)
})
|| any_over_body(orelse, func)
|| any_over_body(finalbody, func)
}
StmtKind::Assert { test, msg } => {
any_over_expr(test, func)
|| msg
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
}
StmtKind::Match { subject, cases } => {
any_over_expr(subject, func)
|| cases.iter().any(|case| {
let MatchCase {
pattern,
guard,
body,
} = case;
any_over_pattern(pattern, func)
|| guard
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
|| any_over_body(body, func)
})
}
StmtKind::Import { .. } => false,
StmtKind::ImportFrom { .. } => false,
StmtKind::Global { .. } => false,
StmtKind::Nonlocal { .. } => false,
StmtKind::Expr { value } => any_over_expr(value, func),
StmtKind::Pass => false,
StmtKind::Break => false,
StmtKind::Continue => false,
}
}
pub fn any_over_body<F>(body: &[Stmt], func: &F) -> bool
where
F: Fn(&Expr) -> bool,
{
body.iter().any(|stmt| any_over_stmt(stmt, func))
}
static DUNDER_REGEX: Lazy<Regex> = Lazy::new(|| Regex::new(r"__[^\s]+__").unwrap());
/// Return `true` if the [`Stmt`] is an assignment to a dunder (like `__all__`).
pub fn is_assignment_to_a_dunder(stmt: &Stmt) -> bool {
// Check whether it's an assignment to a dunder, with or without a type
// annotation. This is what pycodestyle (as of 2.9.1) does.
match &stmt.node {
StmtKind::Assign { targets, .. } => {
if targets.len() != 1 {
return false;
}
match &targets[0].node {
ExprKind::Name { id, .. } => DUNDER_REGEX.is_match(id),
_ => false,
}
}
StmtKind::AnnAssign { target, .. } => match &target.node {
ExprKind::Name { id, .. } => DUNDER_REGEX.is_match(id),
_ => false,
},
_ => false,
}
}
/// Return `true` if the [`Expr`] is a singleton (`None`, `True`, `False`, or
/// `...`).
pub const fn is_singleton(expr: &Expr) -> bool {
matches!(
expr.node,
ExprKind::Constant {
value: Constant::None | Constant::Bool(_) | Constant::Ellipsis,
..
}
)
}
/// Return `true` if the [`Expr`] is a constant or tuple of constants.
pub fn is_constant(expr: &Expr) -> bool {
match &expr.node {
ExprKind::Constant { .. } => true,
ExprKind::Tuple { elts, .. } => elts.iter().all(is_constant),
_ => false,
}
}
/// Return `true` if the [`Expr`] is a non-singleton constant.
pub fn is_constant_non_singleton(expr: &Expr) -> bool {
is_constant(expr) && !is_singleton(expr)
}
/// Return the [`Keyword`] with the given name, if it's present in the list of
/// [`Keyword`] arguments.
pub fn find_keyword<'a>(keywords: &'a [Keyword], keyword_name: &str) -> Option<&'a Keyword> {
keywords.iter().find(|keyword| {
let KeywordData { arg, .. } = &keyword.node;
arg.as_ref().map_or(false, |arg| arg == keyword_name)
})
}
/// Return `true` if an [`Expr`] is `None`.
pub const fn is_const_none(expr: &Expr) -> bool {
matches!(
&expr.node,
ExprKind::Constant {
value: Constant::None,
kind: None
},
)
}
/// Return `true` if an [`Expr`] is `True`.
pub const fn is_const_true(expr: &Expr) -> bool {
matches!(
&expr.node,
ExprKind::Constant {
value: Constant::Bool(true),
kind: None
},
)
}
/// Return `true` if a keyword argument is present with a non-`None` value.
pub fn has_non_none_keyword(keywords: &[Keyword], keyword: &str) -> bool {
find_keyword(keywords, keyword).map_or(false, |keyword| {
let KeywordData { value, .. } = &keyword.node;
!is_const_none(value)
})
}
/// Extract the names of all handled exceptions.
pub fn extract_handled_exceptions(handlers: &[Excepthandler]) -> Vec<&Expr> {
let mut handled_exceptions = Vec::new();
for handler in handlers {
match &handler.node {
ExcepthandlerKind::ExceptHandler { type_, .. } => {
if let Some(type_) = type_ {
if let ExprKind::Tuple { elts, .. } = &type_.node {
for type_ in elts {
handled_exceptions.push(type_);
}
} else {
handled_exceptions.push(type_);
}
}
}
}
}
handled_exceptions
}
/// Return the set of all bound argument names.
pub fn collect_arg_names<'a>(arguments: &'a Arguments) -> FxHashSet<&'a str> {
let mut arg_names: FxHashSet<&'a str> = FxHashSet::default();
for arg in &arguments.posonlyargs {
arg_names.insert(arg.node.arg.as_str());
}
for arg in &arguments.args {
arg_names.insert(arg.node.arg.as_str());
}
if let Some(arg) = &arguments.vararg {
arg_names.insert(arg.node.arg.as_str());
}
for arg in &arguments.kwonlyargs {
arg_names.insert(arg.node.arg.as_str());
}
if let Some(arg) = &arguments.kwarg {
arg_names.insert(arg.node.arg.as_str());
}
arg_names
}
/// Given an [`Expr`] that can be callable or not (like a decorator, which could
/// be used with or without explicit call syntax), return the underlying
/// callable.
pub fn map_callable(decorator: &Expr) -> &Expr {
if let ExprKind::Call { func, .. } = &decorator.node {
func
} else {
decorator
}
}
/// Returns `true` if a statement or expression includes at least one comment.
pub fn has_comments<T>(located: &Located<T>, locator: &Locator) -> bool {
let start = if has_leading_content(located, locator) {
located.start()
} else {
locator.line_start(located.start())
};
let end = if has_trailing_content(located, locator) {
located.end()
} else {
locator.line_end(located.end())
};
has_comments_in(TextRange::new(start, end), locator)
}
/// Returns `true` if a [`TextRange`] includes at least one comment.
pub fn has_comments_in(range: TextRange, locator: &Locator) -> bool {
let source = &locator.contents()[range];
for tok in lexer::lex_located(source, Mode::Module, range.start()) {
match tok {
Ok((tok, _)) => {
if matches!(tok, Tok::Comment(..)) {
return true;
}
}
Err(_) => {
return false;
}
}
}
false
}
/// Return `true` if the body uses `locals()`, `globals()`, `vars()`, `eval()`.
///
/// Accepts a closure that determines whether a given name (e.g., `"list"`) is a Python builtin.
pub fn uses_magic_variable_access<F>(body: &[Stmt], is_builtin: F) -> bool
where
F: Fn(&str) -> bool,
{
any_over_body(body, &|expr| {
if let ExprKind::Call { func, .. } = &expr.node {
if let ExprKind::Name { id, .. } = &func.node {
if matches!(id.as_str(), "locals" | "globals" | "vars" | "exec" | "eval") {
if is_builtin(id.as_str()) {
return true;
}
}
}
}
false
})
}
/// Format the module reference name for a relative import.
///
/// # Examples
///
/// ```rust
/// # use ruff_python_ast::helpers::format_import_from;
///
/// assert_eq!(format_import_from(None, None), "".to_string());
/// assert_eq!(format_import_from(Some(1), None), ".".to_string());
/// assert_eq!(format_import_from(Some(1), Some("foo")), ".foo".to_string());
/// ```
pub fn format_import_from(level: Option<usize>, module: Option<&str>) -> String {
let mut module_name = String::with_capacity(16);
if let Some(level) = level {
for _ in 0..level {
module_name.push('.');
}
}
if let Some(module) = module {
module_name.push_str(module);
}
module_name
}
/// Format the member reference name for a relative import.
///
/// # Examples
///
/// ```rust
/// # use ruff_python_ast::helpers::format_import_from_member;
///
/// assert_eq!(format_import_from_member(None, None, "bar"), "bar".to_string());
/// assert_eq!(format_import_from_member(Some(1), None, "bar"), ".bar".to_string());
/// assert_eq!(format_import_from_member(Some(1), Some("foo"), "bar"), ".foo.bar".to_string());
/// ```
pub fn format_import_from_member(
level: Option<usize>,
module: Option<&str>,
member: &str,
) -> String {
let mut full_name = String::with_capacity(
level.map_or(0, |level| level)
+ module.as_ref().map_or(0, |module| module.len())
+ 1
+ member.len(),
);
if let Some(level) = level {
for _ in 0..level {
full_name.push('.');
}
}
if let Some(module) = module {
full_name.push_str(module);
full_name.push('.');
}
full_name.push_str(member);
full_name
}
/// Create a module path from a (package, path) pair.
///
/// For example, if the package is `foo/bar` and the path is `foo/bar/baz.py`,
/// the call path is `["baz"]`.
pub fn to_module_path(package: &Path, path: &Path) -> Option<Vec<String>> {
path.strip_prefix(package.parent()?)
.ok()?
.iter()
.map(Path::new)
.map(Path::file_stem)
.map(|path| path.and_then(|path| path.to_os_string().into_string().ok()))
.collect::<Option<Vec<String>>>()
}
/// Create a [`CallPath`] from a relative import reference name (like `".foo.bar"`).
///
/// Returns an empty [`CallPath`] if the import is invalid (e.g., a relative import that
/// extends beyond the top-level module).
///
/// # Examples
///
/// ```rust
/// # use smallvec::{smallvec, SmallVec};
/// # use ruff_python_ast::helpers::from_relative_import;
///
/// assert_eq!(from_relative_import(&[], "bar"), SmallVec::from_buf(["bar"]));
/// assert_eq!(from_relative_import(&["foo".to_string()], "bar"), SmallVec::from_buf(["foo", "bar"]));
/// assert_eq!(from_relative_import(&["foo".to_string()], "bar.baz"), SmallVec::from_buf(["foo", "bar", "baz"]));
/// assert_eq!(from_relative_import(&["foo".to_string()], ".bar"), SmallVec::from_buf(["bar"]));
/// assert!(from_relative_import(&["foo".to_string()], "..bar").is_empty());
/// assert!(from_relative_import(&["foo".to_string()], "...bar").is_empty());
/// ```
pub fn from_relative_import<'a>(module: &'a [String], name: &'a str) -> CallPath<'a> {
let mut call_path: CallPath = SmallVec::with_capacity(module.len() + 1);
// Start with the module path.
call_path.extend(module.iter().map(String::as_str));
// Remove segments based on the number of dots.
for _ in 0..name.chars().take_while(|c| *c == '.').count() {
if call_path.is_empty() {
return SmallVec::new();
}
call_path.pop();
}
// Add the remaining segments.
call_path.extend(name.trim_start_matches('.').split('.'));
call_path
}
/// Given an imported module (based on its relative import level and module name), return the
/// fully-qualified module path.
pub fn resolve_imported_module_path<'a>(
level: Option<usize>,
module: Option<&'a str>,
module_path: Option<&[String]>,
) -> Option<Cow<'a, str>> {
let Some(level) = level else {
return Some(Cow::Borrowed(module.unwrap_or("")));
};
if level == 0 {
return Some(Cow::Borrowed(module.unwrap_or("")));
}
let Some(module_path) = module_path else {
return None;
};
if level >= module_path.len() {
return None;
}
let mut qualified_path = module_path[..module_path.len() - level].join(".");
if let Some(module) = module {
if !qualified_path.is_empty() {
qualified_path.push('.');
}
qualified_path.push_str(module);
}
Some(Cow::Owned(qualified_path))
}
/// A [`Visitor`] that collects all `return` statements in a function or method.
#[derive(Default)]
pub struct ReturnStatementVisitor<'a> {
pub returns: Vec<Option<&'a Expr>>,
}
impl<'a, 'b> Visitor<'b> for ReturnStatementVisitor<'a>
where
'b: 'a,
{
fn visit_stmt(&mut self, stmt: &'b Stmt) {
match &stmt.node {
StmtKind::FunctionDef { .. } | StmtKind::AsyncFunctionDef { .. } => {
// Don't recurse.
}
StmtKind::Return { value } => self.returns.push(value.as_deref()),
_ => visitor::walk_stmt(self, stmt),
}
}
}
/// A [`Visitor`] that collects all `raise` statements in a function or method.
#[derive(Default)]
pub struct RaiseStatementVisitor<'a> {
pub raises: Vec<(TextRange, Option<&'a Expr>, Option<&'a Expr>)>,
}
impl<'a, 'b> Visitor<'b> for RaiseStatementVisitor<'b>
where
'b: 'a,
{
fn visit_stmt(&mut self, stmt: &'b Stmt) {
match &stmt.node {
StmtKind::Raise { exc, cause } => {
self.raises
.push((stmt.range(), exc.as_deref(), cause.as_deref()));
}
StmtKind::ClassDef { .. }
| StmtKind::FunctionDef { .. }
| StmtKind::AsyncFunctionDef { .. }
| StmtKind::Try { .. }
| StmtKind::TryStar { .. } => {}
StmtKind::If { body, orelse, .. } => {
visitor::walk_body(self, body);
visitor::walk_body(self, orelse);
}
StmtKind::While { body, .. }
| StmtKind::With { body, .. }
| StmtKind::AsyncWith { body, .. }
| StmtKind::For { body, .. }
| StmtKind::AsyncFor { body, .. } => {
visitor::walk_body(self, body);
}
StmtKind::Match { cases, .. } => {
for case in cases {
visitor::walk_body(self, &case.body);
}
}
_ => {}
}
}
}
#[derive(Default)]
struct GlobalStatementVisitor<'a> {
globals: FxHashMap<&'a str, &'a Stmt>,
}
impl<'a> Visitor<'a> for GlobalStatementVisitor<'a> {
fn visit_stmt(&mut self, stmt: &'a Stmt) {
match &stmt.node {
StmtKind::Global { names } => {
for name in names {
self.globals.insert(name, stmt);
}
}
StmtKind::FunctionDef { .. }
| StmtKind::AsyncFunctionDef { .. }
| StmtKind::ClassDef { .. } => {
// Don't recurse.
}
_ => visitor::walk_stmt(self, stmt),
}
}
}
/// Extract a map from global name to its last-defining [`Stmt`].
pub fn extract_globals(body: &[Stmt]) -> FxHashMap<&str, &Stmt> {
let mut visitor = GlobalStatementVisitor::default();
for stmt in body {
visitor.visit_stmt(stmt);
}
visitor.globals
}
/// Return `true` if a [`Located`] has leading content.
pub fn has_leading_content<T>(located: &Located<T>, locator: &Locator) -> bool {
let line_start = locator.line_start(located.start());
let leading = &locator.contents()[TextRange::new(line_start, located.start())];
leading.chars().any(|char| !char.is_whitespace())
}
/// Return `true` if a [`Located`] has trailing content.
pub fn has_trailing_content<T>(located: &Located<T>, locator: &Locator) -> bool {
let line_end = locator.line_end(located.end());
let trailing = &locator.contents()[TextRange::new(located.end(), line_end)];
for char in trailing.chars() {
if char == '#' {
return false;
}
if !char.is_whitespace() {
return true;
}
}
false
}
/// If a [`Located`] has a trailing comment, return the index of the hash.
pub fn trailing_comment_start_offset<T>(
located: &Located<T>,
locator: &Locator,
) -> Option<TextSize> {
let line_end = locator.line_end(located.end());
let trailing = &locator.contents()[TextRange::new(located.end(), line_end)];
for (i, char) in trailing.chars().enumerate() {
if char == '#' {
return TextSize::try_from(i).ok();
}
if !char.is_whitespace() {
return None;
}
}
None
}
/// Return the end offset at which the empty lines following a statement.
pub fn trailing_lines_end(stmt: &Stmt, locator: &Locator) -> TextSize {
let line_end = locator.full_line_end(stmt.end());
let rest = &locator.contents()[usize::from(line_end)..];
UniversalNewlineIterator::with_offset(rest, line_end)
.take_while(|line| line.trim().is_empty())
.last()
.map_or(line_end, |l| l.full_end())
}
/// Return the range of the first parenthesis pair after a given [`TextSize`].
pub fn match_parens(start: TextSize, locator: &Locator) -> Option<TextRange> {
let contents = &locator.contents()[usize::from(start)..];
let mut fix_start = None;
let mut fix_end = None;
let mut count: usize = 0;
for (tok, range) in lexer::lex_located(contents, Mode::Module, start).flatten() {
match tok {
Tok::Lpar => {
if count == 0 {
fix_start = Some(range.start());
}
count += 1;
}
Tok::Rpar => {
count -= 1;
if count == 0 {
fix_end = Some(range.end());
break;
}
}
_ => {}
}
}
match (fix_start, fix_end) {
(Some(start), Some(end)) => Some(TextRange::new(start, end)),
_ => None,
}
}
/// Return the appropriate visual `Range` for any message that spans a `Stmt`.
/// Specifically, this method returns the range of a function or class name,
/// rather than that of the entire function or class body.
pub fn identifier_range(stmt: &Stmt, locator: &Locator) -> TextRange {
if matches!(
stmt.node,
StmtKind::ClassDef { .. }
| StmtKind::FunctionDef { .. }
| StmtKind::AsyncFunctionDef { .. }
) {
let contents = &locator.contents()[stmt.range()];
for (tok, range) in lexer::lex_located(contents, Mode::Module, stmt.start()).flatten() {
if matches!(tok, Tok::Name { .. }) {
return range;
}
}
error!("Failed to find identifier for {:?}", stmt);
}
stmt.range()
}
/// Return the ranges of [`Tok::Name`] tokens within a specified node.
pub fn find_names<'a, T>(
located: &'a Located<T>,
locator: &'a Locator,
) -> impl Iterator<Item = TextRange> + 'a {
let contents = locator.slice(located.range());
lexer::lex_located(contents, Mode::Module, located.start())
.flatten()
.filter(|(tok, _)| matches!(tok, Tok::Name { .. }))
.map(|(_, range)| range)
}
/// Return the `Range` of `name` in `Excepthandler`.
pub fn excepthandler_name_range(handler: &Excepthandler, locator: &Locator) -> Option<TextRange> {
let ExcepthandlerKind::ExceptHandler {
name, type_, body, ..
} = &handler.node;
match (name, type_) {
(Some(_), Some(type_)) => {
let contents = &locator.contents()[TextRange::new(type_.end(), body[0].start())];
lexer::lex_located(contents, Mode::Module, type_.end())
.flatten()
.tuple_windows()
.find(|(tok, next_tok)| {
matches!(tok.0, Tok::As) && matches!(next_tok.0, Tok::Name { .. })
})
.map(|((..), (_, range))| range)
}
_ => None,
}
}
/// Return the `Range` of `except` in `Excepthandler`.
pub fn except_range(handler: &Excepthandler, locator: &Locator) -> TextRange {
let ExcepthandlerKind::ExceptHandler { body, type_, .. } = &handler.node;
let end = if let Some(type_) = type_ {
type_.end()
} else {
body.first().expect("Expected body to be non-empty").start()
};
let contents = &locator.contents()[TextRange::new(handler.start(), end)];
lexer::lex_located(contents, Mode::Module, handler.start())
.flatten()
.find(|(kind, _)| matches!(kind, Tok::Except { .. }))
.map(|(_, range)| range)
.expect("Failed to find `except` range")
}
/// Return the `Range` of `else` in `For`, `AsyncFor`, and `While` statements.
pub fn else_range(stmt: &Stmt, locator: &Locator) -> Option<TextRange> {
match &stmt.node {
StmtKind::For { body, orelse, .. }
| StmtKind::AsyncFor { body, orelse, .. }
| StmtKind::While { body, orelse, .. }
if !orelse.is_empty() =>
{
let body_end = body.last().expect("Expected body to be non-empty").end();
let or_else_start = orelse
.first()
.expect("Expected orelse to be non-empty")
.start();
let contents = &locator.contents()[TextRange::new(body_end, or_else_start)];
lexer::lex_located(contents, Mode::Module, body_end)
.flatten()
.find(|(kind, _)| matches!(kind, Tok::Else))
.map(|(_, range)| range)
}
_ => None,
}
}
/// Return the `Range` of the first `Tok::Colon` token in a `Range`.
pub fn first_colon_range(range: TextRange, locator: &Locator) -> Option<TextRange> {
let contents = &locator.contents()[range];
let range = lexer::lex_located(contents, Mode::Module, range.start())
.flatten()
.find(|(kind, _)| matches!(kind, Tok::Colon))
.map(|(_, range)| range);
range
}
/// Return the `Range` of the first `Elif` or `Else` token in an `If` statement.
pub fn elif_else_range(stmt: &Stmt, locator: &Locator) -> Option<TextRange> {
let StmtKind::If { body, orelse, .. } = &stmt.node else {
return None;
};
let start = body.last().expect("Expected body to be non-empty").end();
let end = match &orelse[..] {
[Stmt {
node: StmtKind::If { test, .. },
..
}] => test.start(),
[stmt, ..] => stmt.start(),
_ => return None,
};
let contents = &locator.contents()[TextRange::new(start, end)];
lexer::lex_located(contents, Mode::Module, start)
.flatten()
.find(|(kind, _)| matches!(kind, Tok::Elif | Tok::Else))
.map(|(_, range)| range)
}
/// Return `true` if a `Stmt` appears to be part of a multi-statement line, with
/// other statements preceding it.
pub fn preceded_by_continuation(stmt: &Stmt, indexer: &Indexer, locator: &Locator) -> bool {
let previous_line_end = locator.line_start(stmt.start());
let newline_pos = usize::from(previous_line_end).saturating_sub(1);
// Compute start of preceding line
let newline_len = match locator.contents().as_bytes()[newline_pos] {
b'\n' => {
if locator
.contents()
.as_bytes()
.get(newline_pos.saturating_sub(1))
== Some(&b'\r')
{
2
} else {
1
}
}
b'\r' => 1,
// No preceding line
_ => return false,
};
// See if the position is in the continuation line starts
indexer.is_continuation(previous_line_end - TextSize::from(newline_len), locator)
}
/// Return `true` if a `Stmt` appears to be part of a multi-statement line, with
/// other statements preceding it.
pub fn preceded_by_multi_statement_line(stmt: &Stmt, locator: &Locator, indexer: &Indexer) -> bool {
has_leading_content(stmt, locator) || preceded_by_continuation(stmt, indexer, locator)
}
/// Return `true` if a `Stmt` appears to be part of a multi-statement line, with
/// other statements following it.
pub fn followed_by_multi_statement_line(stmt: &Stmt, locator: &Locator) -> bool {
has_trailing_content(stmt, locator)
}
/// Return `true` if a `Stmt` is a docstring.
pub const fn is_docstring_stmt(stmt: &Stmt) -> bool {
if let StmtKind::Expr { value } = &stmt.node {
matches!(
value.node,
ExprKind::Constant {
value: Constant::Str { .. },
..
}
)
} else {
false
}
}
#[derive(Default)]
/// A simple representation of a call's positional and keyword arguments.
pub struct SimpleCallArgs<'a> {
pub args: Vec<&'a Expr>,
pub kwargs: FxHashMap<&'a str, &'a Expr>,
}
impl<'a> SimpleCallArgs<'a> {
pub fn new(
args: impl IntoIterator<Item = &'a Expr>,
keywords: impl IntoIterator<Item = &'a Keyword>,
) -> Self {
let args = args
.into_iter()
.take_while(|arg| !matches!(arg.node, ExprKind::Starred { .. }))
.collect();
let kwargs = keywords
.into_iter()
.filter_map(|keyword| {
let node = &keyword.node;
node.arg.as_ref().map(|arg| (arg.as_ref(), &node.value))
})
.collect();
SimpleCallArgs { args, kwargs }
}
/// Get the argument with the given name.
/// If the argument is not found by name, return
/// `None`.
pub fn keyword_argument(&self, name: &str) -> Option<&'a Expr> {
self.kwargs.get(name).copied()
}
/// Get the argument with the given name or position.
/// If the argument is not found with either name or position, return
/// `None`.
pub fn argument(&self, name: &str, position: usize) -> Option<&'a Expr> {
self.keyword_argument(name)
.or_else(|| self.args.get(position).copied())
}
/// Return the number of positional and keyword arguments.
pub fn len(&self) -> usize {
self.args.len() + self.kwargs.len()
}
/// Return `true` if there are no positional or keyword arguments.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
}
/// Check if a node is parent of a conditional branch.
pub fn on_conditional_branch<'a>(parents: &mut impl Iterator<Item = &'a Stmt>) -> bool {
parents.any(|parent| {
if matches!(
parent.node,
StmtKind::If { .. } | StmtKind::While { .. } | StmtKind::Match { .. }
) {
return true;
}
if let StmtKind::Expr { value } = &parent.node {
if matches!(value.node, ExprKind::IfExp { .. }) {
return true;
}
}
false
})
}
/// Check if a node is in a nested block.
pub fn in_nested_block<'a>(mut parents: impl Iterator<Item = &'a Stmt>) -> bool {
parents.any(|parent| {
matches!(
parent.node,
StmtKind::Try { .. }
| StmtKind::TryStar { .. }
| StmtKind::If { .. }
| StmtKind::With { .. }
| StmtKind::Match { .. }
)
})
}
/// Check if a node represents an unpacking assignment.
pub fn is_unpacking_assignment(parent: &Stmt, child: &Expr) -> bool {
match &parent.node {
StmtKind::With { items, .. } => items.iter().any(|item| {
if let Some(optional_vars) = &item.optional_vars {
if matches!(optional_vars.node, ExprKind::Tuple { .. }) {
if any_over_expr(optional_vars, &|expr| expr == child) {
return true;
}
}
}
false
}),
StmtKind::Assign { targets, value, .. } => {
// In `(a, b) = (1, 2)`, `(1, 2)` is the target, and it is a tuple.
let value_is_tuple = matches!(
&value.node,
ExprKind::Set { .. } | ExprKind::List { .. } | ExprKind::Tuple { .. }
);
// In `(a, b) = coords = (1, 2)`, `(a, b)` and `coords` are the targets, and
// `(a, b)` is a tuple. (We use "tuple" as a placeholder for any
// unpackable expression.)
let targets_are_tuples = targets.iter().all(|item| {
matches!(
item.node,
ExprKind::Set { .. } | ExprKind::List { .. } | ExprKind::Tuple { .. }
)
});
// If we're looking at `a` in `(a, b) = coords = (1, 2)`, then we should
// identify that the current expression is in a tuple.
let child_in_tuple = targets_are_tuples
|| targets.iter().any(|item| {
matches!(
item.node,
ExprKind::Set { .. } | ExprKind::List { .. } | ExprKind::Tuple { .. }
) && any_over_expr(item, &|expr| expr == child)
});
// If our child is a tuple, and value is not, it's always an unpacking
// expression. Ex) `x, y = tup`
if child_in_tuple && !value_is_tuple {
return true;
}
// If our child isn't a tuple, but value is, it's never an unpacking expression.
// Ex) `coords = (1, 2)`
if !child_in_tuple && value_is_tuple {
return false;
}
// If our target and the value are both tuples, then it's an unpacking
// expression assuming there's at least one non-tuple child.
// Ex) Given `(x, y) = coords = 1, 2`, `(x, y)` is considered an unpacking
// expression. Ex) Given `(x, y) = (a, b) = 1, 2`, `(x, y)` isn't
// considered an unpacking expression.
if child_in_tuple && value_is_tuple {
return !targets_are_tuples;
}
false
}
_ => false,
}
}
pub type LocatedCmpop<U = ()> = Located<Cmpop, U>;
/// Extract all [`Cmpop`] operators from a source code snippet, with appropriate
/// ranges.
///
/// `RustPython` doesn't include line and column information on [`Cmpop`] nodes.
/// `CPython` doesn't either. This method iterates over the token stream and
/// re-identifies [`Cmpop`] nodes, annotating them with valid ranges.
pub fn locate_cmpops(contents: &str) -> Vec<LocatedCmpop> {
let mut tok_iter = lexer::lex(contents, Mode::Module).flatten().peekable();
let mut ops: Vec<LocatedCmpop> = vec![];
let mut count: usize = 0;
loop {
let Some((tok, range)) = tok_iter.next() else {
break;
};
if matches!(tok, Tok::Lpar) {
count += 1;
continue;
} else if matches!(tok, Tok::Rpar) {
count -= 1;
continue;
}
if count == 0 {
match tok {
Tok::Not => {
if let Some((_, next_range)) =
tok_iter.next_if(|(tok, _)| matches!(tok, Tok::In))
{
ops.push(LocatedCmpop::new(
range.start(),
next_range.end(),
Cmpop::NotIn,
));
}
}
Tok::In => {
ops.push(LocatedCmpop::with_range(Cmpop::In, range));
}
Tok::Is => {
let op = if let Some((_, next_range)) =
tok_iter.next_if(|(tok, _)| matches!(tok, Tok::Not))
{
LocatedCmpop::new(range.start(), next_range.end(), Cmpop::IsNot)
} else {
LocatedCmpop::with_range(Cmpop::Is, range)
};
ops.push(op);
}
Tok::NotEqual => {
ops.push(LocatedCmpop::with_range(Cmpop::NotEq, range));
}
Tok::EqEqual => {
ops.push(LocatedCmpop::with_range(Cmpop::Eq, range));
}
Tok::GreaterEqual => {
ops.push(LocatedCmpop::with_range(Cmpop::GtE, range));
}
Tok::Greater => {
ops.push(LocatedCmpop::with_range(Cmpop::Gt, range));
}
Tok::LessEqual => {
ops.push(LocatedCmpop::with_range(Cmpop::LtE, range));
}
Tok::Less => {
ops.push(LocatedCmpop::with_range(Cmpop::Lt, range));
}
_ => {}
}
}
}
ops
}
#[derive(Copy, Clone, Debug, PartialEq, is_macro::Is)]
pub enum Truthiness {
// An expression evaluates to `False`.
Falsey,
// An expression evaluates to `True`.
Truthy,
// An expression evaluates to an unknown value (e.g., a variable `x` of unknown type).
Unknown,
}
impl From<Option<bool>> for Truthiness {
fn from(value: Option<bool>) -> Self {
match value {
Some(true) => Truthiness::Truthy,
Some(false) => Truthiness::Falsey,
None => Truthiness::Unknown,
}
}
}
impl From<Truthiness> for Option<bool> {
fn from(truthiness: Truthiness) -> Self {
match truthiness {
Truthiness::Truthy => Some(true),
Truthiness::Falsey => Some(false),
Truthiness::Unknown => None,
}
}
}
impl Truthiness {
pub fn from_expr<F>(expr: &Expr, is_builtin: F) -> Self
where
F: Fn(&str) -> bool,
{
match &expr.node {
ExprKind::Constant { value, .. } => match value {
Constant::Bool(value) => Some(*value),
Constant::None => Some(false),
Constant::Str(string) => Some(!string.is_empty()),
Constant::Bytes(bytes) => Some(!bytes.is_empty()),
Constant::Int(int) => Some(!int.is_zero()),
Constant::Float(float) => Some(*float != 0.0),
Constant::Complex { real, imag } => Some(*real != 0.0 || *imag != 0.0),
Constant::Ellipsis => Some(true),
Constant::Tuple(elts) => Some(!elts.is_empty()),
},
ExprKind::JoinedStr { values, .. } => {
if values.is_empty() {
Some(false)
} else if values.iter().any(|value| {
let ExprKind::Constant { value: Constant::Str(string), .. } = &value.node else {
return false;
};
!string.is_empty()
}) {
Some(true)
} else {
None
}
}
ExprKind::List { elts, .. }
| ExprKind::Set { elts, .. }
| ExprKind::Tuple { elts, .. } => Some(!elts.is_empty()),
ExprKind::Dict { keys, .. } => Some(!keys.is_empty()),
ExprKind::Call {
func,
args,
keywords,
} => {
if let ExprKind::Name { id, .. } = &func.node {
if is_iterable_initializer(id.as_str(), |id| is_builtin(id)) {
if args.is_empty() && keywords.is_empty() {
Some(false)
} else if args.len() == 1 && keywords.is_empty() {
Self::from_expr(&args[0], is_builtin).into()
} else {
None
}
} else {
None
}
} else {
None
}
}
_ => None,
}
.into()
}
}
#[cfg(test)]
mod tests {
use std::borrow::Cow;
use anyhow::Result;
use ruff_text_size::{TextLen, TextRange, TextSize};
use rustpython_parser as parser;
use rustpython_parser::ast::Cmpop;
use crate::helpers::{
elif_else_range, else_range, first_colon_range, has_trailing_content, identifier_range,
locate_cmpops, resolve_imported_module_path, LocatedCmpop,
};
use crate::source_code::Locator;
#[test]
fn trailing_content() -> Result<()> {
let contents = "x = 1";
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert!(!has_trailing_content(stmt, &locator));
let contents = "x = 1; y = 2";
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert!(has_trailing_content(stmt, &locator));
let contents = "x = 1 ";
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert!(!has_trailing_content(stmt, &locator));
let contents = "x = 1 # Comment";
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert!(!has_trailing_content(stmt, &locator));
let contents = r#"
x = 1
y = 2
"#
.trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert!(!has_trailing_content(stmt, &locator));
Ok(())
}
#[test]
fn extract_identifier_range() -> Result<()> {
let contents = "def f(): pass".trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert_eq!(
identifier_range(stmt, &locator),
TextRange::new(TextSize::from(4), TextSize::from(5))
);
let contents = r#"
def \
f():
pass
"#
.trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert_eq!(
identifier_range(stmt, &locator),
TextRange::new(TextSize::from(8), TextSize::from(9))
);
let contents = "class Class(): pass".trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert_eq!(
identifier_range(stmt, &locator),
TextRange::new(TextSize::from(6), TextSize::from(11))
);
let contents = "class Class: pass".trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert_eq!(
identifier_range(stmt, &locator),
TextRange::new(TextSize::from(6), TextSize::from(11))
);
let contents = r#"
@decorator()
class Class():
pass
"#
.trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert_eq!(
identifier_range(stmt, &locator),
TextRange::new(TextSize::from(19), TextSize::from(24))
);
let contents = r#"x = y + 1"#.trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert_eq!(
identifier_range(stmt, &locator),
TextRange::new(TextSize::from(0), TextSize::from(9))
);
Ok(())
}
#[test]
fn resolve_import() {
// Return the module directly.
assert_eq!(
resolve_imported_module_path(None, Some("foo"), None),
Some(Cow::Borrowed("foo"))
);
// Construct the module path from the calling module's path.
assert_eq!(
resolve_imported_module_path(
Some(1),
Some("foo"),
Some(&["bar".to_string(), "baz".to_string()])
),
Some(Cow::Owned("bar.foo".to_string()))
);
// We can't return the module if it's a relative import, and we don't know the calling
// module's path.
assert_eq!(
resolve_imported_module_path(Some(1), Some("foo"), None),
None
);
// We can't return the module if it's a relative import, and the path goes beyond the
// calling module's path.
assert_eq!(
resolve_imported_module_path(Some(1), Some("foo"), Some(&["bar".to_string()])),
None,
);
assert_eq!(
resolve_imported_module_path(Some(2), Some("foo"), Some(&["bar".to_string()])),
None
);
}
#[test]
fn extract_else_range() -> Result<()> {
let contents = r#"
for x in y:
pass
else:
pass
"#
.trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
let range = else_range(stmt, &locator).unwrap();
assert_eq!(&contents[range], "else");
assert_eq!(
range,
TextRange::new(TextSize::from(21), TextSize::from(25))
);
Ok(())
}
#[test]
fn extract_first_colon_range() {
let contents = "with a: pass";
let locator = Locator::new(contents);
let range = first_colon_range(
TextRange::new(TextSize::from(0), contents.text_len()),
&locator,
)
.unwrap();
assert_eq!(&contents[range], ":");
assert_eq!(range, TextRange::new(TextSize::from(6), TextSize::from(7)));
}
#[test]
fn extract_elif_else_range() -> Result<()> {
let contents = "
if a:
...
elif b:
...
"
.trim_start();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
let range = elif_else_range(stmt, &locator).unwrap();
assert_eq!(range.start(), TextSize::from(14));
assert_eq!(range.end(), TextSize::from(18));
let contents = "
if a:
...
else:
...
"
.trim_start();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
let range = elif_else_range(stmt, &locator).unwrap();
assert_eq!(range.start(), TextSize::from(14));
assert_eq!(range.end(), TextSize::from(18));
Ok(())
}
#[test]
fn extract_cmpop_location() {
assert_eq!(
locate_cmpops("x == 1"),
vec![LocatedCmpop::new(
TextSize::from(2),
TextSize::from(4),
Cmpop::Eq
)]
);
assert_eq!(
locate_cmpops("x != 1"),
vec![LocatedCmpop::new(
TextSize::from(2),
TextSize::from(4),
Cmpop::NotEq
)]
);
assert_eq!(
locate_cmpops("x is 1"),
vec![LocatedCmpop::new(
TextSize::from(2),
TextSize::from(4),
Cmpop::Is
)]
);
assert_eq!(
locate_cmpops("x is not 1"),
vec![LocatedCmpop::new(
TextSize::from(2),
TextSize::from(8),
Cmpop::IsNot
)]
);
assert_eq!(
locate_cmpops("x in 1"),
vec![LocatedCmpop::new(
TextSize::from(2),
TextSize::from(4),
Cmpop::In
)]
);
assert_eq!(
locate_cmpops("x not in 1"),
vec![LocatedCmpop::new(
TextSize::from(2),
TextSize::from(8),
Cmpop::NotIn
)]
);
assert_eq!(
locate_cmpops("x != (1 is not 2)"),
vec![LocatedCmpop::new(
TextSize::from(2),
TextSize::from(4),
Cmpop::NotEq
)]
);
}
}