ruff/crates/ruff_python_parser/src/string.rs

948 lines
31 KiB
Rust

//! Parsing of string literals, bytes literals, and implicit string concatenation.
use bstr::ByteSlice;
use ruff_python_ast::{self as ast, Expr};
use ruff_text_size::{Ranged, TextRange, TextSize};
use crate::lexer::{LexicalError, LexicalErrorType};
use crate::token::{StringKind, Tok};
pub(crate) enum StringType {
Str(ast::StringLiteral),
Bytes(ast::BytesLiteral),
FString(ast::FString),
}
impl Ranged for StringType {
fn range(&self) -> TextRange {
match self {
Self::Str(node) => node.range(),
Self::Bytes(node) => node.range(),
Self::FString(node) => node.range(),
}
}
}
impl From<StringType> for Expr {
fn from(string: StringType) -> Self {
match string {
StringType::Str(node) => Expr::from(node),
StringType::Bytes(node) => Expr::from(node),
StringType::FString(node) => Expr::from(node),
}
}
}
enum EscapedChar {
Literal(char),
Escape(char),
}
struct StringParser {
source: Box<str>,
cursor: usize,
kind: StringKind,
offset: TextSize,
range: TextRange,
}
impl StringParser {
fn new(source: Box<str>, kind: StringKind, offset: TextSize, range: TextRange) -> Self {
Self {
source,
cursor: 0,
kind,
offset,
range,
}
}
#[inline]
fn skip_bytes(&mut self, bytes: usize) -> &str {
let skipped_str = &self.source[self.cursor..self.cursor + bytes];
self.cursor += bytes;
skipped_str
}
#[inline]
fn get_pos(&self) -> TextSize {
self.offset + TextSize::try_from(self.cursor).unwrap()
}
/// Returns the next byte in the string, if there is one.
///
/// # Panics
///
/// When the next byte is a part of a multi-byte character.
#[inline]
fn next_byte(&mut self) -> Option<u8> {
self.source[self.cursor..].as_bytes().first().map(|&byte| {
self.cursor += 1;
byte
})
}
#[inline]
fn next_char(&mut self) -> Option<char> {
self.source[self.cursor..].chars().next().map(|c| {
self.cursor += c.len_utf8();
c
})
}
#[inline]
fn peek_byte(&self) -> Option<u8> {
self.source[self.cursor..].as_bytes().first().copied()
}
fn parse_unicode_literal(&mut self, literal_number: usize) -> Result<char, LexicalError> {
let mut p: u32 = 0u32;
let unicode_error = LexicalError::new(LexicalErrorType::UnicodeError, self.get_pos());
for i in 1..=literal_number {
match self.next_char() {
Some(c) => match c.to_digit(16) {
Some(d) => p += d << ((literal_number - i) * 4),
None => return Err(unicode_error),
},
None => return Err(unicode_error),
}
}
match p {
0xD800..=0xDFFF => Ok(std::char::REPLACEMENT_CHARACTER),
_ => std::char::from_u32(p).ok_or(unicode_error),
}
}
fn parse_octet(&mut self, o: u8) -> char {
let mut radix_bytes = [o, 0, 0];
let mut len = 1;
while len < 3 {
let Some(b'0'..=b'7') = self.peek_byte() else {
break;
};
radix_bytes[len] = self.next_byte().unwrap();
len += 1;
}
// OK because radix_bytes is always going to be in the ASCII range.
let radix_str = std::str::from_utf8(&radix_bytes[..len]).expect("ASCII bytes");
let value = u32::from_str_radix(radix_str, 8).unwrap();
char::from_u32(value).unwrap()
}
fn parse_unicode_name(&mut self) -> Result<char, LexicalError> {
let start_pos = self.get_pos();
let Some('{') = self.next_char() else {
return Err(LexicalError::new(LexicalErrorType::StringError, start_pos));
};
let start_pos = self.get_pos();
let Some(close_idx) = self.source[self.cursor..].find('}') else {
return Err(LexicalError::new(
LexicalErrorType::StringError,
self.get_pos(),
));
};
let name_and_ending = self.skip_bytes(close_idx + 1);
let name = &name_and_ending[..name_and_ending.len() - 1];
unicode_names2::character(name)
.ok_or_else(|| LexicalError::new(LexicalErrorType::UnicodeError, start_pos))
}
/// Parse an escaped character, returning the new character.
fn parse_escaped_char(&mut self) -> Result<Option<EscapedChar>, LexicalError> {
let Some(first_char) = self.next_char() else {
return Err(LexicalError::new(
LexicalErrorType::StringError,
self.get_pos(),
));
};
let new_char = match first_char {
'\\' => '\\',
'\'' => '\'',
'\"' => '"',
'a' => '\x07',
'b' => '\x08',
'f' => '\x0c',
'n' => '\n',
'r' => '\r',
't' => '\t',
'v' => '\x0b',
o @ '0'..='7' => self.parse_octet(o as u8),
'x' => self.parse_unicode_literal(2)?,
'u' if !self.kind.is_any_bytes() => self.parse_unicode_literal(4)?,
'U' if !self.kind.is_any_bytes() => self.parse_unicode_literal(8)?,
'N' if !self.kind.is_any_bytes() => self.parse_unicode_name()?,
// Special cases where the escape sequence is not a single character
'\n' => return Ok(None),
'\r' => {
if self.peek_byte() == Some(b'\n') {
self.next_byte();
}
return Ok(None);
}
_ => {
if self.kind.is_any_bytes() && !first_char.is_ascii() {
return Err(LexicalError::new(
LexicalErrorType::OtherError(
"bytes can only contain ASCII literal characters"
.to_string()
.into_boxed_str(),
),
self.get_pos(),
));
}
return Ok(Some(EscapedChar::Escape(first_char)));
}
};
Ok(Some(EscapedChar::Literal(new_char)))
}
fn parse_fstring_middle(mut self) -> Result<ast::FStringElement, LexicalError> {
// Fast-path: if the f-string doesn't contain any escape sequences, return the literal.
let Some(mut index) = memchr::memchr3(b'{', b'}', b'\\', self.source.as_bytes()) else {
return Ok(ast::FStringElement::Literal(ast::FStringLiteralElement {
value: self.source,
range: self.range,
}));
};
let mut value = String::with_capacity(self.source.len());
loop {
// Add the characters before the escape sequence (or curly brace) to the string.
let before_with_slash_or_brace = self.skip_bytes(index + 1);
let before = &before_with_slash_or_brace[..before_with_slash_or_brace.len() - 1];
value.push_str(before);
// Add the escaped character to the string.
match &self.source.as_bytes()[self.cursor - 1] {
// If there are any curly braces inside a `FStringMiddle` token,
// then they were escaped (i.e. `{{` or `}}`). This means that
// we need increase the location by 2 instead of 1.
b'{' => {
self.offset += TextSize::from(1);
value.push('{');
}
b'}' => {
self.offset += TextSize::from(1);
value.push('}');
}
// We can encounter a `\` as the last character in a `FStringMiddle`
// token which is valid in this context. For example,
//
// ```python
// f"\{foo} \{bar:\}"
// # ^ ^^ ^
// ```
//
// Here, the `FStringMiddle` token content will be "\" and " \"
// which is invalid if we look at the content in isolation:
//
// ```python
// "\"
// ```
//
// However, the content is syntactically valid in the context of
// the f-string because it's a substring of the entire f-string.
// This is still an invalid escape sequence, but we don't want to
// raise a syntax error as is done by the CPython parser. It might
// be supported in the future, refer to point 3: https://peps.python.org/pep-0701/#rejected-ideas
b'\\' if !self.kind.is_raw() && self.peek_byte().is_some() => {
match self.parse_escaped_char()? {
None => {}
Some(EscapedChar::Literal(c)) => value.push(c),
Some(EscapedChar::Escape(c)) => {
value.push('\\');
value.push(c);
}
}
}
ch => {
value.push(char::from(*ch));
}
}
let Some(next_index) =
memchr::memchr3(b'{', b'}', b'\\', self.source[self.cursor..].as_bytes())
else {
// Add the rest of the string to the value.
let rest = &self.source[self.cursor..];
value.push_str(rest);
break;
};
index = next_index;
}
Ok(ast::FStringElement::Literal(ast::FStringLiteralElement {
value: value.into_boxed_str(),
range: self.range,
}))
}
fn parse_bytes(mut self) -> Result<StringType, LexicalError> {
if let Some(index) = self.source.as_bytes().find_non_ascii_byte() {
return Err(LexicalError::new(
LexicalErrorType::OtherError(
"bytes can only contain ASCII literal characters"
.to_string()
.into_boxed_str(),
),
self.offset + TextSize::try_from(index).unwrap(),
));
}
if self.kind.is_raw() {
// For raw strings, no escaping is necessary.
return Ok(StringType::Bytes(ast::BytesLiteral {
value: self.source.into_boxed_bytes(),
range: self.range,
}));
}
let Some(mut escape) = memchr::memchr(b'\\', self.source.as_bytes()) else {
// If the string doesn't contain any escape sequences, return the owned string.
return Ok(StringType::Bytes(ast::BytesLiteral {
value: self.source.into_boxed_bytes(),
range: self.range,
}));
};
// If the string contains escape sequences, we need to parse them.
let mut value = Vec::with_capacity(self.source.len());
loop {
// Add the characters before the escape sequence to the string.
let before_with_slash = self.skip_bytes(escape + 1);
let before = &before_with_slash[..before_with_slash.len() - 1];
value.extend_from_slice(before.as_bytes());
// Add the escaped character to the string.
match self.parse_escaped_char()? {
None => {}
Some(EscapedChar::Literal(c)) => value.push(c as u8),
Some(EscapedChar::Escape(c)) => {
value.push(b'\\');
value.push(c as u8);
}
}
let Some(next_escape) = memchr::memchr(b'\\', self.source[self.cursor..].as_bytes())
else {
// Add the rest of the string to the value.
let rest = &self.source[self.cursor..];
value.extend_from_slice(rest.as_bytes());
break;
};
// Update the position of the next escape sequence.
escape = next_escape;
}
Ok(StringType::Bytes(ast::BytesLiteral {
value: value.into_boxed_slice(),
range: self.range,
}))
}
fn parse_string(mut self) -> Result<StringType, LexicalError> {
if self.kind.is_raw() {
// For raw strings, no escaping is necessary.
return Ok(StringType::Str(ast::StringLiteral {
value: self.source,
unicode: self.kind.is_unicode(),
range: self.range,
}));
}
let Some(mut escape) = memchr::memchr(b'\\', self.source.as_bytes()) else {
// If the string doesn't contain any escape sequences, return the owned string.
return Ok(StringType::Str(ast::StringLiteral {
value: self.source,
unicode: self.kind.is_unicode(),
range: self.range,
}));
};
// If the string contains escape sequences, we need to parse them.
let mut value = String::with_capacity(self.source.len());
loop {
// Add the characters before the escape sequence to the string.
let before_with_slash = self.skip_bytes(escape + 1);
let before = &before_with_slash[..before_with_slash.len() - 1];
value.push_str(before);
// Add the escaped character to the string.
match self.parse_escaped_char()? {
None => {}
Some(EscapedChar::Literal(c)) => value.push(c),
Some(EscapedChar::Escape(c)) => {
value.push('\\');
value.push(c);
}
}
let Some(next_escape) = self.source[self.cursor..].find('\\') else {
// Add the rest of the string to the value.
let rest = &self.source[self.cursor..];
value.push_str(rest);
break;
};
// Update the position of the next escape sequence.
escape = next_escape;
}
Ok(StringType::Str(ast::StringLiteral {
value: value.into_boxed_str(),
unicode: self.kind.is_unicode(),
range: self.range,
}))
}
fn parse(self) -> Result<StringType, LexicalError> {
if self.kind.is_any_bytes() {
self.parse_bytes()
} else {
self.parse_string()
}
}
}
pub(crate) fn parse_string_literal(
source: Box<str>,
kind: StringKind,
triple_quoted: bool,
range: TextRange,
) -> Result<StringType, LexicalError> {
let start_location = range.start()
+ kind.prefix_len()
+ if triple_quoted {
TextSize::from(3)
} else {
TextSize::from(1)
};
StringParser::new(source, kind, start_location, range).parse()
}
pub(crate) fn parse_fstring_literal_element(
source: Box<str>,
is_raw: bool,
range: TextRange,
) -> Result<ast::FStringElement, LexicalError> {
let kind = if is_raw {
StringKind::RawString
} else {
StringKind::String
};
StringParser::new(source, kind, range.start(), range).parse_fstring_middle()
}
pub(crate) fn concatenated_strings(
strings: Vec<StringType>,
range: TextRange,
) -> Result<Expr, LexicalError> {
#[cfg(debug_assertions)]
debug_assert!(strings.len() > 1);
let mut has_fstring = false;
let mut byte_literal_count = 0;
for string in &strings {
match string {
StringType::FString(_) => has_fstring = true,
StringType::Bytes(_) => byte_literal_count += 1,
StringType::Str(_) => {}
}
}
let has_bytes = byte_literal_count > 0;
if has_bytes && byte_literal_count < strings.len() {
return Err(LexicalError::new(
LexicalErrorType::OtherError(
"cannot mix bytes and non-bytes literals"
.to_string()
.into_boxed_str(),
),
range.start(),
));
}
if has_bytes {
let mut values = Vec::with_capacity(strings.len());
for string in strings {
match string {
StringType::Bytes(value) => values.push(value),
_ => unreachable!("Unexpected non-bytes literal."),
}
}
return Ok(Expr::from(ast::ExprBytesLiteral {
value: ast::BytesLiteralValue::concatenated(values),
range,
}));
}
if !has_fstring {
let mut values = Vec::with_capacity(strings.len());
for string in strings {
match string {
StringType::Str(value) => values.push(value),
_ => unreachable!("Unexpected non-string literal."),
}
}
return Ok(Expr::from(ast::ExprStringLiteral {
value: ast::StringLiteralValue::concatenated(values),
range,
}));
}
let mut parts = Vec::with_capacity(strings.len());
for string in strings {
match string {
StringType::FString(fstring) => parts.push(ast::FStringPart::FString(fstring)),
StringType::Str(string) => parts.push(ast::FStringPart::Literal(string)),
StringType::Bytes(_) => unreachable!("Unexpected bytes literal."),
}
}
Ok(ast::ExprFString {
value: ast::FStringValue::concatenated(parts),
range,
}
.into())
}
// TODO: consolidate these with ParseError
/// An error that occurred during parsing of an f-string.
#[derive(Debug, Clone, PartialEq)]
struct FStringError {
/// The type of error that occurred.
pub(crate) error: FStringErrorType,
/// The location of the error.
pub(crate) location: TextSize,
}
impl From<FStringError> for LexicalError {
fn from(err: FStringError) -> Self {
LexicalError::new(LexicalErrorType::FStringError(err.error), err.location)
}
}
/// Represents the different types of errors that can occur during parsing of an f-string.
#[derive(Copy, Debug, Clone, PartialEq)]
pub enum FStringErrorType {
/// Expected a right brace after an opened left brace.
UnclosedLbrace,
/// An invalid conversion flag was encountered.
InvalidConversionFlag,
/// A single right brace was encountered.
SingleRbrace,
/// Unterminated string.
UnterminatedString,
/// Unterminated triple-quoted string.
UnterminatedTripleQuotedString,
// TODO(dhruvmanila): The parser can't catch all cases of this error, but
// wherever it can, we'll display the correct error message.
/// A lambda expression without parentheses was encountered.
LambdaWithoutParentheses,
}
impl std::fmt::Display for FStringErrorType {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
use FStringErrorType::{
InvalidConversionFlag, LambdaWithoutParentheses, SingleRbrace, UnclosedLbrace,
UnterminatedString, UnterminatedTripleQuotedString,
};
match self {
UnclosedLbrace => write!(f, "expecting '}}'"),
InvalidConversionFlag => write!(f, "invalid conversion character"),
SingleRbrace => write!(f, "single '}}' is not allowed"),
UnterminatedString => write!(f, "unterminated string"),
UnterminatedTripleQuotedString => write!(f, "unterminated triple-quoted string"),
LambdaWithoutParentheses => {
write!(f, "lambda expressions are not allowed without parentheses")
}
}
}
}
impl From<FStringError> for crate::parser::LalrpopError<TextSize, Tok, LexicalError> {
fn from(err: FStringError) -> Self {
lalrpop_util::ParseError::User {
error: LexicalError::new(LexicalErrorType::FStringError(err.error), err.location),
}
}
}
#[cfg(test)]
mod tests {
use crate::lexer::LexicalErrorType;
use crate::parser::parse_suite;
use crate::{ParseErrorType, Suite};
use super::*;
const WINDOWS_EOL: &str = "\r\n";
const MAC_EOL: &str = "\r";
const UNIX_EOL: &str = "\n";
fn string_parser_escaped_eol(eol: &str) -> Suite {
let source = format!(r"'text \{eol}more text'");
parse_suite(&source).unwrap()
}
#[test]
fn test_string_parser_escaped_unix_eol() {
let parse_ast = string_parser_escaped_eol(UNIX_EOL);
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_string_parser_escaped_mac_eol() {
let parse_ast = string_parser_escaped_eol(MAC_EOL);
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_string_parser_escaped_windows_eol() {
let parse_ast = string_parser_escaped_eol(WINDOWS_EOL);
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring() {
let source = r#"f"{a}{ b }{{foo}}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_nested_spec() {
let source = r#"f"{foo:{spec}}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_not_nested_spec() {
let source = r#"f"{foo:spec}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_empty_fstring() {
insta::assert_debug_snapshot!(parse_suite(r#"f"""#,).unwrap());
}
#[test]
fn test_fstring_parse_self_documenting_base() {
let source = r#"f"{user=}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_fstring_parse_self_documenting_base_more() {
let source = r#"f"mix {user=} with text and {second=}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_fstring_parse_self_documenting_format() {
let source = r#"f"{user=:>10}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
fn parse_fstring_error(source: &str) -> FStringErrorType {
parse_suite(source)
.map_err(|e| match e.error {
ParseErrorType::Lexical(LexicalErrorType::FStringError(e)) => e,
e => unreachable!("Expected FStringError: {:?}", e),
})
.expect_err("Expected error")
}
#[test]
fn test_parse_invalid_fstring() {
use FStringErrorType::{InvalidConversionFlag, LambdaWithoutParentheses};
assert_eq!(parse_fstring_error(r#"f"{5!x}""#), InvalidConversionFlag);
assert_eq!(
parse_fstring_error("f'{lambda x:{x}}'"),
LambdaWithoutParentheses
);
assert_eq!(
parse_fstring_error("f'{lambda x: {x}}'"),
LambdaWithoutParentheses
);
assert!(parse_suite(r#"f"{class}""#,).is_err());
}
#[test]
fn test_parse_fstring_not_equals() {
let source = r#"f"{1 != 2}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_equals() {
let source = r#"f"{42 == 42}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_self_doc_prec_space() {
let source = r#"f"{x =}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_self_doc_trailing_space() {
let source = r#"f"{x= }""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_yield_expr() {
let source = r#"f"{yield}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_string_concat() {
let source = "'Hello ' 'world'";
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_u_string_concat_1() {
let source = "'Hello ' u'world'";
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_u_string_concat_2() {
let source = "u'Hello ' 'world'";
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_f_string_concat_1() {
let source = "'Hello ' f'world'";
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_f_string_concat_2() {
let source = "'Hello ' f'world'";
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_f_string_concat_3() {
let source = "'Hello ' f'world{\"!\"}'";
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_f_string_concat_4() {
let source = "'Hello ' f'world{\"!\"}' 'again!'";
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_u_f_string_concat_1() {
let source = "u'Hello ' f'world'";
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_u_f_string_concat_2() {
let source = "u'Hello ' f'world' '!'";
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_string_triple_quotes_with_kind() {
let source = "u'''Hello, world!'''";
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_single_quoted_byte() {
// single quote
let source = r##"b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\x7f\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff'"##;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_double_quoted_byte() {
// double quote
let source = r##"b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\x7f\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff""##;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_escape_char_in_byte_literal() {
// backslash does not escape
let source = r#"b"omkmok\Xaa""#; // spell-checker:ignore omkmok
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_raw_byte_literal_1() {
let source = r"rb'\x1z'";
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_raw_byte_literal_2() {
let source = r"rb'\\'";
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_escape_octet() {
let source = r"b'\43a\4\1234'";
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_fstring_escaped_newline() {
let source = r#"f"\n{x}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_fstring_constant_range() {
let source = r#"f"aaa{bbb}ccc{ddd}eee""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_fstring_unescaped_newline() {
let source = r#"f"""
{x}""""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_fstring_escaped_character() {
let source = r#"f"\\{x}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_raw_fstring() {
let source = r#"rf"{x}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_triple_quoted_raw_fstring() {
let source = r#"rf"""{x}""""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_fstring_line_continuation() {
let source = r#"rf"\
{x}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_nested_string_spec() {
let source = r#"f"{foo:{''}}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_nested_concatenation_string_spec() {
let source = r#"f"{foo:{'' ''}}""#;
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
/// <https://github.com/astral-sh/ruff/issues/8355>
#[test]
fn test_dont_panic_on_8_in_octal_escape() {
let source = r"bold = '\038[1m'";
let parse_ast = parse_suite(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
macro_rules! test_aliases_parse {
($($name:ident: $alias:expr,)*) => {
$(
#[test]
fn $name() {
let source = format!(r#""\N{{{0}}}""#, $alias);
let parse_ast = parse_suite(&source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
)*
}
}
test_aliases_parse! {
test_backspace_alias: "BACKSPACE",
test_bell_alias: "BEL",
test_carriage_return_alias: "CARRIAGE RETURN",
test_delete_alias: "DELETE",
test_escape_alias: "ESCAPE",
test_form_feed_alias: "FORM FEED",
test_hts_alias: "HTS",
test_character_tabulation_with_justification_alias: "CHARACTER TABULATION WITH JUSTIFICATION",
}
}