ruff/crates/ruff_formatter/src/lib.rs
2024-07-30 19:18:08 +00:00

969 lines
28 KiB
Rust

//! Infrastructure for code formatting
//!
//! This module defines [`FormatElement`], an IR to format code documents and provides a means to print
//! such a document to a string. Objects that know how to format themselves implement the [Format] trait.
//!
//! ## Formatting Traits
//!
//! * [`Format`]: Implemented by objects that can be formatted.
//! * [`FormatRule`]: Rule that knows how to format an object of another type. Useful in the situation where
//! it's necessary to implement [Format] on an object from another crate. This module defines the
//! [`FormatRefWithRule`] and [`FormatOwnedWithRule`] structs to pass an item with its corresponding rule.
//! * [`FormatWithRule`] implemented by objects that know how to format another type. Useful for implementing
//! some reusable formatting logic inside of this module if the type itself doesn't implement [Format]
//!
//! ## Formatting Macros
//!
//! This crate defines two macros to construct the IR. These are inspired by Rust's `fmt` macros
//! * [`format!`]: Formats a formattable object
//! * [`format_args!`]: Concatenates a sequence of Format objects.
//! * [`write!`]: Writes a sequence of formattable objects into an output buffer.
mod arguments;
mod buffer;
mod builders;
pub mod diagnostics;
pub mod format_element;
mod format_extensions;
pub mod formatter;
pub mod group_id;
pub mod macros;
pub mod prelude;
pub mod printer;
mod source_code;
use crate::formatter::Formatter;
use crate::group_id::UniqueGroupIdBuilder;
use crate::prelude::TagKind;
use std::fmt;
use std::fmt::{Debug, Display};
use std::marker::PhantomData;
use std::num::{NonZeroU16, NonZeroU8, TryFromIntError};
use crate::format_element::document::Document;
use crate::printer::{Printer, PrinterOptions};
pub use arguments::{Argument, Arguments};
pub use buffer::{
Buffer, BufferExtensions, BufferSnapshot, Inspect, RemoveSoftLinesBuffer, VecBuffer,
};
pub use builders::BestFitting;
pub use source_code::{SourceCode, SourceCodeSlice};
pub use crate::diagnostics::{ActualStart, FormatError, InvalidDocumentError, PrintError};
pub use format_element::{normalize_newlines, FormatElement, LINE_TERMINATORS};
pub use group_id::GroupId;
use ruff_macros::CacheKey;
use ruff_text_size::{TextLen, TextRange, TextSize};
#[derive(Debug, Eq, PartialEq, Clone, Copy, Hash, CacheKey)]
#[cfg_attr(
feature = "serde",
derive(serde::Serialize, serde::Deserialize),
serde(rename_all = "kebab-case")
)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[derive(Default)]
pub enum IndentStyle {
/// Use tabs to indent code.
#[default]
Tab,
/// Use [`IndentWidth`] spaces to indent code.
Space,
}
impl IndentStyle {
/// Returns `true` if this is an [`IndentStyle::Tab`].
pub const fn is_tab(&self) -> bool {
matches!(self, IndentStyle::Tab)
}
/// Returns `true` if this is an [`IndentStyle::Space`].
pub const fn is_space(&self) -> bool {
matches!(self, IndentStyle::Space)
}
}
impl std::fmt::Display for IndentStyle {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
IndentStyle::Tab => std::write!(f, "tab"),
IndentStyle::Space => std::write!(f, "space"),
}
}
}
/// The visual width of a indentation.
///
/// Determines the visual width of a tab character (`\t`) and the number of
/// spaces per indent when using [`IndentStyle::Space`].
#[derive(Clone, Copy, Debug, Eq, PartialEq, CacheKey)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
pub struct IndentWidth(NonZeroU8);
impl IndentWidth {
/// Return the numeric value for this [`LineWidth`]
pub const fn value(&self) -> u32 {
self.0.get() as u32
}
}
impl Default for IndentWidth {
fn default() -> Self {
Self(NonZeroU8::new(2).unwrap())
}
}
impl Display for IndentWidth {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Display::fmt(&self.0, f)
}
}
impl TryFrom<u8> for IndentWidth {
type Error = TryFromIntError;
fn try_from(value: u8) -> Result<Self, Self::Error> {
NonZeroU8::try_from(value).map(Self)
}
}
impl From<NonZeroU8> for IndentWidth {
fn from(value: NonZeroU8) -> Self {
Self(value)
}
}
/// The maximum visual width to which the formatter should try to limit a line.
#[derive(Clone, Copy, Debug, Eq, PartialEq, CacheKey)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
pub struct LineWidth(NonZeroU16);
impl LineWidth {
/// Return the numeric value for this [`LineWidth`]
pub const fn value(&self) -> u16 {
self.0.get()
}
}
impl Default for LineWidth {
fn default() -> Self {
Self(NonZeroU16::new(80).unwrap())
}
}
impl Display for LineWidth {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Display::fmt(&self.0, f)
}
}
impl TryFrom<u16> for LineWidth {
type Error = TryFromIntError;
fn try_from(value: u16) -> Result<LineWidth, Self::Error> {
NonZeroU16::try_from(value).map(LineWidth)
}
}
impl From<LineWidth> for u16 {
fn from(value: LineWidth) -> Self {
value.0.get()
}
}
impl From<LineWidth> for u32 {
fn from(value: LineWidth) -> Self {
u32::from(value.0.get())
}
}
impl From<NonZeroU16> for LineWidth {
fn from(value: NonZeroU16) -> Self {
Self(value)
}
}
/// Context object storing data relevant when formatting an object.
pub trait FormatContext {
type Options: FormatOptions;
/// Returns the formatting options
fn options(&self) -> &Self::Options;
/// Returns the source code from the document that gets formatted.
fn source_code(&self) -> SourceCode;
}
/// Options customizing how the source code should be formatted.
pub trait FormatOptions {
/// The indent style.
fn indent_style(&self) -> IndentStyle;
/// The visual width of an indent
fn indent_width(&self) -> IndentWidth;
/// What's the max width of a line. Defaults to 80.
fn line_width(&self) -> LineWidth;
/// Derives the print options from the these format options
fn as_print_options(&self) -> PrinterOptions;
}
#[derive(Debug, Default, Eq, PartialEq)]
pub struct SimpleFormatContext {
options: SimpleFormatOptions,
source_code: String,
}
impl SimpleFormatContext {
pub fn new(options: SimpleFormatOptions) -> Self {
Self {
options,
source_code: String::new(),
}
}
#[must_use]
pub fn with_source_code(mut self, code: &str) -> Self {
self.source_code = String::from(code);
self
}
}
impl FormatContext for SimpleFormatContext {
type Options = SimpleFormatOptions;
fn options(&self) -> &Self::Options {
&self.options
}
fn source_code(&self) -> SourceCode {
SourceCode::new(&self.source_code)
}
}
#[derive(Debug, Default, Eq, PartialEq, Clone)]
pub struct SimpleFormatOptions {
pub indent_style: IndentStyle,
pub indent_width: IndentWidth,
pub line_width: LineWidth,
}
impl FormatOptions for SimpleFormatOptions {
fn indent_style(&self) -> IndentStyle {
self.indent_style
}
fn indent_width(&self) -> IndentWidth {
self.indent_width
}
fn line_width(&self) -> LineWidth {
self.line_width
}
fn as_print_options(&self) -> PrinterOptions {
PrinterOptions {
line_width: self.line_width,
indent_style: self.indent_style,
indent_width: self.indent_width,
..PrinterOptions::default()
}
}
}
/// Lightweight sourcemap marker between source and output tokens
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
pub struct SourceMarker {
/// Position of the marker in the original source
pub source: TextSize,
/// Position of the marker in the output code
pub dest: TextSize,
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Formatted<Context> {
document: Document,
context: Context,
}
impl<Context> Formatted<Context> {
pub fn new(document: Document, context: Context) -> Self {
Self { document, context }
}
/// Returns the context used during formatting.
pub fn context(&self) -> &Context {
&self.context
}
/// Returns the formatted document.
pub fn document(&self) -> &Document {
&self.document
}
/// Consumes `self` and returns the formatted document.
pub fn into_document(self) -> Document {
self.document
}
}
impl<Context> Formatted<Context>
where
Context: FormatContext,
{
pub fn print(&self) -> PrintResult<Printed> {
let printer = self.create_printer();
printer.print(&self.document)
}
pub fn print_with_indent(&self, indent: u16) -> PrintResult<Printed> {
let printer = self.create_printer();
printer.print_with_indent(&self.document, indent)
}
fn create_printer(&self) -> Printer {
let source_code = self.context.source_code();
let print_options = self.context.options().as_print_options();
Printer::new(source_code, print_options)
}
}
impl<Context> Display for Formatted<Context>
where
Context: FormatContext,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
std::fmt::Display::fmt(&self.document.display(self.context.source_code()), f)
}
}
pub type PrintResult<T> = Result<T, PrintError>;
#[derive(Debug, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
pub struct Printed {
code: String,
range: Option<TextRange>,
sourcemap: Vec<SourceMarker>,
verbatim_ranges: Vec<TextRange>,
}
impl Printed {
pub fn new(
code: String,
range: Option<TextRange>,
sourcemap: Vec<SourceMarker>,
verbatim_source: Vec<TextRange>,
) -> Self {
Self {
code,
range,
sourcemap,
verbatim_ranges: verbatim_source,
}
}
/// Construct an empty formatter result
pub fn new_empty() -> Self {
Self {
code: String::new(),
range: None,
sourcemap: Vec::new(),
verbatim_ranges: Vec::new(),
}
}
/// Range of the input source file covered by this formatted code,
/// or None if the entire file is covered in this instance
pub fn range(&self) -> Option<TextRange> {
self.range
}
/// Returns a list of [`SourceMarker`] mapping byte positions
/// in the output string to the input source code.
/// It's not guaranteed that the markers are sorted by source position.
pub fn sourcemap(&self) -> &[SourceMarker] {
&self.sourcemap
}
/// Returns a list of [`SourceMarker`] mapping byte positions
/// in the output string to the input source code, consuming the result
pub fn into_sourcemap(self) -> Vec<SourceMarker> {
self.sourcemap
}
/// Takes the list of [`SourceMarker`] mapping byte positions in the output string
/// to the input source code.
pub fn take_sourcemap(&mut self) -> Vec<SourceMarker> {
std::mem::take(&mut self.sourcemap)
}
/// Access the resulting code, borrowing the result
pub fn as_code(&self) -> &str {
&self.code
}
/// Access the resulting code, consuming the result
pub fn into_code(self) -> String {
self.code
}
/// The text in the formatted code that has been formatted as verbatim.
pub fn verbatim(&self) -> impl Iterator<Item = (TextRange, &str)> {
self.verbatim_ranges
.iter()
.map(|range| (*range, &self.code[*range]))
}
/// Ranges of the formatted code that have been formatted as verbatim.
pub fn verbatim_ranges(&self) -> &[TextRange] {
&self.verbatim_ranges
}
/// Takes the ranges of nodes that have been formatted as verbatim, replacing them with an empty list.
pub fn take_verbatim_ranges(&mut self) -> Vec<TextRange> {
std::mem::take(&mut self.verbatim_ranges)
}
/// Slices the formatted code to the sub-slices that covers the passed `source_range` in `source`.
///
/// The implementation uses the source map generated during formatting to find the closest range
/// in the formatted document that covers `source_range` or more. The returned slice
/// matches the `source_range` exactly (except indent, see below) if the formatter emits [`FormatElement::SourcePosition`] for
/// the range's offsets.
///
/// ## Indentation
/// The indentation before `source_range.start` is replaced with the indentation returned by the formatter
/// to fix up incorrectly intended code.
///
/// Returns the entire document if the source map is empty.
///
/// # Panics
/// If `source_range` points to offsets that are not in the bounds of `source`.
#[must_use]
pub fn slice_range(self, source_range: TextRange, source: &str) -> PrintedRange {
let mut start_marker: Option<SourceMarker> = None;
let mut end_marker: Option<SourceMarker> = None;
// Note: The printer can generate multiple source map entries for the same source position.
// For example if you have:
// * token("a + b")
// * `source_position(276)`
// * `token(")")`
// * `source_position(276)`
// * `hard_line_break`
// The printer uses the source position 276 for both the tokens `)` and the `\n` because
// there were multiple `source_position` entries in the IR with the same offset.
// This can happen if multiple nodes start or end at the same position. A common example
// for this are expressions and expression statement that always end at the same offset.
//
// Warning: Source markers are often emitted sorted by their source position but it's not guaranteed
// and depends on the emitted `IR`.
// They are only guaranteed to be sorted in increasing order by their destination position.
for marker in self.sourcemap {
// Take the closest start marker, but skip over start_markers that have the same start.
if marker.source <= source_range.start()
&& !start_marker.is_some_and(|existing| existing.source >= marker.source)
{
start_marker = Some(marker);
}
if marker.source >= source_range.end()
&& !end_marker.is_some_and(|existing| existing.source <= marker.source)
{
end_marker = Some(marker);
}
}
let (source_start, formatted_start) = start_marker
.map(|marker| (marker.source, marker.dest))
.unwrap_or_default();
let (source_end, formatted_end) = end_marker
.map_or((source.text_len(), self.code.text_len()), |marker| {
(marker.source, marker.dest)
});
let source_range = TextRange::new(source_start, source_end);
let formatted_range = TextRange::new(formatted_start, formatted_end);
// Extend both ranges to include the indentation
let source_range = extend_range_to_include_indent(source_range, source);
let formatted_range = extend_range_to_include_indent(formatted_range, &self.code);
PrintedRange {
code: self.code[formatted_range].to_string(),
source_range,
}
}
}
/// Extends `range` backwards (by reducing `range.start`) to include any directly preceding whitespace (`\t` or ` `).
///
/// # Panics
/// If `range.start` is out of `source`'s bounds.
fn extend_range_to_include_indent(range: TextRange, source: &str) -> TextRange {
let whitespace_len: TextSize = source[..usize::from(range.start())]
.chars()
.rev()
.take_while(|c| matches!(c, ' ' | '\t'))
.map(TextLen::text_len)
.sum();
TextRange::new(range.start() - whitespace_len, range.end())
}
#[derive(Debug, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
pub struct PrintedRange {
code: String,
source_range: TextRange,
}
impl PrintedRange {
pub fn new(code: String, source_range: TextRange) -> Self {
Self { code, source_range }
}
pub fn empty() -> Self {
Self {
code: String::new(),
source_range: TextRange::default(),
}
}
/// The formatted code.
pub fn as_code(&self) -> &str {
&self.code
}
pub fn into_code(self) -> String {
self.code
}
/// The range the formatted code corresponds to in the source document.
pub fn source_range(&self) -> TextRange {
self.source_range
}
}
/// Public return type of the formatter
pub type FormatResult<F> = Result<F, FormatError>;
/// Formatting trait for types that can create a formatted representation. The `ruff_formatter` equivalent
/// to [`std::fmt::Display`].
///
/// ## Example
/// Implementing `Format` for a custom struct
///
/// ```
/// use ruff_formatter::{format, write, IndentStyle};
/// use ruff_formatter::prelude::*;
/// use ruff_text_size::TextSize;
///
/// struct Paragraph(String);
///
/// impl Format<SimpleFormatContext> for Paragraph {
/// fn fmt(&self, f: &mut Formatter<SimpleFormatContext>) -> FormatResult<()> {
/// write!(f, [
/// text(&self.0),
/// hard_line_break(),
/// ])
/// }
/// }
///
/// # fn main() -> FormatResult<()> {
/// let paragraph = Paragraph(String::from("test"));
/// let formatted = format!(SimpleFormatContext::default(), [paragraph])?;
///
/// assert_eq!("test\n", formatted.print()?.as_code());
/// # Ok(())
/// # }
/// ```
pub trait Format<Context> {
/// Formats the object using the given formatter.
fn fmt(&self, f: &mut Formatter<Context>) -> FormatResult<()>;
}
impl<T, Context> Format<Context> for &T
where
T: ?Sized + Format<Context>,
{
#[inline]
fn fmt(&self, f: &mut Formatter<Context>) -> FormatResult<()> {
Format::fmt(&**self, f)
}
}
impl<T, Context> Format<Context> for &mut T
where
T: ?Sized + Format<Context>,
{
#[inline]
fn fmt(&self, f: &mut Formatter<Context>) -> FormatResult<()> {
Format::fmt(&**self, f)
}
}
impl<T, Context> Format<Context> for Option<T>
where
T: Format<Context>,
{
fn fmt(&self, f: &mut Formatter<Context>) -> FormatResult<()> {
match self {
Some(value) => value.fmt(f),
None => Ok(()),
}
}
}
impl<Context> Format<Context> for () {
#[inline]
fn fmt(&self, _: &mut Formatter<Context>) -> FormatResult<()> {
// Intentionally left empty
Ok(())
}
}
/// Rule that knows how to format an object of type `T`.
///
/// Implementing [Format] on the object itself is preferred over implementing [`FormatRule`] but
/// this isn't possible inside of a dependent crate for external type.
///
/// For example, the `ruff_js_formatter` crate isn't able to implement [Format] on `JsIfStatement`
/// because both the [Format] trait and `JsIfStatement` are external types (Rust's orphan rule).
///
/// That's why the `ruff_js_formatter` crate must define a new-type that implements the formatting
/// of `JsIfStatement`.
pub trait FormatRule<T, C> {
fn fmt(&self, item: &T, f: &mut Formatter<C>) -> FormatResult<()>;
}
/// Rule that supports customizing how it formats an object of type `T`.
pub trait FormatRuleWithOptions<T, C>: FormatRule<T, C> {
type Options;
/// Returns a new rule that uses the given options to format an object.
#[must_use]
fn with_options(self, options: Self::Options) -> Self;
}
/// Trait for an object that formats an object with a specified rule.
///
/// Gives access to the underlying item.
///
/// Useful in situation where a type itself doesn't implement [Format] (e.g. because of Rust's orphan rule)
/// but you want to implement some common formatting logic.
///
/// ## Examples
///
/// This can be useful if you want to format a `SyntaxNode` inside `ruff_formatter`.. `SyntaxNode` doesn't implement [Format]
/// itself but the language specific crate implements `AsFormat` and `IntoFormat` for it and the returned [Format]
/// implement [`FormatWithRule`].
///
/// ```ignore
/// use ruff_formatter::prelude::*;
/// use ruff_formatter::{format, Formatted, FormatWithRule};
/// use ruff_rowan::{Language, SyntaxNode};
/// fn format_node<L: Language, F: FormatWithRule<SimpleFormatContext, Item=SyntaxNode<L>>>(node: F) -> FormatResult<Formatted<SimpleFormatContext>> {
/// let formatted = format!(SimpleFormatContext::default(), [node]);
/// let syntax = node.item();
/// // Do something with syntax
/// formatted;
/// }
/// ```
pub trait FormatWithRule<Context>: Format<Context> {
type Item;
/// Returns the associated item
fn item(&self) -> &Self::Item;
}
/// Formats the referenced `item` with the specified rule.
#[derive(Debug, Copy, Clone)]
pub struct FormatRefWithRule<'a, T, R, C>
where
R: FormatRule<T, C>,
{
item: &'a T,
rule: R,
context: PhantomData<C>,
}
impl<'a, T, R, C> FormatRefWithRule<'a, T, R, C>
where
R: FormatRule<T, C>,
{
pub fn new(item: &'a T, rule: R) -> Self {
Self {
item,
rule,
context: PhantomData,
}
}
pub fn rule(&self) -> &R {
&self.rule
}
}
impl<T, R, O, C> FormatRefWithRule<'_, T, R, C>
where
R: FormatRuleWithOptions<T, C, Options = O>,
{
#[must_use]
pub fn with_options(mut self, options: O) -> Self {
self.rule = self.rule.with_options(options);
self
}
}
impl<T, R, C> FormatWithRule<C> for FormatRefWithRule<'_, T, R, C>
where
R: FormatRule<T, C>,
{
type Item = T;
fn item(&self) -> &Self::Item {
self.item
}
}
impl<T, R, C> Format<C> for FormatRefWithRule<'_, T, R, C>
where
R: FormatRule<T, C>,
{
#[inline]
fn fmt(&self, f: &mut Formatter<C>) -> FormatResult<()> {
self.rule.fmt(self.item, f)
}
}
/// Formats the `item` with the specified rule.
#[derive(Debug, Clone)]
pub struct FormatOwnedWithRule<T, R, C>
where
R: FormatRule<T, C>,
{
item: T,
rule: R,
context: PhantomData<C>,
}
impl<T, R, C> FormatOwnedWithRule<T, R, C>
where
R: FormatRule<T, C>,
{
pub fn new(item: T, rule: R) -> Self {
Self {
item,
rule,
context: PhantomData,
}
}
#[must_use]
pub fn with_item(mut self, item: T) -> Self {
self.item = item;
self
}
}
impl<T, R, C> Format<C> for FormatOwnedWithRule<T, R, C>
where
R: FormatRule<T, C>,
{
#[inline]
fn fmt(&self, f: &mut Formatter<C>) -> FormatResult<()> {
self.rule.fmt(&self.item, f)
}
}
impl<T, R, O, C> FormatOwnedWithRule<T, R, C>
where
R: FormatRuleWithOptions<T, C, Options = O>,
{
#[must_use]
pub fn with_options(mut self, options: O) -> Self {
self.rule = self.rule.with_options(options);
self
}
}
impl<T, R, C> FormatWithRule<C> for FormatOwnedWithRule<T, R, C>
where
R: FormatRule<T, C>,
{
type Item = T;
fn item(&self) -> &Self::Item {
&self.item
}
}
/// The `write` function takes a target buffer and an `Arguments` struct that can be precompiled with the `format_args!` macro.
///
/// The arguments will be formatted in-order into the output buffer provided.
///
/// # Examples
///
/// ```
/// use ruff_formatter::prelude::*;
/// use ruff_formatter::{VecBuffer, format_args, FormatState, write, Formatted};
///
/// # fn main() -> FormatResult<()> {
/// let mut state = FormatState::new(SimpleFormatContext::default());
/// let mut buffer = VecBuffer::new(&mut state);
///
/// write!(&mut buffer, [format_args!(token("Hello World"))])?;
///
/// let formatted = Formatted::new(Document::from(buffer.into_vec()), SimpleFormatContext::default());
///
/// assert_eq!("Hello World", formatted.print()?.as_code());
/// # Ok(())
/// # }
/// ```
///
/// Please note that using [`write!`] might be preferable. Example:
///
/// ```
/// use ruff_formatter::prelude::*;
/// use ruff_formatter::{VecBuffer, format_args, FormatState, write, Formatted};
///
/// # fn main() -> FormatResult<()> {
/// let mut state = FormatState::new(SimpleFormatContext::default());
/// let mut buffer = VecBuffer::new(&mut state);
///
/// write!(&mut buffer, [token("Hello World")])?;
///
/// let formatted = Formatted::new(Document::from(buffer.into_vec()), SimpleFormatContext::default());
///
/// assert_eq!("Hello World", formatted.print()?.as_code());
/// # Ok(())
/// # }
/// ```
#[inline]
pub fn write<Context>(
output: &mut dyn Buffer<Context = Context>,
args: Arguments<Context>,
) -> FormatResult<()> {
let mut f = Formatter::new(output);
f.write_fmt(args)
}
/// The `format` function takes an [`Arguments`] struct and returns the resulting formatting IR.
///
/// The [`Arguments`] instance can be created with the [`format_args!`].
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use ruff_formatter::prelude::*;
/// use ruff_formatter::{format, format_args};
///
/// # fn main() -> FormatResult<()> {
/// let formatted = format!(SimpleFormatContext::default(), [&format_args!(token("test"))])?;
/// assert_eq!("test", formatted.print()?.as_code());
/// # Ok(())
/// # }
/// ```
///
/// Please note that using [`format!`] might be preferable. Example:
///
/// ```
/// use ruff_formatter::prelude::*;
/// use ruff_formatter::{format};
///
/// # fn main() -> FormatResult<()> {
/// let formatted = format!(SimpleFormatContext::default(), [token("test")])?;
/// assert_eq!("test", formatted.print()?.as_code());
/// # Ok(())
/// # }
/// ```
pub fn format<Context>(
context: Context,
arguments: Arguments<Context>,
) -> FormatResult<Formatted<Context>>
where
Context: FormatContext,
{
let source_length = context.source_code().as_str().len();
// Use a simple heuristic to guess the number of expected format elements.
// See [#6612](https://github.com/astral-sh/ruff/pull/6612) for more details on how the formula was determined. Changes to our formatter, or supporting
// more languages may require fine tuning the formula.
let estimated_buffer_size = source_length / 2;
let mut state = FormatState::new(context);
let mut buffer = VecBuffer::with_capacity(estimated_buffer_size, &mut state);
buffer.write_fmt(arguments)?;
let mut document = Document::from(buffer.into_vec());
document.propagate_expand();
Ok(Formatted::new(document, state.into_context()))
}
/// This structure stores the state that is relevant for the formatting of the whole document.
///
/// This structure is different from [`crate::Formatter`] in that the formatting infrastructure
/// creates a new [`crate::Formatter`] for every [`crate::write`!] call, whereas this structure stays alive
/// for the whole process of formatting a root with [`crate::format`!].
pub struct FormatState<Context> {
context: Context,
group_id_builder: UniqueGroupIdBuilder,
}
#[allow(clippy::missing_fields_in_debug)]
impl<Context> std::fmt::Debug for FormatState<Context>
where
Context: std::fmt::Debug,
{
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.debug_struct("FormatState")
.field("context", &self.context)
.finish()
}
}
impl<Context> FormatState<Context> {
/// Creates a new state with the given language specific context
pub fn new(context: Context) -> Self {
Self {
context,
group_id_builder: UniqueGroupIdBuilder::default(),
}
}
pub fn into_context(self) -> Context {
self.context
}
/// Returns the context specifying how to format the current CST
pub fn context(&self) -> &Context {
&self.context
}
/// Returns a mutable reference to the context
pub fn context_mut(&mut self) -> &mut Context {
&mut self.context
}
/// Creates a new group id that is unique to this document. The passed debug name is used in the
/// [`std::fmt::Debug`] of the document if this is a debug build.
/// The name is unused for production builds and has no meaning on the equality of two group ids.
pub fn group_id(&self, debug_name: &'static str) -> GroupId {
self.group_id_builder.group_id(debug_name)
}
}