ruff/crates/ruff_linter/resources/test/fixtures/flake8_bandit/S505.py
Mathieu Kniewallner 598974545b
feat(rules): implement flake8-bandit S505 (#7703)
Part of #1646.

## Summary

Implement `S505`
([`weak_cryptographic_key`](https://bandit.readthedocs.io/en/latest/plugins/b505_weak_cryptographic_key.html))
rule from `bandit`.

For this rule, `bandit` [reports the issue
with](https://github.com/PyCQA/bandit/blob/1.7.5/bandit/plugins/weak_cryptographic_key.py#L47-L56):
- medium severity for DSA/RSA < 2048 bits and EC < 224 bits
- high severity for DSA/RSA < 1024 bits and EC < 160 bits

Since Ruff does not handle severities for `bandit`-related rules, we
could either report the issue if we have lower values than medium
severity, or lower values than high one. Two reasons led me to choose
the first option:
- a medium severity issue is still a security issue we would want to
report to the user, who can then decide to either handle the issue or
ignore it
- `bandit` [maps the EC key algorithms to their respective key lengths
in
bits](https://github.com/PyCQA/bandit/blob/1.7.5/bandit/plugins/weak_cryptographic_key.py#L112-L133),
but there is no value below 160 bits, so technically `bandit` would
never report medium severity issues for EC keys, only high ones

Another consideration is that as shared just above, for EC key
algorithms, `bandit` has a mapping to map the algorithms to their
respective key lengths. In the implementation in Ruff, I rather went
with an explicit list of EC algorithms known to be vulnerable (which
would thus be reported) rather than implementing a mapping to retrieve
the associated key length and comparing it with the minimum value.

## Test Plan

Snapshot tests from
https://github.com/PyCQA/bandit/blob/1.7.5/examples/weak_cryptographic_key_sizes.py.
2023-09-28 21:27:37 -04:00

54 lines
2.2 KiB
Python

from cryptography.hazmat import backends
from cryptography.hazmat.primitives.asymmetric import dsa
from cryptography.hazmat.primitives.asymmetric import ec
from cryptography.hazmat.primitives.asymmetric import rsa
from Crypto.PublicKey import DSA as pycrypto_dsa
from Crypto.PublicKey import RSA as pycrypto_rsa
from Cryptodome.PublicKey import DSA as pycryptodomex_dsa
from Cryptodome.PublicKey import RSA as pycryptodomex_rsa
# OK
dsa.generate_private_key(key_size=2048, backend=backends.default_backend())
ec.generate_private_key(curve=ec.SECP384R1, backend=backends.default_backend())
rsa.generate_private_key(
public_exponent=65537, key_size=2048, backend=backends.default_backend()
)
pycrypto_dsa.generate(bits=2048)
pycrypto_rsa.generate(bits=2048)
pycryptodomex_dsa.generate(bits=2048)
pycryptodomex_rsa.generate(bits=2048)
dsa.generate_private_key(2048, backends.default_backend())
ec.generate_private_key(ec.SECP256K1, backends.default_backend())
rsa.generate_private_key(3, 2048, backends.default_backend())
pycrypto_dsa.generate(2048)
pycrypto_rsa.generate(2048)
pycryptodomex_dsa.generate(2048)
pycryptodomex_rsa.generate(2048)
# Errors
dsa.generate_private_key(key_size=2047, backend=backends.default_backend())
ec.generate_private_key(curve=ec.SECT163R2, backend=backends.default_backend())
rsa.generate_private_key(
public_exponent=65537, key_size=2047, backend=backends.default_backend()
)
pycrypto_dsa.generate(bits=2047)
pycrypto_rsa.generate(bits=2047)
pycryptodomex_dsa.generate(bits=2047)
pycryptodomex_rsa.generate(bits=2047)
dsa.generate_private_key(2047, backends.default_backend())
ec.generate_private_key(ec.SECT163R2, backends.default_backend())
rsa.generate_private_key(3, 2047, backends.default_backend())
pycrypto_dsa.generate(2047)
pycrypto_rsa.generate(2047)
pycryptodomex_dsa.generate(2047)
pycryptodomex_rsa.generate(2047)
# Don't crash when the size is variable.
rsa.generate_private_key(
public_exponent=65537, key_size=some_key_size, backend=backends.default_backend()
)
# Can't reliably know which curve was passed, in some cases like below.
ec.generate_private_key(
curve=curves[self.curve]["create"](self.size), backend=backends.default_backend()
)