Move things in hir_ty into submodules

- all the types that will be replaced by Chalk go to `types`
 - `TypeWalk` impls go to `walk`
This commit is contained in:
Florian Diebold 2021-04-04 20:22:00 +02:00
parent bc8b278841
commit 508a1ecad3
11 changed files with 751 additions and 707 deletions

View file

@ -16,6 +16,8 @@ pub(crate) mod utils;
mod chalk_cast;
mod chalk_ext;
mod builder;
mod walk;
mod types;
pub mod display;
pub mod db;
@ -26,23 +28,18 @@ mod tests;
#[cfg(test)]
mod test_db;
use std::{mem, sync::Arc};
use std::sync::Arc;
use chalk_ir::cast::{CastTo, Caster};
use itertools::Itertools;
use smallvec::SmallVec;
use base_db::salsa;
use hir_def::{
expr::ExprId, type_ref::Rawness, AssocContainerId, FunctionId, GenericDefId, HasModule,
LifetimeParamId, Lookup, TraitId, TypeAliasId, TypeParamId,
expr::ExprId, type_ref::Rawness, AssocContainerId, FunctionId, GenericDefId, HasModule, Lookup,
TraitId, TypeAliasId, TypeParamId,
};
use crate::{
db::HirDatabase,
display::HirDisplay,
utils::{generics, make_mut_slice},
};
use crate::{db::HirDatabase, display::HirDisplay, utils::generics};
pub use autoderef::autoderef;
pub use builder::TyBuilder;
@ -53,6 +50,8 @@ pub use lower::{
TyDefId, TyLoweringContext, ValueTyDefId,
};
pub use traits::{AliasEq, DomainGoal, InEnvironment, TraitEnvironment};
pub use types::*;
pub use walk::TypeWalk;
pub use chalk_ir::{
cast::Cast, AdtId, BoundVar, DebruijnIndex, Mutability, Safety, Scalar, TyVariableKind,
@ -71,41 +70,6 @@ pub type CanonicalVarKinds = chalk_ir::CanonicalVarKinds<Interner>;
pub type ChalkTraitId = chalk_ir::TraitId<Interner>;
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum Lifetime {
Parameter(LifetimeParamId),
Static,
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct OpaqueTy {
pub opaque_ty_id: OpaqueTyId,
pub substitution: Substitution,
}
impl TypeWalk for OpaqueTy {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
self.substitution.walk(f);
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
self.substitution.walk_mut_binders(f, binders);
}
}
/// A "projection" type corresponds to an (unnormalized)
/// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
/// trait and all its parameters are fully known.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct ProjectionTy {
pub associated_ty_id: AssocTypeId,
pub substitution: Substitution,
}
impl ProjectionTy {
pub fn trait_ref(&self, db: &dyn HirDatabase) -> TraitRef {
TraitRef {
@ -115,7 +79,7 @@ impl ProjectionTy {
}
pub fn self_type_parameter(&self) -> &Ty {
&self.substitution.interned(&Interner)[0].assert_ty_ref(&Interner)
&self.substitution.interned()[0].assert_ty_ref(&Interner)
}
fn trait_(&self, db: &dyn HirDatabase) -> TraitId {
@ -126,322 +90,11 @@ impl ProjectionTy {
}
}
impl TypeWalk for ProjectionTy {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
self.substitution.walk(f);
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
self.substitution.walk_mut_binders(f, binders);
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct DynTy {
/// The unknown self type.
pub bounds: Binders<QuantifiedWhereClauses>,
}
pub type FnSig = chalk_ir::FnSig<Interner>;
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct FnPointer {
pub num_args: usize,
pub sig: FnSig,
pub substs: Substitution,
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum AliasTy {
/// A "projection" type corresponds to an (unnormalized)
/// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
/// trait and all its parameters are fully known.
Projection(ProjectionTy),
/// An opaque type (`impl Trait`).
///
/// This is currently only used for return type impl trait; each instance of
/// `impl Trait` in a return type gets its own ID.
Opaque(OpaqueTy),
}
impl TypeWalk for AliasTy {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
match self {
AliasTy::Projection(it) => it.walk(f),
AliasTy::Opaque(it) => it.walk(f),
}
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
match self {
AliasTy::Projection(it) => it.walk_mut_binders(f, binders),
AliasTy::Opaque(it) => it.walk_mut_binders(f, binders),
}
}
}
/// A type.
///
/// See also the `TyKind` enum in rustc (librustc/ty/sty.rs), which represents
/// the same thing (but in a different way).
///
/// This should be cheap to clone.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum TyKind {
/// Structures, enumerations and unions.
Adt(AdtId<Interner>, Substitution),
/// Represents an associated item like `Iterator::Item`. This is used
/// when we have tried to normalize a projection like `T::Item` but
/// couldn't find a better representation. In that case, we generate
/// an **application type** like `(Iterator::Item)<T>`.
AssociatedType(AssocTypeId, Substitution),
/// a scalar type like `bool` or `u32`
Scalar(Scalar),
/// A tuple type. For example, `(i32, bool)`.
Tuple(usize, Substitution),
/// An array with the given length. Written as `[T; n]`.
Array(Ty),
/// The pointee of an array slice. Written as `[T]`.
Slice(Ty),
/// A raw pointer. Written as `*mut T` or `*const T`
Raw(Mutability, Ty),
/// A reference; a pointer with an associated lifetime. Written as
/// `&'a mut T` or `&'a T`.
Ref(Mutability, Ty),
/// This represents a placeholder for an opaque type in situations where we
/// don't know the hidden type (i.e. currently almost always). This is
/// analogous to the `AssociatedType` type constructor.
/// It is also used as the type of async block, with one type parameter
/// representing the Future::Output type.
OpaqueType(OpaqueTyId, Substitution),
/// The anonymous type of a function declaration/definition. Each
/// function has a unique type, which is output (for a function
/// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
///
/// This includes tuple struct / enum variant constructors as well.
///
/// For example the type of `bar` here:
///
/// ```
/// fn foo() -> i32 { 1 }
/// let bar = foo; // bar: fn() -> i32 {foo}
/// ```
FnDef(FnDefId, Substitution),
/// The pointee of a string slice. Written as `str`.
Str,
/// The never type `!`.
Never,
/// The type of a specific closure.
///
/// The closure signature is stored in a `FnPtr` type in the first type
/// parameter.
Closure(ClosureId, Substitution),
/// Represents a foreign type declared in external blocks.
ForeignType(ForeignDefId),
/// A pointer to a function. Written as `fn() -> i32`.
///
/// For example the type of `bar` here:
///
/// ```
/// fn foo() -> i32 { 1 }
/// let bar: fn() -> i32 = foo;
/// ```
Function(FnPointer),
/// An "alias" type represents some form of type alias, such as:
/// - An associated type projection like `<T as Iterator>::Item`
/// - `impl Trait` types
/// - Named type aliases like `type Foo<X> = Vec<X>`
Alias(AliasTy),
/// A placeholder for a type parameter; for example, `T` in `fn f<T>(x: T)
/// {}` when we're type-checking the body of that function. In this
/// situation, we know this stands for *some* type, but don't know the exact
/// type.
Placeholder(PlaceholderIndex),
/// A bound type variable. This is used in various places: when representing
/// some polymorphic type like the type of function `fn f<T>`, the type
/// parameters get turned into variables; during trait resolution, inference
/// variables get turned into bound variables and back; and in `Dyn` the
/// `Self` type is represented with a bound variable as well.
BoundVar(BoundVar),
/// A type variable used during type checking.
InferenceVar(InferenceVar, TyVariableKind),
/// A trait object (`dyn Trait` or bare `Trait` in pre-2018 Rust).
///
/// The predicates are quantified over the `Self` type, i.e. `Ty::Bound(0)`
/// represents the `Self` type inside the bounds. This is currently
/// implicit; Chalk has the `Binders` struct to make it explicit, but it
/// didn't seem worth the overhead yet.
Dyn(DynTy),
/// A placeholder for a type which could not be computed; this is propagated
/// to avoid useless error messages. Doubles as a placeholder where type
/// variables are inserted before type checking, since we want to try to
/// infer a better type here anyway -- for the IDE use case, we want to try
/// to infer as much as possible even in the presence of type errors.
Unknown,
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct Ty(Arc<TyKind>);
impl TyKind {
pub fn intern(self, _interner: &Interner) -> Ty {
Ty(Arc::new(self))
}
}
impl Ty {
pub fn kind(&self, _interner: &Interner) -> &TyKind {
&self.0
}
pub fn interned_mut(&mut self) -> &mut TyKind {
Arc::make_mut(&mut self.0)
}
pub fn into_inner(self) -> TyKind {
Arc::try_unwrap(self.0).unwrap_or_else(|a| (*a).clone())
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct GenericArg {
interned: GenericArgData,
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum GenericArgData {
Ty(Ty),
}
impl GenericArg {
/// Constructs a generic argument using `GenericArgData`.
pub fn new(_interner: &Interner, data: GenericArgData) -> Self {
GenericArg { interned: data }
}
/// Gets the interned value.
pub fn interned(&self) -> &GenericArgData {
&self.interned
}
/// Asserts that this is a type argument.
pub fn assert_ty_ref(&self, interner: &Interner) -> &Ty {
self.ty(interner).unwrap()
}
/// Checks whether the generic argument is a type.
pub fn is_ty(&self, _interner: &Interner) -> bool {
match self.interned() {
GenericArgData::Ty(_) => true,
}
}
/// Returns the type if it is one, `None` otherwise.
pub fn ty(&self, _interner: &Interner) -> Option<&Ty> {
match self.interned() {
GenericArgData::Ty(t) => Some(t),
}
}
}
impl TypeWalk for GenericArg {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
match &self.interned {
GenericArgData::Ty(ty) => {
ty.walk(f);
}
}
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
match &mut self.interned {
GenericArgData::Ty(ty) => {
ty.walk_mut_binders(f, binders);
}
}
}
}
/// A list of substitutions for generic parameters.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct Substitution(SmallVec<[GenericArg; 2]>);
impl TypeWalk for Substitution {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
for t in self.0.iter() {
t.walk(f);
}
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
for t in &mut self.0 {
t.walk_mut_binders(f, binders);
}
}
}
impl Substitution {
pub fn interned(&self, _: &Interner) -> &[GenericArg] {
&self.0
}
pub fn len(&self, _: &Interner) -> usize {
self.0.len()
}
pub fn is_empty(&self, _: &Interner) -> bool {
self.0.is_empty()
}
pub fn at(&self, _: &Interner, i: usize) -> &GenericArg {
&self.0[i]
}
pub fn empty(_: &Interner) -> Substitution {
Substitution(SmallVec::new())
}
pub fn iter(&self, _: &Interner) -> std::slice::Iter<'_, GenericArg> {
self.0.iter()
}
pub fn single(ty: Ty) -> Substitution {
Substitution({
Substitution::intern({
let mut v = SmallVec::new();
v.push(ty.cast(&Interner));
v
@ -449,18 +102,13 @@ impl Substitution {
}
pub fn prefix(&self, n: usize) -> Substitution {
Substitution(self.0[..std::cmp::min(self.0.len(), n)].into())
Substitution::intern(self.interned()[..std::cmp::min(self.len(&Interner), n)].into())
}
pub fn suffix(&self, n: usize) -> Substitution {
Substitution(self.0[self.0.len() - std::cmp::min(self.0.len(), n)..].into())
}
pub fn from_iter(
interner: &Interner,
elements: impl IntoIterator<Item = impl CastTo<GenericArg>>,
) -> Self {
Substitution(elements.into_iter().casted(interner).collect())
Substitution::intern(
self.interned()[self.len(&Interner) - std::cmp::min(self.len(&Interner), n)..].into(),
)
}
}
@ -469,12 +117,6 @@ pub fn param_idx(db: &dyn HirDatabase, id: TypeParamId) -> Option<usize> {
generics(db.upcast(), id.parent).param_idx(id)
}
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub struct Binders<T> {
pub num_binders: usize,
pub value: T,
}
impl<T> Binders<T> {
pub fn new(num_binders: usize, value: T) -> Self {
Self { num_binders, value }
@ -522,27 +164,6 @@ impl<T: TypeWalk> Binders<T> {
}
}
impl<T: TypeWalk> TypeWalk for Binders<T> {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
self.value.walk(f);
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
self.value.walk_mut_binders(f, binders.shifted_in())
}
}
/// A trait with type parameters. This includes the `Self`, so this represents a concrete type implementing the trait.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct TraitRef {
pub trait_id: ChalkTraitId,
pub substitution: Substitution,
}
impl TraitRef {
pub fn self_type_parameter(&self) -> &Ty {
&self.substitution.at(&Interner, 0).assert_ty_ref(&Interner)
@ -553,30 +174,6 @@ impl TraitRef {
}
}
impl TypeWalk for TraitRef {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
self.substitution.walk(f);
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
self.substitution.walk_mut_binders(f, binders);
}
}
/// Like `generics::WherePredicate`, but with resolved types: A condition on the
/// parameters of a generic item.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum WhereClause {
/// The given trait needs to be implemented for its type parameters.
Implemented(TraitRef),
/// An associated type bindings like in `Iterator<Item = T>`.
AliasEq(AliasEq),
}
impl WhereClause {
pub fn is_implemented(&self) -> bool {
matches!(self, WhereClause::Implemented(_))
@ -593,56 +190,6 @@ impl WhereClause {
}
}
impl TypeWalk for WhereClause {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
match self {
WhereClause::Implemented(trait_ref) => trait_ref.walk(f),
WhereClause::AliasEq(alias_eq) => alias_eq.walk(f),
}
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
match self {
WhereClause::Implemented(trait_ref) => trait_ref.walk_mut_binders(f, binders),
WhereClause::AliasEq(alias_eq) => alias_eq.walk_mut_binders(f, binders),
}
}
}
pub type QuantifiedWhereClause = Binders<WhereClause>;
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct QuantifiedWhereClauses(Arc<[QuantifiedWhereClause]>);
impl QuantifiedWhereClauses {
pub fn from_iter(
_interner: &Interner,
elements: impl IntoIterator<Item = QuantifiedWhereClause>,
) -> Self {
QuantifiedWhereClauses(elements.into_iter().collect())
}
pub fn interned(&self) -> &Arc<[QuantifiedWhereClause]> {
&self.0
}
}
/// Basically a claim (currently not validated / checked) that the contained
/// type / trait ref contains no inference variables; any inference variables it
/// contained have been replaced by bound variables, and `kinds` tells us how
/// many there are and whether they were normal or float/int variables. This is
/// used to erase irrelevant differences between types before using them in
/// queries.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Canonical<T> {
pub value: T,
pub binders: CanonicalVarKinds,
}
impl<T> Canonical<T> {
pub fn new(value: T, kinds: impl IntoIterator<Item = TyVariableKind>) -> Self {
let kinds = kinds.into_iter().map(|tk| {
@ -679,7 +226,7 @@ impl CallableSig {
.substs
.clone()
.shift_bound_vars_out(DebruijnIndex::ONE)
.interned(&Interner)
.interned()
.iter()
.map(|arg| arg.assert_ty_ref(&Interner).clone())
.collect(),
@ -696,24 +243,6 @@ impl CallableSig {
}
}
impl TypeWalk for CallableSig {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
for t in self.params_and_return.iter() {
t.walk(f);
}
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
for t in make_mut_slice(&mut self.params_and_return) {
t.walk_mut_binders(f, binders);
}
}
}
impl Ty {
pub fn as_reference(&self) -> Option<(&Ty, Mutability)> {
match self.kind(&Interner) {
@ -984,200 +513,6 @@ impl Ty {
}
}
/// This allows walking structures that contain types to do something with those
/// types, similar to Chalk's `Fold` trait.
pub trait TypeWalk {
fn walk(&self, f: &mut impl FnMut(&Ty));
fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
self.walk_mut_binders(&mut |ty, _binders| f(ty), DebruijnIndex::INNERMOST);
}
/// Walk the type, counting entered binders.
///
/// `TyKind::Bound` variables use DeBruijn indexing, which means that 0 refers
/// to the innermost binder, 1 to the next, etc.. So when we want to
/// substitute a certain bound variable, we can't just walk the whole type
/// and blindly replace each instance of a certain index; when we 'enter'
/// things that introduce new bound variables, we have to keep track of
/// that. Currently, the only thing that introduces bound variables on our
/// side are `TyKind::Dyn` and `TyKind::Opaque`, which each introduce a bound
/// variable for the self type.
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
);
fn fold_binders(
mut self,
f: &mut impl FnMut(Ty, DebruijnIndex) -> Ty,
binders: DebruijnIndex,
) -> Self
where
Self: Sized,
{
self.walk_mut_binders(
&mut |ty_mut, binders| {
let ty = mem::replace(ty_mut, TyKind::Unknown.intern(&Interner));
*ty_mut = f(ty, binders);
},
binders,
);
self
}
fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Self
where
Self: Sized,
{
self.walk_mut(&mut |ty_mut| {
let ty = mem::replace(ty_mut, TyKind::Unknown.intern(&Interner));
*ty_mut = f(ty);
});
self
}
/// Substitutes `TyKind::Bound` vars with the given substitution.
fn subst_bound_vars(self, substs: &Substitution) -> Self
where
Self: Sized,
{
self.subst_bound_vars_at_depth(substs, DebruijnIndex::INNERMOST)
}
/// Substitutes `TyKind::Bound` vars with the given substitution.
fn subst_bound_vars_at_depth(mut self, substs: &Substitution, depth: DebruijnIndex) -> Self
where
Self: Sized,
{
self.walk_mut_binders(
&mut |ty, binders| {
if let &mut TyKind::BoundVar(bound) = ty.interned_mut() {
if bound.debruijn >= binders {
*ty = substs.0[bound.index]
.assert_ty_ref(&Interner)
.clone()
.shift_bound_vars(binders);
}
}
},
depth,
);
self
}
/// Shifts up debruijn indices of `TyKind::Bound` vars by `n`.
fn shift_bound_vars(self, n: DebruijnIndex) -> Self
where
Self: Sized,
{
self.fold_binders(
&mut |ty, binders| match ty.kind(&Interner) {
TyKind::BoundVar(bound) if bound.debruijn >= binders => {
TyKind::BoundVar(bound.shifted_in_from(n)).intern(&Interner)
}
_ => ty,
},
DebruijnIndex::INNERMOST,
)
}
/// Shifts debruijn indices of `TyKind::Bound` vars out (down) by `n`.
fn shift_bound_vars_out(self, n: DebruijnIndex) -> Self
where
Self: Sized + std::fmt::Debug,
{
self.fold_binders(
&mut |ty, binders| match ty.kind(&Interner) {
TyKind::BoundVar(bound) if bound.debruijn >= binders => {
TyKind::BoundVar(bound.shifted_out_to(n).unwrap_or(bound.clone()))
.intern(&Interner)
}
_ => ty,
},
DebruijnIndex::INNERMOST,
)
}
}
impl TypeWalk for Ty {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
match self.kind(&Interner) {
TyKind::Alias(AliasTy::Projection(p_ty)) => {
for t in p_ty.substitution.iter(&Interner) {
t.walk(f);
}
}
TyKind::Alias(AliasTy::Opaque(o_ty)) => {
for t in o_ty.substitution.iter(&Interner) {
t.walk(f);
}
}
TyKind::Dyn(dyn_ty) => {
for p in dyn_ty.bounds.value.interned().iter() {
p.walk(f);
}
}
TyKind::Slice(ty) | TyKind::Array(ty) | TyKind::Ref(_, ty) | TyKind::Raw(_, ty) => {
ty.walk(f);
}
_ => {
if let Some(substs) = self.substs() {
for t in substs.iter(&Interner) {
t.walk(f);
}
}
}
}
f(self);
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
match self.interned_mut() {
TyKind::Alias(AliasTy::Projection(p_ty)) => {
p_ty.substitution.walk_mut_binders(f, binders);
}
TyKind::Dyn(dyn_ty) => {
for p in make_mut_slice(&mut dyn_ty.bounds.value.0) {
p.walk_mut_binders(f, binders.shifted_in());
}
}
TyKind::Alias(AliasTy::Opaque(o_ty)) => {
o_ty.substitution.walk_mut_binders(f, binders);
}
TyKind::Slice(ty) | TyKind::Array(ty) | TyKind::Ref(_, ty) | TyKind::Raw(_, ty) => {
ty.walk_mut_binders(f, binders);
}
_ => {
if let Some(substs) = self.substs_mut() {
substs.walk_mut_binders(f, binders);
}
}
}
f(self, binders);
}
}
impl<T: TypeWalk> TypeWalk for Vec<T> {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
for t in self {
t.walk(f);
}
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
for t in self {
t.walk_mut_binders(f, binders);
}
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub enum ImplTraitId {
ReturnTypeImplTrait(hir_def::FunctionId, u16),