Rename ra_syntax -> syntax

This commit is contained in:
Aleksey Kladov 2020-08-12 18:26:51 +02:00
parent 3d6889cba7
commit a1c187eef3
958 changed files with 353 additions and 363 deletions

406
crates/syntax/src/algo.rs Normal file
View file

@ -0,0 +1,406 @@
//! FIXME: write short doc here
use std::{
fmt,
ops::{self, RangeInclusive},
};
use itertools::Itertools;
use rustc_hash::FxHashMap;
use text_edit::TextEditBuilder;
use crate::{
AstNode, Direction, NodeOrToken, SyntaxElement, SyntaxKind, SyntaxNode, SyntaxNodePtr,
SyntaxToken, TextRange, TextSize,
};
/// Returns ancestors of the node at the offset, sorted by length. This should
/// do the right thing at an edge, e.g. when searching for expressions at `{
/// <|>foo }` we will get the name reference instead of the whole block, which
/// we would get if we just did `find_token_at_offset(...).flat_map(|t|
/// t.parent().ancestors())`.
pub fn ancestors_at_offset(
node: &SyntaxNode,
offset: TextSize,
) -> impl Iterator<Item = SyntaxNode> {
node.token_at_offset(offset)
.map(|token| token.parent().ancestors())
.kmerge_by(|node1, node2| node1.text_range().len() < node2.text_range().len())
}
/// Finds a node of specific Ast type at offset. Note that this is slightly
/// imprecise: if the cursor is strictly between two nodes of the desired type,
/// as in
///
/// ```no-run
/// struct Foo {}|struct Bar;
/// ```
///
/// then the shorter node will be silently preferred.
pub fn find_node_at_offset<N: AstNode>(syntax: &SyntaxNode, offset: TextSize) -> Option<N> {
ancestors_at_offset(syntax, offset).find_map(N::cast)
}
pub fn find_node_at_range<N: AstNode>(syntax: &SyntaxNode, range: TextRange) -> Option<N> {
find_covering_element(syntax, range).ancestors().find_map(N::cast)
}
/// Skip to next non `trivia` token
pub fn skip_trivia_token(mut token: SyntaxToken, direction: Direction) -> Option<SyntaxToken> {
while token.kind().is_trivia() {
token = match direction {
Direction::Next => token.next_token()?,
Direction::Prev => token.prev_token()?,
}
}
Some(token)
}
/// Finds the first sibling in the given direction which is not `trivia`
pub fn non_trivia_sibling(element: SyntaxElement, direction: Direction) -> Option<SyntaxElement> {
return match element {
NodeOrToken::Node(node) => node.siblings_with_tokens(direction).skip(1).find(not_trivia),
NodeOrToken::Token(token) => token.siblings_with_tokens(direction).skip(1).find(not_trivia),
};
fn not_trivia(element: &SyntaxElement) -> bool {
match element {
NodeOrToken::Node(_) => true,
NodeOrToken::Token(token) => !token.kind().is_trivia(),
}
}
}
pub fn find_covering_element(root: &SyntaxNode, range: TextRange) -> SyntaxElement {
root.covering_element(range)
}
pub fn least_common_ancestor(u: &SyntaxNode, v: &SyntaxNode) -> Option<SyntaxNode> {
if u == v {
return Some(u.clone());
}
let u_depth = u.ancestors().count();
let v_depth = v.ancestors().count();
let keep = u_depth.min(v_depth);
let u_candidates = u.ancestors().skip(u_depth - keep);
let v_canidates = v.ancestors().skip(v_depth - keep);
let (res, _) = u_candidates.zip(v_canidates).find(|(x, y)| x == y)?;
Some(res)
}
pub fn neighbor<T: AstNode>(me: &T, direction: Direction) -> Option<T> {
me.syntax().siblings(direction).skip(1).find_map(T::cast)
}
pub fn has_errors(node: &SyntaxNode) -> bool {
node.children().any(|it| it.kind() == SyntaxKind::ERROR)
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum InsertPosition<T> {
First,
Last,
Before(T),
After(T),
}
pub struct TreeDiff {
replacements: FxHashMap<SyntaxElement, SyntaxElement>,
}
impl TreeDiff {
pub fn into_text_edit(&self, builder: &mut TextEditBuilder) {
for (from, to) in self.replacements.iter() {
builder.replace(from.text_range(), to.to_string())
}
}
pub fn is_empty(&self) -> bool {
self.replacements.is_empty()
}
}
/// Finds minimal the diff, which, applied to `from`, will result in `to`.
///
/// Specifically, returns a map whose keys are descendants of `from` and values
/// are descendants of `to`, such that `replace_descendants(from, map) == to`.
///
/// A trivial solution is a singleton map `{ from: to }`, but this function
/// tries to find a more fine-grained diff.
pub fn diff(from: &SyntaxNode, to: &SyntaxNode) -> TreeDiff {
let mut buf = FxHashMap::default();
// FIXME: this is both horrible inefficient and gives larger than
// necessary diff. I bet there's a cool algorithm to diff trees properly.
go(&mut buf, from.clone().into(), to.clone().into());
return TreeDiff { replacements: buf };
fn go(
buf: &mut FxHashMap<SyntaxElement, SyntaxElement>,
lhs: SyntaxElement,
rhs: SyntaxElement,
) {
if lhs.kind() == rhs.kind()
&& lhs.text_range().len() == rhs.text_range().len()
&& match (&lhs, &rhs) {
(NodeOrToken::Node(lhs), NodeOrToken::Node(rhs)) => {
lhs.green() == rhs.green() || lhs.text() == rhs.text()
}
(NodeOrToken::Token(lhs), NodeOrToken::Token(rhs)) => lhs.text() == rhs.text(),
_ => false,
}
{
return;
}
if let (Some(lhs), Some(rhs)) = (lhs.as_node(), rhs.as_node()) {
if lhs.children_with_tokens().count() == rhs.children_with_tokens().count() {
for (lhs, rhs) in lhs.children_with_tokens().zip(rhs.children_with_tokens()) {
go(buf, lhs, rhs)
}
return;
}
}
buf.insert(lhs, rhs);
}
}
/// Adds specified children (tokens or nodes) to the current node at the
/// specific position.
///
/// This is a type-unsafe low-level editing API, if you need to use it,
/// prefer to create a type-safe abstraction on top of it instead.
pub fn insert_children(
parent: &SyntaxNode,
position: InsertPosition<SyntaxElement>,
to_insert: impl IntoIterator<Item = SyntaxElement>,
) -> SyntaxNode {
let mut to_insert = to_insert.into_iter();
_insert_children(parent, position, &mut to_insert)
}
fn _insert_children(
parent: &SyntaxNode,
position: InsertPosition<SyntaxElement>,
to_insert: &mut dyn Iterator<Item = SyntaxElement>,
) -> SyntaxNode {
let mut delta = TextSize::default();
let to_insert = to_insert.map(|element| {
delta += element.text_range().len();
to_green_element(element)
});
let mut old_children = parent.green().children().map(|it| match it {
NodeOrToken::Token(it) => NodeOrToken::Token(it.clone()),
NodeOrToken::Node(it) => NodeOrToken::Node(it.clone()),
});
let new_children = match &position {
InsertPosition::First => to_insert.chain(old_children).collect::<Vec<_>>(),
InsertPosition::Last => old_children.chain(to_insert).collect::<Vec<_>>(),
InsertPosition::Before(anchor) | InsertPosition::After(anchor) => {
let take_anchor = if let InsertPosition::After(_) = position { 1 } else { 0 };
let split_at = position_of_child(parent, anchor.clone()) + take_anchor;
let before = old_children.by_ref().take(split_at).collect::<Vec<_>>();
before.into_iter().chain(to_insert).chain(old_children).collect::<Vec<_>>()
}
};
with_children(parent, new_children)
}
/// Replaces all nodes in `to_delete` with nodes from `to_insert`
///
/// This is a type-unsafe low-level editing API, if you need to use it,
/// prefer to create a type-safe abstraction on top of it instead.
pub fn replace_children(
parent: &SyntaxNode,
to_delete: RangeInclusive<SyntaxElement>,
to_insert: impl IntoIterator<Item = SyntaxElement>,
) -> SyntaxNode {
let mut to_insert = to_insert.into_iter();
_replace_children(parent, to_delete, &mut to_insert)
}
fn _replace_children(
parent: &SyntaxNode,
to_delete: RangeInclusive<SyntaxElement>,
to_insert: &mut dyn Iterator<Item = SyntaxElement>,
) -> SyntaxNode {
let start = position_of_child(parent, to_delete.start().clone());
let end = position_of_child(parent, to_delete.end().clone());
let mut old_children = parent.green().children().map(|it| match it {
NodeOrToken::Token(it) => NodeOrToken::Token(it.clone()),
NodeOrToken::Node(it) => NodeOrToken::Node(it.clone()),
});
let before = old_children.by_ref().take(start).collect::<Vec<_>>();
let new_children = before
.into_iter()
.chain(to_insert.map(to_green_element))
.chain(old_children.skip(end + 1 - start))
.collect::<Vec<_>>();
with_children(parent, new_children)
}
#[derive(Default)]
pub struct SyntaxRewriter<'a> {
f: Option<Box<dyn Fn(&SyntaxElement) -> Option<SyntaxElement> + 'a>>,
//FIXME: add debug_assertions that all elements are in fact from the same file.
replacements: FxHashMap<SyntaxElement, Replacement>,
}
impl fmt::Debug for SyntaxRewriter<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SyntaxRewriter").field("replacements", &self.replacements).finish()
}
}
impl<'a> SyntaxRewriter<'a> {
pub fn from_fn(f: impl Fn(&SyntaxElement) -> Option<SyntaxElement> + 'a) -> SyntaxRewriter<'a> {
SyntaxRewriter { f: Some(Box::new(f)), replacements: FxHashMap::default() }
}
pub fn delete<T: Clone + Into<SyntaxElement>>(&mut self, what: &T) {
let what = what.clone().into();
let replacement = Replacement::Delete;
self.replacements.insert(what, replacement);
}
pub fn replace<T: Clone + Into<SyntaxElement>>(&mut self, what: &T, with: &T) {
let what = what.clone().into();
let replacement = Replacement::Single(with.clone().into());
self.replacements.insert(what, replacement);
}
pub fn replace_with_many<T: Clone + Into<SyntaxElement>>(
&mut self,
what: &T,
with: Vec<SyntaxElement>,
) {
let what = what.clone().into();
let replacement = Replacement::Many(with);
self.replacements.insert(what, replacement);
}
pub fn replace_ast<T: AstNode>(&mut self, what: &T, with: &T) {
self.replace(what.syntax(), with.syntax())
}
pub fn rewrite(&self, node: &SyntaxNode) -> SyntaxNode {
if self.f.is_none() && self.replacements.is_empty() {
return node.clone();
}
self.rewrite_children(node)
}
pub fn rewrite_ast<N: AstNode>(self, node: &N) -> N {
N::cast(self.rewrite(node.syntax())).unwrap()
}
/// Returns a node that encompasses all replacements to be done by this rewriter.
///
/// Passing the returned node to `rewrite` will apply all replacements queued up in `self`.
///
/// Returns `None` when there are no replacements.
pub fn rewrite_root(&self) -> Option<SyntaxNode> {
assert!(self.f.is_none());
self.replacements
.keys()
.map(|element| match element {
SyntaxElement::Node(it) => it.clone(),
SyntaxElement::Token(it) => it.parent(),
})
// If we only have one replacement, we must return its parent node, since `rewrite` does
// not replace the node passed to it.
.map(|it| it.parent().unwrap_or(it))
.fold1(|a, b| least_common_ancestor(&a, &b).unwrap())
}
fn replacement(&self, element: &SyntaxElement) -> Option<Replacement> {
if let Some(f) = &self.f {
assert!(self.replacements.is_empty());
return f(element).map(Replacement::Single);
}
self.replacements.get(element).cloned()
}
fn rewrite_children(&self, node: &SyntaxNode) -> SyntaxNode {
// FIXME: this could be made much faster.
let mut new_children = Vec::new();
for child in node.children_with_tokens() {
self.rewrite_self(&mut new_children, &child);
}
with_children(node, new_children)
}
fn rewrite_self(
&self,
acc: &mut Vec<NodeOrToken<rowan::GreenNode, rowan::GreenToken>>,
element: &SyntaxElement,
) {
if let Some(replacement) = self.replacement(&element) {
match replacement {
Replacement::Single(NodeOrToken::Node(it)) => {
acc.push(NodeOrToken::Node(it.green().clone()))
}
Replacement::Single(NodeOrToken::Token(it)) => {
acc.push(NodeOrToken::Token(it.green().clone()))
}
Replacement::Many(replacements) => {
acc.extend(replacements.iter().map(|it| match it {
NodeOrToken::Node(it) => NodeOrToken::Node(it.green().clone()),
NodeOrToken::Token(it) => NodeOrToken::Token(it.green().clone()),
}))
}
Replacement::Delete => (),
};
return;
}
let res = match element {
NodeOrToken::Token(it) => NodeOrToken::Token(it.green().clone()),
NodeOrToken::Node(it) => NodeOrToken::Node(self.rewrite_children(it).green().clone()),
};
acc.push(res)
}
}
impl ops::AddAssign for SyntaxRewriter<'_> {
fn add_assign(&mut self, rhs: SyntaxRewriter) {
assert!(rhs.f.is_none());
self.replacements.extend(rhs.replacements)
}
}
#[derive(Clone, Debug)]
enum Replacement {
Delete,
Single(SyntaxElement),
Many(Vec<SyntaxElement>),
}
fn with_children(
parent: &SyntaxNode,
new_children: Vec<NodeOrToken<rowan::GreenNode, rowan::GreenToken>>,
) -> SyntaxNode {
let len = new_children.iter().map(|it| it.text_len()).sum::<TextSize>();
let new_node = rowan::GreenNode::new(rowan::SyntaxKind(parent.kind() as u16), new_children);
let new_root_node = parent.replace_with(new_node);
let new_root_node = SyntaxNode::new_root(new_root_node);
// FIXME: use a more elegant way to re-fetch the node (#1185), make
// `range` private afterwards
let mut ptr = SyntaxNodePtr::new(parent);
ptr.range = TextRange::at(ptr.range.start(), len);
ptr.to_node(&new_root_node)
}
fn position_of_child(parent: &SyntaxNode, child: SyntaxElement) -> usize {
parent
.children_with_tokens()
.position(|it| it == child)
.expect("element is not a child of current element")
}
fn to_green_element(element: SyntaxElement) -> NodeOrToken<rowan::GreenNode, rowan::GreenToken> {
match element {
NodeOrToken::Node(it) => it.green().clone().into(),
NodeOrToken::Token(it) => it.green().clone().into(),
}
}

331
crates/syntax/src/ast.rs Normal file
View file

@ -0,0 +1,331 @@
//! Abstract Syntax Tree, layered on top of untyped `SyntaxNode`s
mod generated;
mod traits;
mod token_ext;
mod node_ext;
mod expr_ext;
pub mod edit;
pub mod make;
use std::marker::PhantomData;
use crate::{
syntax_node::{SyntaxNode, SyntaxNodeChildren, SyntaxToken},
SmolStr, SyntaxKind,
};
pub use self::{
expr_ext::{ArrayExprKind, BinOp, Effect, ElseBranch, LiteralKind, PrefixOp, RangeOp},
generated::*,
node_ext::{
AttrKind, FieldKind, NameOrNameRef, PathSegmentKind, SelfParamKind, SlicePatComponents,
StructKind, TypeBoundKind, VisibilityKind,
},
token_ext::*,
traits::*,
};
/// The main trait to go from untyped `SyntaxNode` to a typed ast. The
/// conversion itself has zero runtime cost: ast and syntax nodes have exactly
/// the same representation: a pointer to the tree root and a pointer to the
/// node itself.
pub trait AstNode {
fn can_cast(kind: SyntaxKind) -> bool
where
Self: Sized;
fn cast(syntax: SyntaxNode) -> Option<Self>
where
Self: Sized;
fn syntax(&self) -> &SyntaxNode;
}
/// Like `AstNode`, but wraps tokens rather than interior nodes.
pub trait AstToken {
fn can_cast(token: SyntaxKind) -> bool
where
Self: Sized;
fn cast(syntax: SyntaxToken) -> Option<Self>
where
Self: Sized;
fn syntax(&self) -> &SyntaxToken;
fn text(&self) -> &SmolStr {
self.syntax().text()
}
}
/// An iterator over `SyntaxNode` children of a particular AST type.
#[derive(Debug, Clone)]
pub struct AstChildren<N> {
inner: SyntaxNodeChildren,
ph: PhantomData<N>,
}
impl<N> AstChildren<N> {
fn new(parent: &SyntaxNode) -> Self {
AstChildren { inner: parent.children(), ph: PhantomData }
}
}
impl<N: AstNode> Iterator for AstChildren<N> {
type Item = N;
fn next(&mut self) -> Option<N> {
self.inner.find_map(N::cast)
}
}
mod support {
use super::{AstChildren, AstNode, SyntaxKind, SyntaxNode, SyntaxToken};
pub(super) fn child<N: AstNode>(parent: &SyntaxNode) -> Option<N> {
parent.children().find_map(N::cast)
}
pub(super) fn children<N: AstNode>(parent: &SyntaxNode) -> AstChildren<N> {
AstChildren::new(parent)
}
pub(super) fn token(parent: &SyntaxNode, kind: SyntaxKind) -> Option<SyntaxToken> {
parent.children_with_tokens().filter_map(|it| it.into_token()).find(|it| it.kind() == kind)
}
}
#[test]
fn assert_ast_is_object_safe() {
fn _f(_: &dyn AstNode, _: &dyn NameOwner) {}
}
#[test]
fn test_doc_comment_none() {
let file = SourceFile::parse(
r#"
// non-doc
mod foo {}
"#,
)
.ok()
.unwrap();
let module = file.syntax().descendants().find_map(Module::cast).unwrap();
assert!(module.doc_comment_text().is_none());
}
#[test]
fn test_doc_comment_of_items() {
let file = SourceFile::parse(
r#"
//! doc
// non-doc
mod foo {}
"#,
)
.ok()
.unwrap();
let module = file.syntax().descendants().find_map(Module::cast).unwrap();
assert_eq!("doc", module.doc_comment_text().unwrap());
}
#[test]
fn test_doc_comment_of_statics() {
let file = SourceFile::parse(
r#"
/// Number of levels
static LEVELS: i32 = 0;
"#,
)
.ok()
.unwrap();
let st = file.syntax().descendants().find_map(Static::cast).unwrap();
assert_eq!("Number of levels", st.doc_comment_text().unwrap());
}
#[test]
fn test_doc_comment_preserves_indents() {
let file = SourceFile::parse(
r#"
/// doc1
/// ```
/// fn foo() {
/// // ...
/// }
/// ```
mod foo {}
"#,
)
.ok()
.unwrap();
let module = file.syntax().descendants().find_map(Module::cast).unwrap();
assert_eq!("doc1\n```\nfn foo() {\n // ...\n}\n```", module.doc_comment_text().unwrap());
}
#[test]
fn test_doc_comment_preserves_newlines() {
let file = SourceFile::parse(
r#"
/// this
/// is
/// mod
/// foo
mod foo {}
"#,
)
.ok()
.unwrap();
let module = file.syntax().descendants().find_map(Module::cast).unwrap();
assert_eq!("this\nis\nmod\nfoo", module.doc_comment_text().unwrap());
}
#[test]
fn test_doc_comment_single_line_block_strips_suffix() {
let file = SourceFile::parse(
r#"
/** this is mod foo*/
mod foo {}
"#,
)
.ok()
.unwrap();
let module = file.syntax().descendants().find_map(Module::cast).unwrap();
assert_eq!("this is mod foo", module.doc_comment_text().unwrap());
}
#[test]
fn test_doc_comment_single_line_block_strips_suffix_whitespace() {
let file = SourceFile::parse(
r#"
/** this is mod foo */
mod foo {}
"#,
)
.ok()
.unwrap();
let module = file.syntax().descendants().find_map(Module::cast).unwrap();
assert_eq!("this is mod foo ", module.doc_comment_text().unwrap());
}
#[test]
fn test_doc_comment_multi_line_block_strips_suffix() {
let file = SourceFile::parse(
r#"
/**
this
is
mod foo
*/
mod foo {}
"#,
)
.ok()
.unwrap();
let module = file.syntax().descendants().find_map(Module::cast).unwrap();
assert_eq!(
" this\n is\n mod foo\n ",
module.doc_comment_text().unwrap()
);
}
#[test]
fn test_comments_preserve_trailing_whitespace() {
let file = SourceFile::parse(
"\n/// Representation of a Realm. \n/// In the specification these are called Realm Records.\nstruct Realm {}",
)
.ok()
.unwrap();
let def = file.syntax().descendants().find_map(Struct::cast).unwrap();
assert_eq!(
"Representation of a Realm. \nIn the specification these are called Realm Records.",
def.doc_comment_text().unwrap()
);
}
#[test]
fn test_four_slash_line_comment() {
let file = SourceFile::parse(
r#"
//// too many slashes to be a doc comment
/// doc comment
mod foo {}
"#,
)
.ok()
.unwrap();
let module = file.syntax().descendants().find_map(Module::cast).unwrap();
assert_eq!("doc comment", module.doc_comment_text().unwrap());
}
#[test]
fn test_where_predicates() {
fn assert_bound(text: &str, bound: Option<TypeBound>) {
assert_eq!(text, bound.unwrap().syntax().text().to_string());
}
let file = SourceFile::parse(
r#"
fn foo()
where
T: Clone + Copy + Debug + 'static,
'a: 'b + 'c,
Iterator::Item: 'a + Debug,
Iterator::Item: Debug + 'a,
<T as Iterator>::Item: Debug + 'a,
for<'a> F: Fn(&'a str)
{}
"#,
)
.ok()
.unwrap();
let where_clause = file.syntax().descendants().find_map(WhereClause::cast).unwrap();
let mut predicates = where_clause.predicates();
let pred = predicates.next().unwrap();
let mut bounds = pred.type_bound_list().unwrap().bounds();
assert!(pred.for_token().is_none());
assert!(pred.generic_param_list().is_none());
assert_eq!("T", pred.ty().unwrap().syntax().text().to_string());
assert_bound("Clone", bounds.next());
assert_bound("Copy", bounds.next());
assert_bound("Debug", bounds.next());
assert_bound("'static", bounds.next());
let pred = predicates.next().unwrap();
let mut bounds = pred.type_bound_list().unwrap().bounds();
assert_eq!("'a", pred.lifetime_token().unwrap().text());
assert_bound("'b", bounds.next());
assert_bound("'c", bounds.next());
let pred = predicates.next().unwrap();
let mut bounds = pred.type_bound_list().unwrap().bounds();
assert_eq!("Iterator::Item", pred.ty().unwrap().syntax().text().to_string());
assert_bound("'a", bounds.next());
let pred = predicates.next().unwrap();
let mut bounds = pred.type_bound_list().unwrap().bounds();
assert_eq!("Iterator::Item", pred.ty().unwrap().syntax().text().to_string());
assert_bound("Debug", bounds.next());
assert_bound("'a", bounds.next());
let pred = predicates.next().unwrap();
let mut bounds = pred.type_bound_list().unwrap().bounds();
assert_eq!("<T as Iterator>::Item", pred.ty().unwrap().syntax().text().to_string());
assert_bound("Debug", bounds.next());
assert_bound("'a", bounds.next());
let pred = predicates.next().unwrap();
let mut bounds = pred.type_bound_list().unwrap().bounds();
assert!(pred.for_token().is_some());
assert_eq!("<'a>", pred.generic_param_list().unwrap().syntax().text().to_string());
assert_eq!("F", pred.ty().unwrap().syntax().text().to_string());
assert_bound("Fn(&'a str)", bounds.next());
}

View file

@ -0,0 +1,642 @@
//! This module contains functions for editing syntax trees. As the trees are
//! immutable, all function here return a fresh copy of the tree, instead of
//! doing an in-place modification.
use std::{
fmt, iter,
ops::{self, RangeInclusive},
};
use arrayvec::ArrayVec;
use crate::{
algo::{self, neighbor, SyntaxRewriter},
ast::{
self,
make::{self, tokens},
AstNode, TypeBoundsOwner,
},
AstToken, Direction, InsertPosition, SmolStr, SyntaxElement, SyntaxKind,
SyntaxKind::{ATTR, COMMENT, WHITESPACE},
SyntaxNode, SyntaxToken, T,
};
impl ast::BinExpr {
#[must_use]
pub fn replace_op(&self, op: SyntaxKind) -> Option<ast::BinExpr> {
let op_node: SyntaxElement = self.op_details()?.0.into();
let to_insert: Option<SyntaxElement> = Some(make::token(op).into());
Some(self.replace_children(single_node(op_node), to_insert))
}
}
impl ast::Fn {
#[must_use]
pub fn with_body(&self, body: ast::BlockExpr) -> ast::Fn {
let mut to_insert: ArrayVec<[SyntaxElement; 2]> = ArrayVec::new();
let old_body_or_semi: SyntaxElement = if let Some(old_body) = self.body() {
old_body.syntax().clone().into()
} else if let Some(semi) = self.semicolon_token() {
to_insert.push(make::tokens::single_space().into());
semi.into()
} else {
to_insert.push(make::tokens::single_space().into());
to_insert.push(body.syntax().clone().into());
return self.insert_children(InsertPosition::Last, to_insert);
};
to_insert.push(body.syntax().clone().into());
self.replace_children(single_node(old_body_or_semi), to_insert)
}
}
fn make_multiline<N>(node: N) -> N
where
N: AstNode + Clone,
{
let l_curly = match node.syntax().children_with_tokens().find(|it| it.kind() == T!['{']) {
Some(it) => it,
None => return node,
};
let sibling = match l_curly.next_sibling_or_token() {
Some(it) => it,
None => return node,
};
let existing_ws = match sibling.as_token() {
None => None,
Some(tok) if tok.kind() != WHITESPACE => None,
Some(ws) => {
if ws.text().contains('\n') {
return node;
}
Some(ws.clone())
}
};
let indent = leading_indent(node.syntax()).unwrap_or_default();
let ws = tokens::WsBuilder::new(&format!("\n{}", indent));
let to_insert = iter::once(ws.ws().into());
match existing_ws {
None => node.insert_children(InsertPosition::After(l_curly), to_insert),
Some(ws) => node.replace_children(single_node(ws), to_insert),
}
}
impl ast::AssocItemList {
#[must_use]
pub fn append_items(
&self,
items: impl IntoIterator<Item = ast::AssocItem>,
) -> ast::AssocItemList {
let mut res = self.clone();
if !self.syntax().text().contains_char('\n') {
res = make_multiline(res);
}
items.into_iter().for_each(|it| res = res.append_item(it));
res
}
#[must_use]
pub fn append_item(&self, item: ast::AssocItem) -> ast::AssocItemList {
let (indent, position) = match self.assoc_items().last() {
Some(it) => (
leading_indent(it.syntax()).unwrap_or_default().to_string(),
InsertPosition::After(it.syntax().clone().into()),
),
None => match self.l_curly_token() {
Some(it) => (
" ".to_string() + &leading_indent(self.syntax()).unwrap_or_default(),
InsertPosition::After(it.into()),
),
None => return self.clone(),
},
};
let ws = tokens::WsBuilder::new(&format!("\n{}", indent));
let to_insert: ArrayVec<[SyntaxElement; 2]> =
[ws.ws().into(), item.syntax().clone().into()].into();
self.insert_children(position, to_insert)
}
}
impl ast::RecordExprFieldList {
#[must_use]
pub fn append_field(&self, field: &ast::RecordExprField) -> ast::RecordExprFieldList {
self.insert_field(InsertPosition::Last, field)
}
#[must_use]
pub fn insert_field(
&self,
position: InsertPosition<&'_ ast::RecordExprField>,
field: &ast::RecordExprField,
) -> ast::RecordExprFieldList {
let is_multiline = self.syntax().text().contains_char('\n');
let ws;
let space = if is_multiline {
ws = tokens::WsBuilder::new(&format!(
"\n{} ",
leading_indent(self.syntax()).unwrap_or_default()
));
ws.ws()
} else {
tokens::single_space()
};
let mut to_insert: ArrayVec<[SyntaxElement; 4]> = ArrayVec::new();
to_insert.push(space.into());
to_insert.push(field.syntax().clone().into());
to_insert.push(make::token(T![,]).into());
macro_rules! after_l_curly {
() => {{
let anchor = match self.l_curly_token() {
Some(it) => it.into(),
None => return self.clone(),
};
InsertPosition::After(anchor)
}};
}
macro_rules! after_field {
($anchor:expr) => {
if let Some(comma) = $anchor
.syntax()
.siblings_with_tokens(Direction::Next)
.find(|it| it.kind() == T![,])
{
InsertPosition::After(comma)
} else {
to_insert.insert(0, make::token(T![,]).into());
InsertPosition::After($anchor.syntax().clone().into())
}
};
};
let position = match position {
InsertPosition::First => after_l_curly!(),
InsertPosition::Last => {
if !is_multiline {
// don't insert comma before curly
to_insert.pop();
}
match self.fields().last() {
Some(it) => after_field!(it),
None => after_l_curly!(),
}
}
InsertPosition::Before(anchor) => {
InsertPosition::Before(anchor.syntax().clone().into())
}
InsertPosition::After(anchor) => after_field!(anchor),
};
self.insert_children(position, to_insert)
}
}
impl ast::TypeAlias {
#[must_use]
pub fn remove_bounds(&self) -> ast::TypeAlias {
let colon = match self.colon_token() {
Some(it) => it,
None => return self.clone(),
};
let end = match self.type_bound_list() {
Some(it) => it.syntax().clone().into(),
None => colon.clone().into(),
};
self.replace_children(colon.into()..=end, iter::empty())
}
}
impl ast::TypeParam {
#[must_use]
pub fn remove_bounds(&self) -> ast::TypeParam {
let colon = match self.colon_token() {
Some(it) => it,
None => return self.clone(),
};
let end = match self.type_bound_list() {
Some(it) => it.syntax().clone().into(),
None => colon.clone().into(),
};
self.replace_children(colon.into()..=end, iter::empty())
}
}
impl ast::Path {
#[must_use]
pub fn with_segment(&self, segment: ast::PathSegment) -> ast::Path {
if let Some(old) = self.segment() {
return self.replace_children(
single_node(old.syntax().clone()),
iter::once(segment.syntax().clone().into()),
);
}
self.clone()
}
}
impl ast::PathSegment {
#[must_use]
pub fn with_type_args(&self, type_args: ast::GenericArgList) -> ast::PathSegment {
self._with_type_args(type_args, false)
}
#[must_use]
pub fn with_turbo_fish(&self, type_args: ast::GenericArgList) -> ast::PathSegment {
self._with_type_args(type_args, true)
}
fn _with_type_args(&self, type_args: ast::GenericArgList, turbo: bool) -> ast::PathSegment {
if let Some(old) = self.generic_arg_list() {
return self.replace_children(
single_node(old.syntax().clone()),
iter::once(type_args.syntax().clone().into()),
);
}
let mut to_insert: ArrayVec<[SyntaxElement; 2]> = ArrayVec::new();
if turbo {
to_insert.push(make::token(T![::]).into());
}
to_insert.push(type_args.syntax().clone().into());
self.insert_children(InsertPosition::Last, to_insert)
}
}
impl ast::Use {
#[must_use]
pub fn with_use_tree(&self, use_tree: ast::UseTree) -> ast::Use {
if let Some(old) = self.use_tree() {
return self.replace_descendant(old, use_tree);
}
self.clone()
}
pub fn remove(&self) -> SyntaxRewriter<'static> {
let mut res = SyntaxRewriter::default();
res.delete(self.syntax());
let next_ws = self
.syntax()
.next_sibling_or_token()
.and_then(|it| it.into_token())
.and_then(ast::Whitespace::cast);
if let Some(next_ws) = next_ws {
let ws_text = next_ws.syntax().text();
if ws_text.starts_with('\n') {
let rest = &ws_text[1..];
if rest.is_empty() {
res.delete(next_ws.syntax())
} else {
res.replace(next_ws.syntax(), &make::tokens::whitespace(rest));
}
}
}
res
}
}
impl ast::UseTree {
#[must_use]
pub fn with_path(&self, path: ast::Path) -> ast::UseTree {
if let Some(old) = self.path() {
return self.replace_descendant(old, path);
}
self.clone()
}
#[must_use]
pub fn with_use_tree_list(&self, use_tree_list: ast::UseTreeList) -> ast::UseTree {
if let Some(old) = self.use_tree_list() {
return self.replace_descendant(old, use_tree_list);
}
self.clone()
}
#[must_use]
pub fn split_prefix(&self, prefix: &ast::Path) -> ast::UseTree {
let suffix = match split_path_prefix(&prefix) {
Some(it) => it,
None => return self.clone(),
};
let use_tree = make::use_tree(
suffix,
self.use_tree_list(),
self.rename(),
self.star_token().is_some(),
);
let nested = make::use_tree_list(iter::once(use_tree));
return make::use_tree(prefix.clone(), Some(nested), None, false);
fn split_path_prefix(prefix: &ast::Path) -> Option<ast::Path> {
let parent = prefix.parent_path()?;
let segment = parent.segment()?;
if algo::has_errors(segment.syntax()) {
return None;
}
let mut res = make::path_unqualified(segment);
for p in iter::successors(parent.parent_path(), |it| it.parent_path()) {
res = make::path_qualified(res, p.segment()?);
}
Some(res)
}
}
pub fn remove(&self) -> SyntaxRewriter<'static> {
let mut res = SyntaxRewriter::default();
res.delete(self.syntax());
for &dir in [Direction::Next, Direction::Prev].iter() {
if let Some(nb) = neighbor(self, dir) {
self.syntax()
.siblings_with_tokens(dir)
.skip(1)
.take_while(|it| it.as_node() != Some(nb.syntax()))
.for_each(|el| res.delete(&el));
return res;
}
}
res
}
}
impl ast::MatchArmList {
#[must_use]
pub fn append_arms(&self, items: impl IntoIterator<Item = ast::MatchArm>) -> ast::MatchArmList {
let mut res = self.clone();
res = res.strip_if_only_whitespace();
if !res.syntax().text().contains_char('\n') {
res = make_multiline(res);
}
items.into_iter().for_each(|it| res = res.append_arm(it));
res
}
fn strip_if_only_whitespace(&self) -> ast::MatchArmList {
let mut iter = self.syntax().children_with_tokens().skip_while(|it| it.kind() != T!['{']);
iter.next(); // Eat the curly
let mut inner = iter.take_while(|it| it.kind() != T!['}']);
if !inner.clone().all(|it| it.kind() == WHITESPACE) {
return self.clone();
}
let start = match inner.next() {
Some(s) => s,
None => return self.clone(),
};
let end = match inner.last() {
Some(s) => s,
None => start.clone(),
};
self.replace_children(start..=end, &mut iter::empty())
}
#[must_use]
pub fn remove_placeholder(&self) -> ast::MatchArmList {
let placeholder =
self.arms().find(|arm| matches!(arm.pat(), Some(ast::Pat::WildcardPat(_))));
if let Some(placeholder) = placeholder {
self.remove_arm(&placeholder)
} else {
self.clone()
}
}
#[must_use]
fn remove_arm(&self, arm: &ast::MatchArm) -> ast::MatchArmList {
let start = arm.syntax().clone();
let end = if let Some(comma) = start
.siblings_with_tokens(Direction::Next)
.skip(1)
.skip_while(|it| it.kind().is_trivia())
.next()
.filter(|it| it.kind() == T![,])
{
comma
} else {
start.clone().into()
};
self.replace_children(start.into()..=end, None)
}
#[must_use]
pub fn append_arm(&self, item: ast::MatchArm) -> ast::MatchArmList {
let r_curly = match self.syntax().children_with_tokens().find(|it| it.kind() == T!['}']) {
Some(t) => t,
None => return self.clone(),
};
let position = InsertPosition::Before(r_curly.into());
let arm_ws = tokens::WsBuilder::new(" ");
let match_indent = &leading_indent(self.syntax()).unwrap_or_default();
let match_ws = tokens::WsBuilder::new(&format!("\n{}", match_indent));
let to_insert: ArrayVec<[SyntaxElement; 3]> =
[arm_ws.ws().into(), item.syntax().clone().into(), match_ws.ws().into()].into();
self.insert_children(position, to_insert)
}
}
#[must_use]
pub fn remove_attrs_and_docs<N: ast::AttrsOwner>(node: &N) -> N {
N::cast(remove_attrs_and_docs_inner(node.syntax().clone())).unwrap()
}
fn remove_attrs_and_docs_inner(mut node: SyntaxNode) -> SyntaxNode {
while let Some(start) =
node.children_with_tokens().find(|it| it.kind() == ATTR || it.kind() == COMMENT)
{
let end = match &start.next_sibling_or_token() {
Some(el) if el.kind() == WHITESPACE => el.clone(),
Some(_) | None => start.clone(),
};
node = algo::replace_children(&node, start..=end, &mut iter::empty());
}
node
}
#[derive(Debug, Clone, Copy)]
pub struct IndentLevel(pub u8);
impl From<u8> for IndentLevel {
fn from(level: u8) -> IndentLevel {
IndentLevel(level)
}
}
impl fmt::Display for IndentLevel {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let spaces = " ";
let buf;
let len = self.0 as usize * 4;
let indent = if len <= spaces.len() {
&spaces[..len]
} else {
buf = iter::repeat(' ').take(len).collect::<String>();
&buf
};
fmt::Display::fmt(indent, f)
}
}
impl ops::Add<u8> for IndentLevel {
type Output = IndentLevel;
fn add(self, rhs: u8) -> IndentLevel {
IndentLevel(self.0 + rhs)
}
}
impl IndentLevel {
pub fn from_node(node: &SyntaxNode) -> IndentLevel {
let first_token = match node.first_token() {
Some(it) => it,
None => return IndentLevel(0),
};
for ws in prev_tokens(first_token).filter_map(ast::Whitespace::cast) {
let text = ws.syntax().text();
if let Some(pos) = text.rfind('\n') {
let level = text[pos + 1..].chars().count() / 4;
return IndentLevel(level as u8);
}
}
IndentLevel(0)
}
/// XXX: this intentionally doesn't change the indent of the very first token.
/// Ie, in something like
/// ```
/// fn foo() {
/// 92
/// }
/// ```
/// if you indent the block, the `{` token would stay put.
fn increase_indent(self, node: SyntaxNode) -> SyntaxNode {
let mut rewriter = SyntaxRewriter::default();
node.descendants_with_tokens()
.filter_map(|el| el.into_token())
.filter_map(ast::Whitespace::cast)
.filter(|ws| {
let text = ws.syntax().text();
text.contains('\n')
})
.for_each(|ws| {
let new_ws = make::tokens::whitespace(&format!("{}{}", ws.syntax(), self,));
rewriter.replace(ws.syntax(), &new_ws)
});
rewriter.rewrite(&node)
}
fn decrease_indent(self, node: SyntaxNode) -> SyntaxNode {
let mut rewriter = SyntaxRewriter::default();
node.descendants_with_tokens()
.filter_map(|el| el.into_token())
.filter_map(ast::Whitespace::cast)
.filter(|ws| {
let text = ws.syntax().text();
text.contains('\n')
})
.for_each(|ws| {
let new_ws = make::tokens::whitespace(
&ws.syntax().text().replace(&format!("\n{}", self), "\n"),
);
rewriter.replace(ws.syntax(), &new_ws)
});
rewriter.rewrite(&node)
}
}
// FIXME: replace usages with IndentLevel above
fn leading_indent(node: &SyntaxNode) -> Option<SmolStr> {
for token in prev_tokens(node.first_token()?) {
if let Some(ws) = ast::Whitespace::cast(token.clone()) {
let ws_text = ws.text();
if let Some(pos) = ws_text.rfind('\n') {
return Some(ws_text[pos + 1..].into());
}
}
if token.text().contains('\n') {
break;
}
}
None
}
fn prev_tokens(token: SyntaxToken) -> impl Iterator<Item = SyntaxToken> {
iter::successors(Some(token), |token| token.prev_token())
}
pub trait AstNodeEdit: AstNode + Clone + Sized {
#[must_use]
fn insert_children(
&self,
position: InsertPosition<SyntaxElement>,
to_insert: impl IntoIterator<Item = SyntaxElement>,
) -> Self {
let new_syntax = algo::insert_children(self.syntax(), position, to_insert);
Self::cast(new_syntax).unwrap()
}
#[must_use]
fn replace_children(
&self,
to_replace: RangeInclusive<SyntaxElement>,
to_insert: impl IntoIterator<Item = SyntaxElement>,
) -> Self {
let new_syntax = algo::replace_children(self.syntax(), to_replace, to_insert);
Self::cast(new_syntax).unwrap()
}
#[must_use]
fn replace_descendant<D: AstNode>(&self, old: D, new: D) -> Self {
self.replace_descendants(iter::once((old, new)))
}
#[must_use]
fn replace_descendants<D: AstNode>(
&self,
replacement_map: impl IntoIterator<Item = (D, D)>,
) -> Self {
let mut rewriter = SyntaxRewriter::default();
for (from, to) in replacement_map {
rewriter.replace(from.syntax(), to.syntax())
}
rewriter.rewrite_ast(self)
}
#[must_use]
fn indent(&self, level: IndentLevel) -> Self {
Self::cast(level.increase_indent(self.syntax().clone())).unwrap()
}
#[must_use]
fn dedent(&self, level: IndentLevel) -> Self {
Self::cast(level.decrease_indent(self.syntax().clone())).unwrap()
}
#[must_use]
fn reset_indent(&self) -> Self {
let level = IndentLevel::from_node(self.syntax());
self.dedent(level)
}
}
impl<N: AstNode + Clone> AstNodeEdit for N {}
fn single_node(element: impl Into<SyntaxElement>) -> RangeInclusive<SyntaxElement> {
let element = element.into();
element.clone()..=element
}
#[test]
fn test_increase_indent() {
let arm_list = {
let arm = make::match_arm(iter::once(make::wildcard_pat().into()), make::expr_unit());
make::match_arm_list(vec![arm.clone(), arm])
};
assert_eq!(
arm_list.syntax().to_string(),
"{
_ => (),
_ => (),
}"
);
let indented = arm_list.indent(IndentLevel(2));
assert_eq!(
indented.syntax().to_string(),
"{
_ => (),
_ => (),
}"
);
}

View file

@ -0,0 +1,418 @@
//! Various extension methods to ast Expr Nodes, which are hard to code-generate.
use crate::{
ast::{self, support, AstChildren, AstNode},
SmolStr,
SyntaxKind::*,
SyntaxToken, T,
};
impl ast::AttrsOwner for ast::Expr {}
impl ast::Expr {
pub fn is_block_like(&self) -> bool {
match self {
ast::Expr::IfExpr(_)
| ast::Expr::LoopExpr(_)
| ast::Expr::ForExpr(_)
| ast::Expr::WhileExpr(_)
| ast::Expr::BlockExpr(_)
| ast::Expr::MatchExpr(_)
| ast::Expr::EffectExpr(_) => true,
_ => false,
}
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum ElseBranch {
Block(ast::BlockExpr),
IfExpr(ast::IfExpr),
}
impl ast::IfExpr {
pub fn then_branch(&self) -> Option<ast::BlockExpr> {
self.blocks().next()
}
pub fn else_branch(&self) -> Option<ElseBranch> {
let res = match self.blocks().nth(1) {
Some(block) => ElseBranch::Block(block),
None => {
let elif: ast::IfExpr = support::child(self.syntax())?;
ElseBranch::IfExpr(elif)
}
};
Some(res)
}
pub fn blocks(&self) -> AstChildren<ast::BlockExpr> {
support::children(self.syntax())
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum PrefixOp {
/// The `*` operator for dereferencing
Deref,
/// The `!` operator for logical inversion
Not,
/// The `-` operator for negation
Neg,
}
impl ast::PrefixExpr {
pub fn op_kind(&self) -> Option<PrefixOp> {
match self.op_token()?.kind() {
T![*] => Some(PrefixOp::Deref),
T![!] => Some(PrefixOp::Not),
T![-] => Some(PrefixOp::Neg),
_ => None,
}
}
pub fn op_token(&self) -> Option<SyntaxToken> {
self.syntax().first_child_or_token()?.into_token()
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum BinOp {
/// The `||` operator for boolean OR
BooleanOr,
/// The `&&` operator for boolean AND
BooleanAnd,
/// The `==` operator for equality testing
EqualityTest,
/// The `!=` operator for equality testing
NegatedEqualityTest,
/// The `<=` operator for lesser-equal testing
LesserEqualTest,
/// The `>=` operator for greater-equal testing
GreaterEqualTest,
/// The `<` operator for comparison
LesserTest,
/// The `>` operator for comparison
GreaterTest,
/// The `+` operator for addition
Addition,
/// The `*` operator for multiplication
Multiplication,
/// The `-` operator for subtraction
Subtraction,
/// The `/` operator for division
Division,
/// The `%` operator for remainder after division
Remainder,
/// The `<<` operator for left shift
LeftShift,
/// The `>>` operator for right shift
RightShift,
/// The `^` operator for bitwise XOR
BitwiseXor,
/// The `|` operator for bitwise OR
BitwiseOr,
/// The `&` operator for bitwise AND
BitwiseAnd,
/// The `=` operator for assignment
Assignment,
/// The `+=` operator for assignment after addition
AddAssign,
/// The `/=` operator for assignment after division
DivAssign,
/// The `*=` operator for assignment after multiplication
MulAssign,
/// The `%=` operator for assignment after remainders
RemAssign,
/// The `>>=` operator for assignment after shifting right
ShrAssign,
/// The `<<=` operator for assignment after shifting left
ShlAssign,
/// The `-=` operator for assignment after subtraction
SubAssign,
/// The `|=` operator for assignment after bitwise OR
BitOrAssign,
/// The `&=` operator for assignment after bitwise AND
BitAndAssign,
/// The `^=` operator for assignment after bitwise XOR
BitXorAssign,
}
impl BinOp {
pub fn is_assignment(self) -> bool {
match self {
BinOp::Assignment
| BinOp::AddAssign
| BinOp::DivAssign
| BinOp::MulAssign
| BinOp::RemAssign
| BinOp::ShrAssign
| BinOp::ShlAssign
| BinOp::SubAssign
| BinOp::BitOrAssign
| BinOp::BitAndAssign
| BinOp::BitXorAssign => true,
_ => false,
}
}
}
impl ast::BinExpr {
pub fn op_details(&self) -> Option<(SyntaxToken, BinOp)> {
self.syntax().children_with_tokens().filter_map(|it| it.into_token()).find_map(|c| {
let bin_op = match c.kind() {
T![||] => BinOp::BooleanOr,
T![&&] => BinOp::BooleanAnd,
T![==] => BinOp::EqualityTest,
T![!=] => BinOp::NegatedEqualityTest,
T![<=] => BinOp::LesserEqualTest,
T![>=] => BinOp::GreaterEqualTest,
T![<] => BinOp::LesserTest,
T![>] => BinOp::GreaterTest,
T![+] => BinOp::Addition,
T![*] => BinOp::Multiplication,
T![-] => BinOp::Subtraction,
T![/] => BinOp::Division,
T![%] => BinOp::Remainder,
T![<<] => BinOp::LeftShift,
T![>>] => BinOp::RightShift,
T![^] => BinOp::BitwiseXor,
T![|] => BinOp::BitwiseOr,
T![&] => BinOp::BitwiseAnd,
T![=] => BinOp::Assignment,
T![+=] => BinOp::AddAssign,
T![/=] => BinOp::DivAssign,
T![*=] => BinOp::MulAssign,
T![%=] => BinOp::RemAssign,
T![>>=] => BinOp::ShrAssign,
T![<<=] => BinOp::ShlAssign,
T![-=] => BinOp::SubAssign,
T![|=] => BinOp::BitOrAssign,
T![&=] => BinOp::BitAndAssign,
T![^=] => BinOp::BitXorAssign,
_ => return None,
};
Some((c, bin_op))
})
}
pub fn op_kind(&self) -> Option<BinOp> {
self.op_details().map(|t| t.1)
}
pub fn op_token(&self) -> Option<SyntaxToken> {
self.op_details().map(|t| t.0)
}
pub fn lhs(&self) -> Option<ast::Expr> {
support::children(self.syntax()).next()
}
pub fn rhs(&self) -> Option<ast::Expr> {
support::children(self.syntax()).nth(1)
}
pub fn sub_exprs(&self) -> (Option<ast::Expr>, Option<ast::Expr>) {
let mut children = support::children(self.syntax());
let first = children.next();
let second = children.next();
(first, second)
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum RangeOp {
/// `..`
Exclusive,
/// `..=`
Inclusive,
}
impl ast::RangeExpr {
fn op_details(&self) -> Option<(usize, SyntaxToken, RangeOp)> {
self.syntax().children_with_tokens().enumerate().find_map(|(ix, child)| {
let token = child.into_token()?;
let bin_op = match token.kind() {
T![..] => RangeOp::Exclusive,
T![..=] => RangeOp::Inclusive,
_ => return None,
};
Some((ix, token, bin_op))
})
}
pub fn op_kind(&self) -> Option<RangeOp> {
self.op_details().map(|t| t.2)
}
pub fn op_token(&self) -> Option<SyntaxToken> {
self.op_details().map(|t| t.1)
}
pub fn start(&self) -> Option<ast::Expr> {
let op_ix = self.op_details()?.0;
self.syntax()
.children_with_tokens()
.take(op_ix)
.find_map(|it| ast::Expr::cast(it.into_node()?))
}
pub fn end(&self) -> Option<ast::Expr> {
let op_ix = self.op_details()?.0;
self.syntax()
.children_with_tokens()
.skip(op_ix + 1)
.find_map(|it| ast::Expr::cast(it.into_node()?))
}
}
impl ast::IndexExpr {
pub fn base(&self) -> Option<ast::Expr> {
support::children(self.syntax()).next()
}
pub fn index(&self) -> Option<ast::Expr> {
support::children(self.syntax()).nth(1)
}
}
pub enum ArrayExprKind {
Repeat { initializer: Option<ast::Expr>, repeat: Option<ast::Expr> },
ElementList(AstChildren<ast::Expr>),
}
impl ast::ArrayExpr {
pub fn kind(&self) -> ArrayExprKind {
if self.is_repeat() {
ArrayExprKind::Repeat {
initializer: support::children(self.syntax()).next(),
repeat: support::children(self.syntax()).nth(1),
}
} else {
ArrayExprKind::ElementList(support::children(self.syntax()))
}
}
fn is_repeat(&self) -> bool {
self.syntax().children_with_tokens().any(|it| it.kind() == T![;])
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum LiteralKind {
String,
ByteString,
Char,
Byte,
IntNumber { suffix: Option<SmolStr> },
FloatNumber { suffix: Option<SmolStr> },
Bool(bool),
}
impl ast::Literal {
pub fn token(&self) -> SyntaxToken {
self.syntax()
.children_with_tokens()
.find(|e| e.kind() != ATTR && !e.kind().is_trivia())
.and_then(|e| e.into_token())
.unwrap()
}
fn find_suffix(text: &str, possible_suffixes: &[&str]) -> Option<SmolStr> {
possible_suffixes
.iter()
.find(|&suffix| text.ends_with(suffix))
.map(|&suffix| SmolStr::new(suffix))
}
pub fn kind(&self) -> LiteralKind {
const INT_SUFFIXES: [&str; 12] = [
"u64", "u32", "u16", "u8", "usize", "isize", "i64", "i32", "i16", "i8", "u128", "i128",
];
const FLOAT_SUFFIXES: [&str; 2] = ["f32", "f64"];
let token = self.token();
match token.kind() {
INT_NUMBER => {
// FYI: there was a bug here previously, thus the if statement below is necessary.
// The lexer treats e.g. `1f64` as an integer literal. See
// https://github.com/rust-analyzer/rust-analyzer/issues/1592
// and the comments on the linked PR.
let text = token.text();
if let suffix @ Some(_) = Self::find_suffix(&text, &FLOAT_SUFFIXES) {
LiteralKind::FloatNumber { suffix }
} else {
LiteralKind::IntNumber { suffix: Self::find_suffix(&text, &INT_SUFFIXES) }
}
}
FLOAT_NUMBER => {
let text = token.text();
LiteralKind::FloatNumber { suffix: Self::find_suffix(&text, &FLOAT_SUFFIXES) }
}
STRING | RAW_STRING => LiteralKind::String,
T![true] => LiteralKind::Bool(true),
T![false] => LiteralKind::Bool(false),
BYTE_STRING | RAW_BYTE_STRING => LiteralKind::ByteString,
CHAR => LiteralKind::Char,
BYTE => LiteralKind::Byte,
_ => unreachable!(),
}
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Effect {
Async(SyntaxToken),
Unsafe(SyntaxToken),
Try(SyntaxToken),
// Very much not an effect, but we stuff it into this node anyway
Label(ast::Label),
}
impl ast::EffectExpr {
pub fn effect(&self) -> Effect {
if let Some(token) = self.async_token() {
return Effect::Async(token);
}
if let Some(token) = self.unsafe_token() {
return Effect::Unsafe(token);
}
if let Some(token) = self.try_token() {
return Effect::Try(token);
}
if let Some(label) = self.label() {
return Effect::Label(label);
}
unreachable!("ast::EffectExpr without Effect")
}
}
impl ast::BlockExpr {
/// false if the block is an intrinsic part of the syntax and can't be
/// replaced with arbitrary expression.
///
/// ```not_rust
/// fn foo() { not_stand_alone }
/// const FOO: () = { stand_alone };
/// ```
pub fn is_standalone(&self) -> bool {
let parent = match self.syntax().parent() {
Some(it) => it,
None => return true,
};
!matches!(parent.kind(), FN | IF_EXPR | WHILE_EXPR | LOOP_EXPR | EFFECT_EXPR)
}
}
#[test]
fn test_literal_with_attr() {
let parse = ast::SourceFile::parse(r#"const _: &str = { #[attr] "Hello" };"#);
let lit = parse.tree().syntax().descendants().find_map(ast::Literal::cast).unwrap();
assert_eq!(lit.token().text(), r#""Hello""#);
}
impl ast::RecordExprField {
pub fn parent_record_lit(&self) -> ast::RecordExpr {
self.syntax().ancestors().find_map(ast::RecordExpr::cast).unwrap()
}
}

View file

@ -0,0 +1,41 @@
//! This file is actually hand-written, but the submodules are indeed generated.
#[rustfmt::skip]
mod nodes;
#[rustfmt::skip]
mod tokens;
use crate::{
AstNode,
SyntaxKind::{self, *},
SyntaxNode,
};
pub use {nodes::*, tokens::*};
// Stmt is the only nested enum, so it's easier to just hand-write it
impl AstNode for Stmt {
fn can_cast(kind: SyntaxKind) -> bool {
match kind {
LET_STMT | EXPR_STMT => true,
_ => Item::can_cast(kind),
}
}
fn cast(syntax: SyntaxNode) -> Option<Self> {
let res = match syntax.kind() {
LET_STMT => Stmt::LetStmt(LetStmt { syntax }),
EXPR_STMT => Stmt::ExprStmt(ExprStmt { syntax }),
_ => {
let item = Item::cast(syntax)?;
Stmt::Item(item)
}
};
Some(res)
}
fn syntax(&self) -> &SyntaxNode {
match self {
Stmt::LetStmt(it) => &it.syntax,
Stmt::ExprStmt(it) => &it.syntax,
Stmt::Item(it) => it.syntax(),
}
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,91 @@
//! Generated file, do not edit by hand, see `xtask/src/codegen`
use crate::{
ast::AstToken,
SyntaxKind::{self, *},
SyntaxToken,
};
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Whitespace {
pub(crate) syntax: SyntaxToken,
}
impl std::fmt::Display for Whitespace {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
std::fmt::Display::fmt(&self.syntax, f)
}
}
impl AstToken for Whitespace {
fn can_cast(kind: SyntaxKind) -> bool { kind == WHITESPACE }
fn cast(syntax: SyntaxToken) -> Option<Self> {
if Self::can_cast(syntax.kind()) {
Some(Self { syntax })
} else {
None
}
}
fn syntax(&self) -> &SyntaxToken { &self.syntax }
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Comment {
pub(crate) syntax: SyntaxToken,
}
impl std::fmt::Display for Comment {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
std::fmt::Display::fmt(&self.syntax, f)
}
}
impl AstToken for Comment {
fn can_cast(kind: SyntaxKind) -> bool { kind == COMMENT }
fn cast(syntax: SyntaxToken) -> Option<Self> {
if Self::can_cast(syntax.kind()) {
Some(Self { syntax })
} else {
None
}
}
fn syntax(&self) -> &SyntaxToken { &self.syntax }
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct String {
pub(crate) syntax: SyntaxToken,
}
impl std::fmt::Display for String {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
std::fmt::Display::fmt(&self.syntax, f)
}
}
impl AstToken for String {
fn can_cast(kind: SyntaxKind) -> bool { kind == STRING }
fn cast(syntax: SyntaxToken) -> Option<Self> {
if Self::can_cast(syntax.kind()) {
Some(Self { syntax })
} else {
None
}
}
fn syntax(&self) -> &SyntaxToken { &self.syntax }
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct RawString {
pub(crate) syntax: SyntaxToken,
}
impl std::fmt::Display for RawString {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
std::fmt::Display::fmt(&self.syntax, f)
}
}
impl AstToken for RawString {
fn can_cast(kind: SyntaxKind) -> bool { kind == RAW_STRING }
fn cast(syntax: SyntaxToken) -> Option<Self> {
if Self::can_cast(syntax.kind()) {
Some(Self { syntax })
} else {
None
}
}
fn syntax(&self) -> &SyntaxToken { &self.syntax }
}

View file

@ -0,0 +1,392 @@
//! This module contains free-standing functions for creating AST fragments out
//! of smaller pieces.
//!
//! Note that all functions here intended to be stupid constructors, which just
//! assemble a finish node from immediate children. If you want to do something
//! smarter than that, it probably doesn't belong in this module.
use itertools::Itertools;
use stdx::format_to;
use crate::{ast, AstNode, SourceFile, SyntaxKind, SyntaxNode, SyntaxToken};
pub fn name(text: &str) -> ast::Name {
ast_from_text(&format!("mod {};", text))
}
pub fn name_ref(text: &str) -> ast::NameRef {
ast_from_text(&format!("fn f() {{ {}; }}", text))
}
pub fn ty(text: &str) -> ast::Type {
ast_from_text(&format!("impl {} for D {{}};", text))
}
pub fn path_segment(name_ref: ast::NameRef) -> ast::PathSegment {
ast_from_text(&format!("use {};", name_ref))
}
pub fn path_unqualified(segment: ast::PathSegment) -> ast::Path {
path_from_text(&format!("use {}", segment))
}
pub fn path_qualified(qual: ast::Path, segment: ast::PathSegment) -> ast::Path {
path_from_text(&format!("{}::{}", qual, segment))
}
pub fn path_from_text(text: &str) -> ast::Path {
ast_from_text(text)
}
pub fn use_tree(
path: ast::Path,
use_tree_list: Option<ast::UseTreeList>,
alias: Option<ast::Rename>,
add_star: bool,
) -> ast::UseTree {
let mut buf = "use ".to_string();
buf += &path.syntax().to_string();
if let Some(use_tree_list) = use_tree_list {
format_to!(buf, "::{}", use_tree_list);
}
if add_star {
buf += "::*";
}
if let Some(alias) = alias {
format_to!(buf, " {}", alias);
}
ast_from_text(&buf)
}
pub fn use_tree_list(use_trees: impl IntoIterator<Item = ast::UseTree>) -> ast::UseTreeList {
let use_trees = use_trees.into_iter().map(|it| it.syntax().clone()).join(", ");
ast_from_text(&format!("use {{{}}};", use_trees))
}
pub fn use_(use_tree: ast::UseTree) -> ast::Use {
ast_from_text(&format!("use {};", use_tree))
}
pub fn record_expr_field(name: ast::NameRef, expr: Option<ast::Expr>) -> ast::RecordExprField {
return match expr {
Some(expr) => from_text(&format!("{}: {}", name, expr)),
None => from_text(&name.to_string()),
};
fn from_text(text: &str) -> ast::RecordExprField {
ast_from_text(&format!("fn f() {{ S {{ {}, }} }}", text))
}
}
pub fn record_field(name: ast::NameRef, ty: ast::Type) -> ast::RecordField {
ast_from_text(&format!("struct S {{ {}: {}, }}", name, ty))
}
pub fn block_expr(
stmts: impl IntoIterator<Item = ast::Stmt>,
tail_expr: Option<ast::Expr>,
) -> ast::BlockExpr {
let mut buf = "{\n".to_string();
for stmt in stmts.into_iter() {
format_to!(buf, " {}\n", stmt);
}
if let Some(tail_expr) = tail_expr {
format_to!(buf, " {}\n", tail_expr)
}
buf += "}";
ast_from_text(&format!("fn f() {}", buf))
}
pub fn expr_unit() -> ast::Expr {
expr_from_text("()")
}
pub fn expr_empty_block() -> ast::Expr {
expr_from_text("{}")
}
pub fn expr_unimplemented() -> ast::Expr {
expr_from_text("unimplemented!()")
}
pub fn expr_unreachable() -> ast::Expr {
expr_from_text("unreachable!()")
}
pub fn expr_todo() -> ast::Expr {
expr_from_text("todo!()")
}
pub fn expr_path(path: ast::Path) -> ast::Expr {
expr_from_text(&path.to_string())
}
pub fn expr_continue() -> ast::Expr {
expr_from_text("continue")
}
pub fn expr_break() -> ast::Expr {
expr_from_text("break")
}
pub fn expr_return() -> ast::Expr {
expr_from_text("return")
}
pub fn expr_match(expr: ast::Expr, match_arm_list: ast::MatchArmList) -> ast::Expr {
expr_from_text(&format!("match {} {}", expr, match_arm_list))
}
pub fn expr_if(condition: ast::Condition, then_branch: ast::BlockExpr) -> ast::Expr {
expr_from_text(&format!("if {} {}", condition, then_branch))
}
pub fn expr_prefix(op: SyntaxKind, expr: ast::Expr) -> ast::Expr {
let token = token(op);
expr_from_text(&format!("{}{}", token, expr))
}
fn expr_from_text(text: &str) -> ast::Expr {
ast_from_text(&format!("const C: () = {};", text))
}
pub fn try_expr_from_text(text: &str) -> Option<ast::Expr> {
try_ast_from_text(&format!("const C: () = {};", text))
}
pub fn condition(expr: ast::Expr, pattern: Option<ast::Pat>) -> ast::Condition {
match pattern {
None => ast_from_text(&format!("const _: () = while {} {{}};", expr)),
Some(pattern) => {
ast_from_text(&format!("const _: () = while let {} = {} {{}};", pattern, expr))
}
}
}
pub fn ident_pat(name: ast::Name) -> ast::IdentPat {
return from_text(name.text());
fn from_text(text: &str) -> ast::IdentPat {
ast_from_text(&format!("fn f({}: ())", text))
}
}
pub fn wildcard_pat() -> ast::WildcardPat {
return from_text("_");
fn from_text(text: &str) -> ast::WildcardPat {
ast_from_text(&format!("fn f({}: ())", text))
}
}
/// Creates a tuple of patterns from an interator of patterns.
///
/// Invariant: `pats` must be length > 1
///
/// FIXME handle `pats` length == 1
pub fn tuple_pat(pats: impl IntoIterator<Item = ast::Pat>) -> ast::TuplePat {
let pats_str = pats.into_iter().map(|p| p.to_string()).join(", ");
return from_text(&format!("({})", pats_str));
fn from_text(text: &str) -> ast::TuplePat {
ast_from_text(&format!("fn f({}: ())", text))
}
}
pub fn tuple_struct_pat(
path: ast::Path,
pats: impl IntoIterator<Item = ast::Pat>,
) -> ast::TupleStructPat {
let pats_str = pats.into_iter().join(", ");
return from_text(&format!("{}({})", path, pats_str));
fn from_text(text: &str) -> ast::TupleStructPat {
ast_from_text(&format!("fn f({}: ())", text))
}
}
pub fn record_pat(path: ast::Path, pats: impl IntoIterator<Item = ast::Pat>) -> ast::RecordPat {
let pats_str = pats.into_iter().join(", ");
return from_text(&format!("{} {{ {} }}", path, pats_str));
fn from_text(text: &str) -> ast::RecordPat {
ast_from_text(&format!("fn f({}: ())", text))
}
}
/// Returns a `BindPat` if the path has just one segment, a `PathPat` otherwise.
pub fn path_pat(path: ast::Path) -> ast::Pat {
return from_text(&path.to_string());
fn from_text(text: &str) -> ast::Pat {
ast_from_text(&format!("fn f({}: ())", text))
}
}
pub fn match_arm(pats: impl IntoIterator<Item = ast::Pat>, expr: ast::Expr) -> ast::MatchArm {
let pats_str = pats.into_iter().join(" | ");
return from_text(&format!("{} => {}", pats_str, expr));
fn from_text(text: &str) -> ast::MatchArm {
ast_from_text(&format!("fn f() {{ match () {{{}}} }}", text))
}
}
pub fn match_arm_list(arms: impl IntoIterator<Item = ast::MatchArm>) -> ast::MatchArmList {
let arms_str = arms
.into_iter()
.map(|arm| {
let needs_comma = arm.expr().map_or(true, |it| !it.is_block_like());
let comma = if needs_comma { "," } else { "" };
format!(" {}{}\n", arm.syntax(), comma)
})
.collect::<String>();
return from_text(&arms_str);
fn from_text(text: &str) -> ast::MatchArmList {
ast_from_text(&format!("fn f() {{ match () {{\n{}}} }}", text))
}
}
pub fn where_pred(
path: ast::Path,
bounds: impl IntoIterator<Item = ast::TypeBound>,
) -> ast::WherePred {
let bounds = bounds.into_iter().join(" + ");
return from_text(&format!("{}: {}", path, bounds));
fn from_text(text: &str) -> ast::WherePred {
ast_from_text(&format!("fn f() where {} {{ }}", text))
}
}
pub fn where_clause(preds: impl IntoIterator<Item = ast::WherePred>) -> ast::WhereClause {
let preds = preds.into_iter().join(", ");
return from_text(preds.as_str());
fn from_text(text: &str) -> ast::WhereClause {
ast_from_text(&format!("fn f() where {} {{ }}", text))
}
}
pub fn let_stmt(pattern: ast::Pat, initializer: Option<ast::Expr>) -> ast::LetStmt {
let text = match initializer {
Some(it) => format!("let {} = {};", pattern, it),
None => format!("let {};", pattern),
};
ast_from_text(&format!("fn f() {{ {} }}", text))
}
pub fn expr_stmt(expr: ast::Expr) -> ast::ExprStmt {
let semi = if expr.is_block_like() { "" } else { ";" };
ast_from_text(&format!("fn f() {{ {}{} (); }}", expr, semi))
}
pub fn token(kind: SyntaxKind) -> SyntaxToken {
tokens::SOURCE_FILE
.tree()
.syntax()
.descendants_with_tokens()
.filter_map(|it| it.into_token())
.find(|it| it.kind() == kind)
.unwrap_or_else(|| panic!("unhandled token: {:?}", kind))
}
pub fn param(name: String, ty: String) -> ast::Param {
ast_from_text(&format!("fn f({}: {}) {{ }}", name, ty))
}
pub fn param_list(pats: impl IntoIterator<Item = ast::Param>) -> ast::ParamList {
let args = pats.into_iter().join(", ");
ast_from_text(&format!("fn f({}) {{ }}", args))
}
pub fn visibility_pub_crate() -> ast::Visibility {
ast_from_text("pub(crate) struct S")
}
pub fn fn_(
visibility: Option<ast::Visibility>,
fn_name: ast::Name,
type_params: Option<ast::GenericParamList>,
params: ast::ParamList,
body: ast::BlockExpr,
) -> ast::Fn {
let type_params =
if let Some(type_params) = type_params { format!("<{}>", type_params) } else { "".into() };
let visibility = match visibility {
None => String::new(),
Some(it) => format!("{} ", it),
};
ast_from_text(&format!("{}fn {}{}{} {}", visibility, fn_name, type_params, params, body))
}
fn ast_from_text<N: AstNode>(text: &str) -> N {
let parse = SourceFile::parse(text);
let node = match parse.tree().syntax().descendants().find_map(N::cast) {
Some(it) => it,
None => {
panic!("Failed to make ast node `{}` from text {}", std::any::type_name::<N>(), text)
}
};
let node = node.syntax().clone();
let node = unroot(node);
let node = N::cast(node).unwrap();
assert_eq!(node.syntax().text_range().start(), 0.into());
node
}
fn try_ast_from_text<N: AstNode>(text: &str) -> Option<N> {
let parse = SourceFile::parse(text);
let node = parse.tree().syntax().descendants().find_map(N::cast)?;
let node = node.syntax().clone();
let node = unroot(node);
let node = N::cast(node).unwrap();
assert_eq!(node.syntax().text_range().start(), 0.into());
Some(node)
}
fn unroot(n: SyntaxNode) -> SyntaxNode {
SyntaxNode::new_root(n.green().clone())
}
pub mod tokens {
use once_cell::sync::Lazy;
use crate::{ast, AstNode, Parse, SourceFile, SyntaxKind::*, SyntaxToken};
pub(super) static SOURCE_FILE: Lazy<Parse<SourceFile>> =
Lazy::new(|| SourceFile::parse("const C: <()>::Item = (1 != 1, 2 == 2, !true)\n;"));
pub fn single_space() -> SyntaxToken {
SOURCE_FILE
.tree()
.syntax()
.descendants_with_tokens()
.filter_map(|it| it.into_token())
.find(|it| it.kind() == WHITESPACE && it.text().as_str() == " ")
.unwrap()
}
pub fn whitespace(text: &str) -> SyntaxToken {
assert!(text.trim().is_empty());
let sf = SourceFile::parse(text).ok().unwrap();
sf.syntax().first_child_or_token().unwrap().into_token().unwrap()
}
pub fn doc_comment(text: &str) -> SyntaxToken {
assert!(!text.trim().is_empty());
let sf = SourceFile::parse(text).ok().unwrap();
sf.syntax().first_child_or_token().unwrap().into_token().unwrap()
}
pub fn literal(text: &str) -> SyntaxToken {
assert_eq!(text.trim(), text);
let lit: ast::Literal = super::ast_from_text(&format!("fn f() {{ let _ = {}; }}", text));
lit.syntax().first_child_or_token().unwrap().into_token().unwrap()
}
pub fn single_newline() -> SyntaxToken {
SOURCE_FILE
.tree()
.syntax()
.descendants_with_tokens()
.filter_map(|it| it.into_token())
.find(|it| it.kind() == WHITESPACE && it.text().as_str() == "\n")
.unwrap()
}
pub struct WsBuilder(SourceFile);
impl WsBuilder {
pub fn new(text: &str) -> WsBuilder {
WsBuilder(SourceFile::parse(text).ok().unwrap())
}
pub fn ws(&self) -> SyntaxToken {
self.0.syntax().first_child_or_token().unwrap().into_token().unwrap()
}
}
}

View file

@ -0,0 +1,485 @@
//! Various extension methods to ast Nodes, which are hard to code-generate.
//! Extensions for various expressions live in a sibling `expr_extensions` module.
use std::fmt;
use itertools::Itertools;
use parser::SyntaxKind;
use crate::{
ast::{self, support, AstNode, NameOwner, SyntaxNode},
SmolStr, SyntaxElement, SyntaxToken, T,
};
impl ast::Name {
pub fn text(&self) -> &SmolStr {
text_of_first_token(self.syntax())
}
}
impl ast::NameRef {
pub fn text(&self) -> &SmolStr {
text_of_first_token(self.syntax())
}
pub fn as_tuple_field(&self) -> Option<usize> {
self.text().parse().ok()
}
}
fn text_of_first_token(node: &SyntaxNode) -> &SmolStr {
node.green().children().next().and_then(|it| it.into_token()).unwrap().text()
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum AttrKind {
Inner,
Outer,
}
impl ast::Attr {
pub fn as_simple_atom(&self) -> Option<SmolStr> {
if self.eq_token().is_some() || self.token_tree().is_some() {
return None;
}
self.simple_name()
}
pub fn as_simple_call(&self) -> Option<(SmolStr, ast::TokenTree)> {
let tt = self.token_tree()?;
Some((self.simple_name()?, tt))
}
pub fn as_simple_key_value(&self) -> Option<(SmolStr, SmolStr)> {
let lit = self.literal()?;
let key = self.simple_name()?;
// FIXME: escape? raw string?
let value = lit.syntax().first_token()?.text().trim_matches('"').into();
Some((key, value))
}
pub fn simple_name(&self) -> Option<SmolStr> {
let path = self.path()?;
match (path.segment(), path.qualifier()) {
(Some(segment), None) => Some(segment.syntax().first_token()?.text().clone()),
_ => None,
}
}
pub fn kind(&self) -> AttrKind {
let first_token = self.syntax().first_token();
let first_token_kind = first_token.as_ref().map(SyntaxToken::kind);
let second_token_kind =
first_token.and_then(|token| token.next_token()).as_ref().map(SyntaxToken::kind);
match (first_token_kind, second_token_kind) {
(Some(SyntaxKind::POUND), Some(T![!])) => AttrKind::Inner,
_ => AttrKind::Outer,
}
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum PathSegmentKind {
Name(ast::NameRef),
Type { type_ref: Option<ast::Type>, trait_ref: Option<ast::PathType> },
SelfKw,
SuperKw,
CrateKw,
}
impl ast::PathSegment {
pub fn parent_path(&self) -> ast::Path {
self.syntax()
.parent()
.and_then(ast::Path::cast)
.expect("segments are always nested in paths")
}
pub fn kind(&self) -> Option<PathSegmentKind> {
let res = if let Some(name_ref) = self.name_ref() {
PathSegmentKind::Name(name_ref)
} else {
match self.syntax().first_child_or_token()?.kind() {
T![self] => PathSegmentKind::SelfKw,
T![super] => PathSegmentKind::SuperKw,
T![crate] => PathSegmentKind::CrateKw,
T![<] => {
// <T> or <T as Trait>
// T is any TypeRef, Trait has to be a PathType
let mut type_refs =
self.syntax().children().filter(|node| ast::Type::can_cast(node.kind()));
let type_ref = type_refs.next().and_then(ast::Type::cast);
let trait_ref = type_refs.next().and_then(ast::PathType::cast);
PathSegmentKind::Type { type_ref, trait_ref }
}
_ => return None,
}
};
Some(res)
}
}
impl ast::Path {
pub fn parent_path(&self) -> Option<ast::Path> {
self.syntax().parent().and_then(ast::Path::cast)
}
}
impl ast::UseTreeList {
pub fn parent_use_tree(&self) -> ast::UseTree {
self.syntax()
.parent()
.and_then(ast::UseTree::cast)
.expect("UseTreeLists are always nested in UseTrees")
}
}
impl ast::Impl {
pub fn self_ty(&self) -> Option<ast::Type> {
match self.target() {
(Some(t), None) | (_, Some(t)) => Some(t),
_ => None,
}
}
pub fn trait_(&self) -> Option<ast::Type> {
match self.target() {
(Some(t), Some(_)) => Some(t),
_ => None,
}
}
fn target(&self) -> (Option<ast::Type>, Option<ast::Type>) {
let mut types = support::children(self.syntax());
let first = types.next();
let second = types.next();
(first, second)
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum StructKind {
Record(ast::RecordFieldList),
Tuple(ast::TupleFieldList),
Unit,
}
impl StructKind {
fn from_node<N: AstNode>(node: &N) -> StructKind {
if let Some(nfdl) = support::child::<ast::RecordFieldList>(node.syntax()) {
StructKind::Record(nfdl)
} else if let Some(pfl) = support::child::<ast::TupleFieldList>(node.syntax()) {
StructKind::Tuple(pfl)
} else {
StructKind::Unit
}
}
}
impl ast::Struct {
pub fn kind(&self) -> StructKind {
StructKind::from_node(self)
}
}
impl ast::RecordExprField {
pub fn for_field_name(field_name: &ast::NameRef) -> Option<ast::RecordExprField> {
let candidate =
field_name.syntax().parent().and_then(ast::RecordExprField::cast).or_else(|| {
field_name.syntax().ancestors().nth(4).and_then(ast::RecordExprField::cast)
})?;
if candidate.field_name().as_ref() == Some(field_name) {
Some(candidate)
} else {
None
}
}
/// Deals with field init shorthand
pub fn field_name(&self) -> Option<ast::NameRef> {
if let Some(name_ref) = self.name_ref() {
return Some(name_ref);
}
if let Some(ast::Expr::PathExpr(expr)) = self.expr() {
let path = expr.path()?;
let segment = path.segment()?;
let name_ref = segment.name_ref()?;
if path.qualifier().is_none() {
return Some(name_ref);
}
}
None
}
}
pub enum NameOrNameRef {
Name(ast::Name),
NameRef(ast::NameRef),
}
impl fmt::Display for NameOrNameRef {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
NameOrNameRef::Name(it) => fmt::Display::fmt(it, f),
NameOrNameRef::NameRef(it) => fmt::Display::fmt(it, f),
}
}
}
impl ast::RecordPatField {
/// Deals with field init shorthand
pub fn field_name(&self) -> Option<NameOrNameRef> {
if let Some(name_ref) = self.name_ref() {
return Some(NameOrNameRef::NameRef(name_ref));
}
if let Some(ast::Pat::IdentPat(pat)) = self.pat() {
let name = pat.name()?;
return Some(NameOrNameRef::Name(name));
}
None
}
}
impl ast::Variant {
pub fn parent_enum(&self) -> ast::Enum {
self.syntax()
.parent()
.and_then(|it| it.parent())
.and_then(ast::Enum::cast)
.expect("EnumVariants are always nested in Enums")
}
pub fn kind(&self) -> StructKind {
StructKind::from_node(self)
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum FieldKind {
Name(ast::NameRef),
Index(SyntaxToken),
}
impl ast::FieldExpr {
pub fn index_token(&self) -> Option<SyntaxToken> {
self.syntax
.children_with_tokens()
// FIXME: Accepting floats here to reject them in validation later
.find(|c| c.kind() == SyntaxKind::INT_NUMBER || c.kind() == SyntaxKind::FLOAT_NUMBER)
.as_ref()
.and_then(SyntaxElement::as_token)
.cloned()
}
pub fn field_access(&self) -> Option<FieldKind> {
if let Some(nr) = self.name_ref() {
Some(FieldKind::Name(nr))
} else if let Some(tok) = self.index_token() {
Some(FieldKind::Index(tok))
} else {
None
}
}
}
pub struct SlicePatComponents {
pub prefix: Vec<ast::Pat>,
pub slice: Option<ast::Pat>,
pub suffix: Vec<ast::Pat>,
}
impl ast::SlicePat {
pub fn components(&self) -> SlicePatComponents {
let mut args = self.pats().peekable();
let prefix = args
.peeking_take_while(|p| match p {
ast::Pat::RestPat(_) => false,
ast::Pat::IdentPat(bp) => match bp.pat() {
Some(ast::Pat::RestPat(_)) => false,
_ => true,
},
ast::Pat::RefPat(rp) => match rp.pat() {
Some(ast::Pat::RestPat(_)) => false,
Some(ast::Pat::IdentPat(bp)) => match bp.pat() {
Some(ast::Pat::RestPat(_)) => false,
_ => true,
},
_ => true,
},
_ => true,
})
.collect();
let slice = args.next();
let suffix = args.collect();
SlicePatComponents { prefix, slice, suffix }
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum SelfParamKind {
/// self
Owned,
/// &self
Ref,
/// &mut self
MutRef,
}
impl ast::SelfParam {
pub fn kind(&self) -> SelfParamKind {
if self.amp_token().is_some() {
if self.mut_token().is_some() {
SelfParamKind::MutRef
} else {
SelfParamKind::Ref
}
} else {
SelfParamKind::Owned
}
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum TypeBoundKind {
/// Trait
PathType(ast::PathType),
/// for<'a> ...
ForType(ast::ForType),
/// 'a
Lifetime(SyntaxToken),
}
impl ast::TypeBound {
pub fn kind(&self) -> TypeBoundKind {
if let Some(path_type) = support::children(self.syntax()).next() {
TypeBoundKind::PathType(path_type)
} else if let Some(for_type) = support::children(self.syntax()).next() {
TypeBoundKind::ForType(for_type)
} else if let Some(lifetime) = self.lifetime_token() {
TypeBoundKind::Lifetime(lifetime)
} else {
unreachable!()
}
}
}
pub enum VisibilityKind {
In(ast::Path),
PubCrate,
PubSuper,
PubSelf,
Pub,
}
impl ast::Visibility {
pub fn kind(&self) -> VisibilityKind {
if let Some(path) = support::children(self.syntax()).next() {
VisibilityKind::In(path)
} else if self.crate_token().is_some() {
VisibilityKind::PubCrate
} else if self.super_token().is_some() {
VisibilityKind::PubSuper
} else if self.self_token().is_some() {
VisibilityKind::PubSelf
} else {
VisibilityKind::Pub
}
}
}
impl ast::MacroCall {
pub fn is_macro_rules(&self) -> Option<ast::Name> {
let name_ref = self.path()?.segment()?.name_ref()?;
if name_ref.text() == "macro_rules" {
self.name()
} else {
None
}
}
pub fn is_bang(&self) -> bool {
self.is_macro_rules().is_none()
}
}
impl ast::LifetimeParam {
pub fn lifetime_bounds(&self) -> impl Iterator<Item = SyntaxToken> {
self.syntax()
.children_with_tokens()
.filter_map(|it| it.into_token())
.skip_while(|x| x.kind() != T![:])
.filter(|it| it.kind() == T![lifetime])
}
}
impl ast::RangePat {
pub fn start(&self) -> Option<ast::Pat> {
self.syntax()
.children_with_tokens()
.take_while(|it| !(it.kind() == T![..] || it.kind() == T![..=]))
.filter_map(|it| it.into_node())
.find_map(ast::Pat::cast)
}
pub fn end(&self) -> Option<ast::Pat> {
self.syntax()
.children_with_tokens()
.skip_while(|it| !(it.kind() == T![..] || it.kind() == T![..=]))
.filter_map(|it| it.into_node())
.find_map(ast::Pat::cast)
}
}
impl ast::TokenTree {
pub fn left_delimiter_token(&self) -> Option<SyntaxToken> {
self.syntax()
.first_child_or_token()?
.into_token()
.filter(|it| matches!(it.kind(), T!['{'] | T!['('] | T!['[']))
}
pub fn right_delimiter_token(&self) -> Option<SyntaxToken> {
self.syntax()
.last_child_or_token()?
.into_token()
.filter(|it| matches!(it.kind(), T!['}'] | T![')'] | T![']']))
}
}
impl ast::GenericParamList {
pub fn lifetime_params(&self) -> impl Iterator<Item = ast::LifetimeParam> {
self.generic_params().filter_map(|param| match param {
ast::GenericParam::LifetimeParam(it) => Some(it),
ast::GenericParam::TypeParam(_) | ast::GenericParam::ConstParam(_) => None,
})
}
pub fn type_params(&self) -> impl Iterator<Item = ast::TypeParam> {
self.generic_params().filter_map(|param| match param {
ast::GenericParam::TypeParam(it) => Some(it),
ast::GenericParam::LifetimeParam(_) | ast::GenericParam::ConstParam(_) => None,
})
}
pub fn const_params(&self) -> impl Iterator<Item = ast::ConstParam> {
self.generic_params().filter_map(|param| match param {
ast::GenericParam::ConstParam(it) => Some(it),
ast::GenericParam::TypeParam(_) | ast::GenericParam::LifetimeParam(_) => None,
})
}
}
impl ast::DocCommentsOwner for ast::SourceFile {}
impl ast::DocCommentsOwner for ast::Fn {}
impl ast::DocCommentsOwner for ast::Struct {}
impl ast::DocCommentsOwner for ast::Union {}
impl ast::DocCommentsOwner for ast::RecordField {}
impl ast::DocCommentsOwner for ast::TupleField {}
impl ast::DocCommentsOwner for ast::Enum {}
impl ast::DocCommentsOwner for ast::Variant {}
impl ast::DocCommentsOwner for ast::Trait {}
impl ast::DocCommentsOwner for ast::Module {}
impl ast::DocCommentsOwner for ast::Static {}
impl ast::DocCommentsOwner for ast::Const {}
impl ast::DocCommentsOwner for ast::TypeAlias {}
impl ast::DocCommentsOwner for ast::Impl {}
impl ast::DocCommentsOwner for ast::MacroCall {}

View file

@ -0,0 +1,538 @@
//! There are many AstNodes, but only a few tokens, so we hand-write them here.
use std::{
borrow::Cow,
convert::{TryFrom, TryInto},
};
use rustc_lexer::unescape::{unescape_literal, Mode};
use crate::{
ast::{AstToken, Comment, RawString, String, Whitespace},
TextRange, TextSize,
};
impl Comment {
pub fn kind(&self) -> CommentKind {
kind_by_prefix(self.text())
}
pub fn prefix(&self) -> &'static str {
for (prefix, k) in COMMENT_PREFIX_TO_KIND.iter() {
if *k == self.kind() && self.text().starts_with(prefix) {
return prefix;
}
}
unreachable!()
}
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct CommentKind {
pub shape: CommentShape,
pub doc: Option<CommentPlacement>,
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum CommentShape {
Line,
Block,
}
impl CommentShape {
pub fn is_line(self) -> bool {
self == CommentShape::Line
}
pub fn is_block(self) -> bool {
self == CommentShape::Block
}
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum CommentPlacement {
Inner,
Outer,
}
const COMMENT_PREFIX_TO_KIND: &[(&str, CommentKind)] = {
use {CommentPlacement::*, CommentShape::*};
&[
("////", CommentKind { shape: Line, doc: None }),
("///", CommentKind { shape: Line, doc: Some(Outer) }),
("//!", CommentKind { shape: Line, doc: Some(Inner) }),
("/**", CommentKind { shape: Block, doc: Some(Outer) }),
("/*!", CommentKind { shape: Block, doc: Some(Inner) }),
("//", CommentKind { shape: Line, doc: None }),
("/*", CommentKind { shape: Block, doc: None }),
]
};
fn kind_by_prefix(text: &str) -> CommentKind {
if text == "/**/" {
return CommentKind { shape: CommentShape::Block, doc: None };
}
for (prefix, kind) in COMMENT_PREFIX_TO_KIND.iter() {
if text.starts_with(prefix) {
return *kind;
}
}
panic!("bad comment text: {:?}", text)
}
impl Whitespace {
pub fn spans_multiple_lines(&self) -> bool {
let text = self.text();
text.find('\n').map_or(false, |idx| text[idx + 1..].contains('\n'))
}
}
pub struct QuoteOffsets {
pub quotes: (TextRange, TextRange),
pub contents: TextRange,
}
impl QuoteOffsets {
fn new(literal: &str) -> Option<QuoteOffsets> {
let left_quote = literal.find('"')?;
let right_quote = literal.rfind('"')?;
if left_quote == right_quote {
// `literal` only contains one quote
return None;
}
let start = TextSize::from(0);
let left_quote = TextSize::try_from(left_quote).unwrap() + TextSize::of('"');
let right_quote = TextSize::try_from(right_quote).unwrap();
let end = TextSize::of(literal);
let res = QuoteOffsets {
quotes: (TextRange::new(start, left_quote), TextRange::new(right_quote, end)),
contents: TextRange::new(left_quote, right_quote),
};
Some(res)
}
}
pub trait HasQuotes: AstToken {
fn quote_offsets(&self) -> Option<QuoteOffsets> {
let text = self.text().as_str();
let offsets = QuoteOffsets::new(text)?;
let o = self.syntax().text_range().start();
let offsets = QuoteOffsets {
quotes: (offsets.quotes.0 + o, offsets.quotes.1 + o),
contents: offsets.contents + o,
};
Some(offsets)
}
fn open_quote_text_range(&self) -> Option<TextRange> {
self.quote_offsets().map(|it| it.quotes.0)
}
fn close_quote_text_range(&self) -> Option<TextRange> {
self.quote_offsets().map(|it| it.quotes.1)
}
fn text_range_between_quotes(&self) -> Option<TextRange> {
self.quote_offsets().map(|it| it.contents)
}
}
impl HasQuotes for String {}
impl HasQuotes for RawString {}
pub trait HasStringValue: HasQuotes {
fn value(&self) -> Option<Cow<'_, str>>;
}
impl HasStringValue for String {
fn value(&self) -> Option<Cow<'_, str>> {
let text = self.text().as_str();
let text = &text[self.text_range_between_quotes()? - self.syntax().text_range().start()];
let mut buf = std::string::String::with_capacity(text.len());
let mut has_error = false;
unescape_literal(text, Mode::Str, &mut |_, unescaped_char| match unescaped_char {
Ok(c) => buf.push(c),
Err(_) => has_error = true,
});
if has_error {
return None;
}
// FIXME: don't actually allocate for borrowed case
let res = if buf == text { Cow::Borrowed(text) } else { Cow::Owned(buf) };
Some(res)
}
}
impl HasStringValue for RawString {
fn value(&self) -> Option<Cow<'_, str>> {
let text = self.text().as_str();
let text = &text[self.text_range_between_quotes()? - self.syntax().text_range().start()];
Some(Cow::Borrowed(text))
}
}
impl RawString {
pub fn map_range_up(&self, range: TextRange) -> Option<TextRange> {
let contents_range = self.text_range_between_quotes()?;
assert!(TextRange::up_to(contents_range.len()).contains_range(range));
Some(range + contents_range.start())
}
}
#[derive(Debug)]
pub enum FormatSpecifier {
Open,
Close,
Integer,
Identifier,
Colon,
Fill,
Align,
Sign,
NumberSign,
Zero,
DollarSign,
Dot,
Asterisk,
QuestionMark,
}
pub trait HasFormatSpecifier: AstToken {
fn char_ranges(
&self,
) -> Option<Vec<(TextRange, Result<char, rustc_lexer::unescape::EscapeError>)>>;
fn lex_format_specifier<F>(&self, mut callback: F)
where
F: FnMut(TextRange, FormatSpecifier),
{
let char_ranges = if let Some(char_ranges) = self.char_ranges() {
char_ranges
} else {
return;
};
let mut chars = char_ranges.iter().peekable();
while let Some((range, first_char)) = chars.next() {
match first_char {
Ok('{') => {
// Format specifier, see syntax at https://doc.rust-lang.org/std/fmt/index.html#syntax
if let Some((_, Ok('{'))) = chars.peek() {
// Escaped format specifier, `{{`
chars.next();
continue;
}
callback(*range, FormatSpecifier::Open);
// check for integer/identifier
match chars
.peek()
.and_then(|next| next.1.as_ref().ok())
.copied()
.unwrap_or_default()
{
'0'..='9' => {
// integer
read_integer(&mut chars, &mut callback);
}
c if c == '_' || c.is_alphabetic() => {
// identifier
read_identifier(&mut chars, &mut callback);
}
_ => {}
}
if let Some((_, Ok(':'))) = chars.peek() {
skip_char_and_emit(&mut chars, FormatSpecifier::Colon, &mut callback);
// check for fill/align
let mut cloned = chars.clone().take(2);
let first = cloned
.next()
.and_then(|next| next.1.as_ref().ok())
.copied()
.unwrap_or_default();
let second = cloned
.next()
.and_then(|next| next.1.as_ref().ok())
.copied()
.unwrap_or_default();
match second {
'<' | '^' | '>' => {
// alignment specifier, first char specifies fillment
skip_char_and_emit(
&mut chars,
FormatSpecifier::Fill,
&mut callback,
);
skip_char_and_emit(
&mut chars,
FormatSpecifier::Align,
&mut callback,
);
}
_ => match first {
'<' | '^' | '>' => {
skip_char_and_emit(
&mut chars,
FormatSpecifier::Align,
&mut callback,
);
}
_ => {}
},
}
// check for sign
match chars
.peek()
.and_then(|next| next.1.as_ref().ok())
.copied()
.unwrap_or_default()
{
'+' | '-' => {
skip_char_and_emit(
&mut chars,
FormatSpecifier::Sign,
&mut callback,
);
}
_ => {}
}
// check for `#`
if let Some((_, Ok('#'))) = chars.peek() {
skip_char_and_emit(
&mut chars,
FormatSpecifier::NumberSign,
&mut callback,
);
}
// check for `0`
let mut cloned = chars.clone().take(2);
let first = cloned.next().and_then(|next| next.1.as_ref().ok()).copied();
let second = cloned.next().and_then(|next| next.1.as_ref().ok()).copied();
if first == Some('0') && second != Some('$') {
skip_char_and_emit(&mut chars, FormatSpecifier::Zero, &mut callback);
}
// width
match chars
.peek()
.and_then(|next| next.1.as_ref().ok())
.copied()
.unwrap_or_default()
{
'0'..='9' => {
read_integer(&mut chars, &mut callback);
if let Some((_, Ok('$'))) = chars.peek() {
skip_char_and_emit(
&mut chars,
FormatSpecifier::DollarSign,
&mut callback,
);
}
}
c if c == '_' || c.is_alphabetic() => {
read_identifier(&mut chars, &mut callback);
// can be either width (indicated by dollar sign, or type in which case
// the next sign has to be `}`)
let next =
chars.peek().and_then(|next| next.1.as_ref().ok()).copied();
match next {
Some('$') => skip_char_and_emit(
&mut chars,
FormatSpecifier::DollarSign,
&mut callback,
),
Some('}') => {
skip_char_and_emit(
&mut chars,
FormatSpecifier::Close,
&mut callback,
);
continue;
}
_ => continue,
};
}
_ => {}
}
// precision
if let Some((_, Ok('.'))) = chars.peek() {
skip_char_and_emit(&mut chars, FormatSpecifier::Dot, &mut callback);
match chars
.peek()
.and_then(|next| next.1.as_ref().ok())
.copied()
.unwrap_or_default()
{
'*' => {
skip_char_and_emit(
&mut chars,
FormatSpecifier::Asterisk,
&mut callback,
);
}
'0'..='9' => {
read_integer(&mut chars, &mut callback);
if let Some((_, Ok('$'))) = chars.peek() {
skip_char_and_emit(
&mut chars,
FormatSpecifier::DollarSign,
&mut callback,
);
}
}
c if c == '_' || c.is_alphabetic() => {
read_identifier(&mut chars, &mut callback);
if chars.peek().and_then(|next| next.1.as_ref().ok()).copied()
!= Some('$')
{
continue;
}
skip_char_and_emit(
&mut chars,
FormatSpecifier::DollarSign,
&mut callback,
);
}
_ => {
continue;
}
}
}
// type
match chars
.peek()
.and_then(|next| next.1.as_ref().ok())
.copied()
.unwrap_or_default()
{
'?' => {
skip_char_and_emit(
&mut chars,
FormatSpecifier::QuestionMark,
&mut callback,
);
}
c if c == '_' || c.is_alphabetic() => {
read_identifier(&mut chars, &mut callback);
}
_ => {}
}
}
if let Some((_, Ok('}'))) = chars.peek() {
skip_char_and_emit(&mut chars, FormatSpecifier::Close, &mut callback);
} else {
continue;
}
}
_ => {
while let Some((_, Ok(next_char))) = chars.peek() {
match next_char {
'{' => break,
_ => {}
}
chars.next();
}
}
};
}
fn skip_char_and_emit<'a, I, F>(
chars: &mut std::iter::Peekable<I>,
emit: FormatSpecifier,
callback: &mut F,
) where
I: Iterator<Item = &'a (TextRange, Result<char, rustc_lexer::unescape::EscapeError>)>,
F: FnMut(TextRange, FormatSpecifier),
{
let (range, _) = chars.next().unwrap();
callback(*range, emit);
}
fn read_integer<'a, I, F>(chars: &mut std::iter::Peekable<I>, callback: &mut F)
where
I: Iterator<Item = &'a (TextRange, Result<char, rustc_lexer::unescape::EscapeError>)>,
F: FnMut(TextRange, FormatSpecifier),
{
let (mut range, c) = chars.next().unwrap();
assert!(c.as_ref().unwrap().is_ascii_digit());
while let Some((r, Ok(next_char))) = chars.peek() {
if next_char.is_ascii_digit() {
chars.next();
range = range.cover(*r);
} else {
break;
}
}
callback(range, FormatSpecifier::Integer);
}
fn read_identifier<'a, I, F>(chars: &mut std::iter::Peekable<I>, callback: &mut F)
where
I: Iterator<Item = &'a (TextRange, Result<char, rustc_lexer::unescape::EscapeError>)>,
F: FnMut(TextRange, FormatSpecifier),
{
let (mut range, c) = chars.next().unwrap();
assert!(c.as_ref().unwrap().is_alphabetic() || *c.as_ref().unwrap() == '_');
while let Some((r, Ok(next_char))) = chars.peek() {
if *next_char == '_' || next_char.is_ascii_digit() || next_char.is_alphabetic() {
chars.next();
range = range.cover(*r);
} else {
break;
}
}
callback(range, FormatSpecifier::Identifier);
}
}
}
impl HasFormatSpecifier for String {
fn char_ranges(
&self,
) -> Option<Vec<(TextRange, Result<char, rustc_lexer::unescape::EscapeError>)>> {
let text = self.text().as_str();
let text = &text[self.text_range_between_quotes()? - self.syntax().text_range().start()];
let offset = self.text_range_between_quotes()?.start() - self.syntax().text_range().start();
let mut res = Vec::with_capacity(text.len());
unescape_literal(text, Mode::Str, &mut |range, unescaped_char| {
res.push((
TextRange::new(range.start.try_into().unwrap(), range.end.try_into().unwrap())
+ offset,
unescaped_char,
))
});
Some(res)
}
}
impl HasFormatSpecifier for RawString {
fn char_ranges(
&self,
) -> Option<Vec<(TextRange, Result<char, rustc_lexer::unescape::EscapeError>)>> {
let text = self.text().as_str();
let text = &text[self.text_range_between_quotes()? - self.syntax().text_range().start()];
let offset = self.text_range_between_quotes()?.start() - self.syntax().text_range().start();
let mut res = Vec::with_capacity(text.len());
for (idx, c) in text.char_indices() {
res.push((TextRange::at(idx.try_into().unwrap(), TextSize::of(c)) + offset, Ok(c)));
}
Some(res)
}
}

View file

@ -0,0 +1,141 @@
//! Various traits that are implemented by ast nodes.
//!
//! The implementations are usually trivial, and live in generated.rs
use itertools::Itertools;
use crate::{
ast::{self, support, AstChildren, AstNode, AstToken},
syntax_node::SyntaxElementChildren,
SyntaxToken, T,
};
pub trait NameOwner: AstNode {
fn name(&self) -> Option<ast::Name> {
support::child(self.syntax())
}
}
pub trait VisibilityOwner: AstNode {
fn visibility(&self) -> Option<ast::Visibility> {
support::child(self.syntax())
}
}
pub trait LoopBodyOwner: AstNode {
fn loop_body(&self) -> Option<ast::BlockExpr> {
support::child(self.syntax())
}
fn label(&self) -> Option<ast::Label> {
support::child(self.syntax())
}
}
pub trait ArgListOwner: AstNode {
fn arg_list(&self) -> Option<ast::ArgList> {
support::child(self.syntax())
}
}
pub trait ModuleItemOwner: AstNode {
fn items(&self) -> AstChildren<ast::Item> {
support::children(self.syntax())
}
}
pub trait GenericParamsOwner: AstNode {
fn generic_param_list(&self) -> Option<ast::GenericParamList> {
support::child(self.syntax())
}
fn where_clause(&self) -> Option<ast::WhereClause> {
support::child(self.syntax())
}
}
pub trait TypeBoundsOwner: AstNode {
fn type_bound_list(&self) -> Option<ast::TypeBoundList> {
support::child(self.syntax())
}
fn colon_token(&self) -> Option<SyntaxToken> {
support::token(self.syntax(), T![:])
}
}
pub trait AttrsOwner: AstNode {
fn attrs(&self) -> AstChildren<ast::Attr> {
support::children(self.syntax())
}
fn has_atom_attr(&self, atom: &str) -> bool {
self.attrs().filter_map(|x| x.as_simple_atom()).any(|x| x == atom)
}
}
pub trait DocCommentsOwner: AstNode {
fn doc_comments(&self) -> CommentIter {
CommentIter { iter: self.syntax().children_with_tokens() }
}
fn doc_comment_text(&self) -> Option<String> {
self.doc_comments().doc_comment_text()
}
}
impl CommentIter {
pub fn from_syntax_node(syntax_node: &ast::SyntaxNode) -> CommentIter {
CommentIter { iter: syntax_node.children_with_tokens() }
}
/// Returns the textual content of a doc comment block as a single string.
/// That is, strips leading `///` (+ optional 1 character of whitespace),
/// trailing `*/`, trailing whitespace and then joins the lines.
pub fn doc_comment_text(self) -> Option<String> {
let mut has_comments = false;
let docs = self
.filter(|comment| comment.kind().doc.is_some())
.map(|comment| {
has_comments = true;
let prefix_len = comment.prefix().len();
let line: &str = comment.text().as_str();
// Determine if the prefix or prefix + 1 char is stripped
let pos =
if let Some(ws) = line.chars().nth(prefix_len).filter(|c| c.is_whitespace()) {
prefix_len + ws.len_utf8()
} else {
prefix_len
};
let end = if comment.kind().shape.is_block() && line.ends_with("*/") {
line.len() - 2
} else {
line.len()
};
// Note that we do not trim the end of the line here
// since whitespace can have special meaning at the end
// of a line in markdown.
line[pos..end].to_owned()
})
.join("\n");
if has_comments {
Some(docs)
} else {
None
}
}
}
pub struct CommentIter {
iter: SyntaxElementChildren,
}
impl Iterator for CommentIter {
type Item = ast::Comment;
fn next(&mut self) -> Option<ast::Comment> {
self.iter.by_ref().find_map(|el| el.into_token().and_then(ast::Comment::cast))
}
}

73
crates/syntax/src/fuzz.rs Normal file
View file

@ -0,0 +1,73 @@
//! FIXME: write short doc here
use std::{
convert::TryInto,
str::{self, FromStr},
};
use text_edit::Indel;
use crate::{validation, AstNode, SourceFile, TextRange};
fn check_file_invariants(file: &SourceFile) {
let root = file.syntax();
validation::validate_block_structure(root);
}
pub fn check_parser(text: &str) {
let file = SourceFile::parse(text);
check_file_invariants(&file.tree());
}
#[derive(Debug, Clone)]
pub struct CheckReparse {
text: String,
edit: Indel,
edited_text: String,
}
impl CheckReparse {
pub fn from_data(data: &[u8]) -> Option<Self> {
const PREFIX: &str = "fn main(){\n\t";
const SUFFIX: &str = "\n}";
let data = str::from_utf8(data).ok()?;
let mut lines = data.lines();
let delete_start = usize::from_str(lines.next()?).ok()? + PREFIX.len();
let delete_len = usize::from_str(lines.next()?).ok()?;
let insert = lines.next()?.to_string();
let text = lines.collect::<Vec<_>>().join("\n");
let text = format!("{}{}{}", PREFIX, text, SUFFIX);
text.get(delete_start..delete_start.checked_add(delete_len)?)?; // make sure delete is a valid range
let delete =
TextRange::at(delete_start.try_into().unwrap(), delete_len.try_into().unwrap());
let edited_text =
format!("{}{}{}", &text[..delete_start], &insert, &text[delete_start + delete_len..]);
let edit = Indel { delete, insert };
Some(CheckReparse { text, edit, edited_text })
}
pub fn run(&self) {
let parse = SourceFile::parse(&self.text);
let new_parse = parse.reparse(&self.edit);
check_file_invariants(&new_parse.tree());
assert_eq!(&new_parse.tree().syntax().text().to_string(), &self.edited_text);
let full_reparse = SourceFile::parse(&self.edited_text);
for (a, b) in
new_parse.tree().syntax().descendants().zip(full_reparse.tree().syntax().descendants())
{
if (a.kind(), a.text_range()) != (b.kind(), b.text_range()) {
eprint!("original:\n{:#?}", parse.tree().syntax());
eprint!("reparsed:\n{:#?}", new_parse.tree().syntax());
eprint!("full reparse:\n{:#?}", full_reparse.tree().syntax());
assert_eq!(
format!("{:?}", a),
format!("{:?}", b),
"different syntax tree produced by the full reparse"
);
}
}
// FIXME
// assert_eq!(new_file.errors(), full_reparse.errors());
}
}

388
crates/syntax/src/lib.rs Normal file
View file

@ -0,0 +1,388 @@
//! Syntax Tree library used throughout the rust analyzer.
//!
//! Properties:
//! - easy and fast incremental re-parsing
//! - graceful handling of errors
//! - full-fidelity representation (*any* text can be precisely represented as
//! a syntax tree)
//!
//! For more information, see the [RFC]. Current implementation is inspired by
//! the [Swift] one.
//!
//! The most interesting modules here are `syntax_node` (which defines concrete
//! syntax tree) and `ast` (which defines abstract syntax tree on top of the
//! CST). The actual parser live in a separate `parser` crate, though the
//! lexer lives in this crate.
//!
//! See `api_walkthrough` test in this file for a quick API tour!
//!
//! [RFC]: <https://github.com/rust-lang/rfcs/pull/2256>
//! [Swift]: <https://github.com/apple/swift/blob/13d593df6f359d0cb2fc81cfaac273297c539455/lib/Syntax/README.md>
#[allow(unused)]
macro_rules! eprintln {
($($tt:tt)*) => { stdx::eprintln!($($tt)*) };
}
mod syntax_node;
mod syntax_error;
mod parsing;
mod validation;
mod ptr;
#[cfg(test)]
mod tests;
pub mod algo;
pub mod ast;
#[doc(hidden)]
pub mod fuzz;
use std::{marker::PhantomData, sync::Arc};
use stdx::format_to;
use text_edit::Indel;
pub use crate::{
algo::InsertPosition,
ast::{AstNode, AstToken},
parsing::{lex_single_syntax_kind, lex_single_valid_syntax_kind, tokenize, Token},
ptr::{AstPtr, SyntaxNodePtr},
syntax_error::SyntaxError,
syntax_node::{
Direction, GreenNode, NodeOrToken, SyntaxElement, SyntaxElementChildren, SyntaxNode,
SyntaxNodeChildren, SyntaxToken, SyntaxTreeBuilder,
},
};
pub use parser::{SyntaxKind, T};
pub use rowan::{SmolStr, SyntaxText, TextRange, TextSize, TokenAtOffset, WalkEvent};
/// `Parse` is the result of the parsing: a syntax tree and a collection of
/// errors.
///
/// Note that we always produce a syntax tree, even for completely invalid
/// files.
#[derive(Debug, PartialEq, Eq)]
pub struct Parse<T> {
green: GreenNode,
errors: Arc<Vec<SyntaxError>>,
_ty: PhantomData<fn() -> T>,
}
impl<T> Clone for Parse<T> {
fn clone(&self) -> Parse<T> {
Parse { green: self.green.clone(), errors: self.errors.clone(), _ty: PhantomData }
}
}
impl<T> Parse<T> {
fn new(green: GreenNode, errors: Vec<SyntaxError>) -> Parse<T> {
Parse { green, errors: Arc::new(errors), _ty: PhantomData }
}
pub fn syntax_node(&self) -> SyntaxNode {
SyntaxNode::new_root(self.green.clone())
}
}
impl<T: AstNode> Parse<T> {
pub fn to_syntax(self) -> Parse<SyntaxNode> {
Parse { green: self.green, errors: self.errors, _ty: PhantomData }
}
pub fn tree(&self) -> T {
T::cast(self.syntax_node()).unwrap()
}
pub fn errors(&self) -> &[SyntaxError] {
&*self.errors
}
pub fn ok(self) -> Result<T, Arc<Vec<SyntaxError>>> {
if self.errors.is_empty() {
Ok(self.tree())
} else {
Err(self.errors)
}
}
}
impl Parse<SyntaxNode> {
pub fn cast<N: AstNode>(self) -> Option<Parse<N>> {
if N::cast(self.syntax_node()).is_some() {
Some(Parse { green: self.green, errors: self.errors, _ty: PhantomData })
} else {
None
}
}
}
impl Parse<SourceFile> {
pub fn debug_dump(&self) -> String {
let mut buf = format!("{:#?}", self.tree().syntax());
for err in self.errors.iter() {
format_to!(buf, "error {:?}: {}\n", err.range(), err);
}
buf
}
pub fn reparse(&self, indel: &Indel) -> Parse<SourceFile> {
self.incremental_reparse(indel).unwrap_or_else(|| self.full_reparse(indel))
}
fn incremental_reparse(&self, indel: &Indel) -> Option<Parse<SourceFile>> {
// FIXME: validation errors are not handled here
parsing::incremental_reparse(self.tree().syntax(), indel, self.errors.to_vec()).map(
|(green_node, errors, _reparsed_range)| Parse {
green: green_node,
errors: Arc::new(errors),
_ty: PhantomData,
},
)
}
fn full_reparse(&self, indel: &Indel) -> Parse<SourceFile> {
let mut text = self.tree().syntax().text().to_string();
indel.apply(&mut text);
SourceFile::parse(&text)
}
}
/// `SourceFile` represents a parse tree for a single Rust file.
pub use crate::ast::SourceFile;
impl SourceFile {
pub fn parse(text: &str) -> Parse<SourceFile> {
let (green, mut errors) = parsing::parse_text(text);
let root = SyntaxNode::new_root(green.clone());
if cfg!(debug_assertions) {
validation::validate_block_structure(&root);
}
errors.extend(validation::validate(&root));
assert_eq!(root.kind(), SyntaxKind::SOURCE_FILE);
Parse { green, errors: Arc::new(errors), _ty: PhantomData }
}
}
impl ast::Path {
/// Returns `text`, parsed as a path, but only if it has no errors.
pub fn parse(text: &str) -> Result<Self, ()> {
parsing::parse_text_fragment(text, parser::FragmentKind::Path)
}
}
impl ast::Pat {
/// Returns `text`, parsed as a pattern, but only if it has no errors.
pub fn parse(text: &str) -> Result<Self, ()> {
parsing::parse_text_fragment(text, parser::FragmentKind::Pattern)
}
}
impl ast::Expr {
/// Returns `text`, parsed as an expression, but only if it has no errors.
pub fn parse(text: &str) -> Result<Self, ()> {
parsing::parse_text_fragment(text, parser::FragmentKind::Expr)
}
}
impl ast::Item {
/// Returns `text`, parsed as an item, but only if it has no errors.
pub fn parse(text: &str) -> Result<Self, ()> {
parsing::parse_text_fragment(text, parser::FragmentKind::Item)
}
}
impl ast::Type {
/// Returns `text`, parsed as an type reference, but only if it has no errors.
pub fn parse(text: &str) -> Result<Self, ()> {
parsing::parse_text_fragment(text, parser::FragmentKind::Type)
}
}
/// Matches a `SyntaxNode` against an `ast` type.
///
/// # Example:
///
/// ```ignore
/// match_ast! {
/// match node {
/// ast::CallExpr(it) => { ... },
/// ast::MethodCallExpr(it) => { ... },
/// ast::MacroCall(it) => { ... },
/// _ => None,
/// }
/// }
/// ```
#[macro_export]
macro_rules! match_ast {
(match $node:ident { $($tt:tt)* }) => { match_ast!(match ($node) { $($tt)* }) };
(match ($node:expr) {
$( ast::$ast:ident($it:ident) => $res:expr, )*
_ => $catch_all:expr $(,)?
}) => {{
$( if let Some($it) = ast::$ast::cast($node.clone()) { $res } else )*
{ $catch_all }
}};
}
/// This test does not assert anything and instead just shows off the crate's
/// API.
#[test]
fn api_walkthrough() {
use ast::{ModuleItemOwner, NameOwner};
let source_code = "
fn foo() {
1 + 1
}
";
// `SourceFile` is the main entry point.
//
// The `parse` method returns a `Parse` -- a pair of syntax tree and a list
// of errors. That is, syntax tree is constructed even in presence of errors.
let parse = SourceFile::parse(source_code);
assert!(parse.errors().is_empty());
// The `tree` method returns an owned syntax node of type `SourceFile`.
// Owned nodes are cheap: inside, they are `Rc` handles to the underling data.
let file: SourceFile = parse.tree();
// `SourceFile` is the root of the syntax tree. We can iterate file's items.
// Let's fetch the `foo` function.
let mut func = None;
for item in file.items() {
match item {
ast::Item::Fn(f) => func = Some(f),
_ => unreachable!(),
}
}
let func: ast::Fn = func.unwrap();
// Each AST node has a bunch of getters for children. All getters return
// `Option`s though, to account for incomplete code. Some getters are common
// for several kinds of node. In this case, a trait like `ast::NameOwner`
// usually exists. By convention, all ast types should be used with `ast::`
// qualifier.
let name: Option<ast::Name> = func.name();
let name = name.unwrap();
assert_eq!(name.text(), "foo");
// Let's get the `1 + 1` expression!
let body: ast::BlockExpr = func.body().unwrap();
let expr: ast::Expr = body.expr().unwrap();
// Enums are used to group related ast nodes together, and can be used for
// matching. However, because there are no public fields, it's possible to
// match only the top level enum: that is the price we pay for increased API
// flexibility
let bin_expr: &ast::BinExpr = match &expr {
ast::Expr::BinExpr(e) => e,
_ => unreachable!(),
};
// Besides the "typed" AST API, there's an untyped CST one as well.
// To switch from AST to CST, call `.syntax()` method:
let expr_syntax: &SyntaxNode = expr.syntax();
// Note how `expr` and `bin_expr` are in fact the same node underneath:
assert!(expr_syntax == bin_expr.syntax());
// To go from CST to AST, `AstNode::cast` function is used:
let _expr: ast::Expr = match ast::Expr::cast(expr_syntax.clone()) {
Some(e) => e,
None => unreachable!(),
};
// The two properties each syntax node has is a `SyntaxKind`:
assert_eq!(expr_syntax.kind(), SyntaxKind::BIN_EXPR);
// And text range:
assert_eq!(expr_syntax.text_range(), TextRange::new(32.into(), 37.into()));
// You can get node's text as a `SyntaxText` object, which will traverse the
// tree collecting token's text:
let text: SyntaxText = expr_syntax.text();
assert_eq!(text.to_string(), "1 + 1");
// There's a bunch of traversal methods on `SyntaxNode`:
assert_eq!(expr_syntax.parent().as_ref(), Some(body.syntax()));
assert_eq!(body.syntax().first_child_or_token().map(|it| it.kind()), Some(T!['{']));
assert_eq!(
expr_syntax.next_sibling_or_token().map(|it| it.kind()),
Some(SyntaxKind::WHITESPACE)
);
// As well as some iterator helpers:
let f = expr_syntax.ancestors().find_map(ast::Fn::cast);
assert_eq!(f, Some(func));
assert!(expr_syntax.siblings_with_tokens(Direction::Next).any(|it| it.kind() == T!['}']));
assert_eq!(
expr_syntax.descendants_with_tokens().count(),
8, // 5 tokens `1`, ` `, `+`, ` `, `!`
// 2 child literal expressions: `1`, `1`
// 1 the node itself: `1 + 1`
);
// There's also a `preorder` method with a more fine-grained iteration control:
let mut buf = String::new();
let mut indent = 0;
for event in expr_syntax.preorder_with_tokens() {
match event {
WalkEvent::Enter(node) => {
let text = match &node {
NodeOrToken::Node(it) => it.text().to_string(),
NodeOrToken::Token(it) => it.text().to_string(),
};
format_to!(buf, "{:indent$}{:?} {:?}\n", " ", text, node.kind(), indent = indent);
indent += 2;
}
WalkEvent::Leave(_) => indent -= 2,
}
}
assert_eq!(indent, 0);
assert_eq!(
buf.trim(),
r#"
"1 + 1" BIN_EXPR
"1" LITERAL
"1" INT_NUMBER
" " WHITESPACE
"+" PLUS
" " WHITESPACE
"1" LITERAL
"1" INT_NUMBER
"#
.trim()
);
// To recursively process the tree, there are three approaches:
// 1. explicitly call getter methods on AST nodes.
// 2. use descendants and `AstNode::cast`.
// 3. use descendants and `match_ast!`.
//
// Here's how the first one looks like:
let exprs_cast: Vec<String> = file
.syntax()
.descendants()
.filter_map(ast::Expr::cast)
.map(|expr| expr.syntax().text().to_string())
.collect();
// An alternative is to use a macro.
let mut exprs_visit = Vec::new();
for node in file.syntax().descendants() {
match_ast! {
match node {
ast::Expr(it) => {
let res = it.syntax().text().to_string();
exprs_visit.push(res);
},
_ => (),
}
}
}
assert_eq!(exprs_cast, exprs_visit);
}

View file

@ -0,0 +1,59 @@
//! Lexing, bridging to parser (which does the actual parsing) and
//! incremental reparsing.
mod lexer;
mod text_token_source;
mod text_tree_sink;
mod reparsing;
use crate::{syntax_node::GreenNode, AstNode, SyntaxError, SyntaxNode};
use text_token_source::TextTokenSource;
use text_tree_sink::TextTreeSink;
pub use lexer::*;
pub(crate) use self::reparsing::incremental_reparse;
use parser::SyntaxKind;
pub(crate) fn parse_text(text: &str) -> (GreenNode, Vec<SyntaxError>) {
let (tokens, lexer_errors) = tokenize(&text);
let mut token_source = TextTokenSource::new(text, &tokens);
let mut tree_sink = TextTreeSink::new(text, &tokens);
parser::parse(&mut token_source, &mut tree_sink);
let (tree, mut parser_errors) = tree_sink.finish();
parser_errors.extend(lexer_errors);
(tree, parser_errors)
}
/// Returns `text` parsed as a `T` provided there are no parse errors.
pub(crate) fn parse_text_fragment<T: AstNode>(
text: &str,
fragment_kind: parser::FragmentKind,
) -> Result<T, ()> {
let (tokens, lexer_errors) = tokenize(&text);
if !lexer_errors.is_empty() {
return Err(());
}
let mut token_source = TextTokenSource::new(text, &tokens);
let mut tree_sink = TextTreeSink::new(text, &tokens);
// TextTreeSink assumes that there's at least some root node to which it can attach errors and
// tokens. We arbitrarily give it a SourceFile.
use parser::TreeSink;
tree_sink.start_node(SyntaxKind::SOURCE_FILE);
parser::parse_fragment(&mut token_source, &mut tree_sink, fragment_kind);
tree_sink.finish_node();
let (tree, parser_errors) = tree_sink.finish();
use parser::TokenSource;
if !parser_errors.is_empty() || token_source.current().kind != SyntaxKind::EOF {
return Err(());
}
SyntaxNode::new_root(tree).first_child().and_then(T::cast).ok_or(())
}

View file

@ -0,0 +1,244 @@
//! Lexer analyzes raw input string and produces lexemes (tokens).
//! It is just a bridge to `rustc_lexer`.
use rustc_lexer::{LiteralKind as LK, RawStrError};
use std::convert::TryInto;
use crate::{
SyntaxError,
SyntaxKind::{self, *},
TextRange, TextSize, T,
};
/// A token of Rust source.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Token {
/// The kind of token.
pub kind: SyntaxKind,
/// The length of the token.
pub len: TextSize,
}
/// Break a string up into its component tokens.
/// Beware that it checks for shebang first and its length contributes to resulting
/// tokens offsets.
pub fn tokenize(text: &str) -> (Vec<Token>, Vec<SyntaxError>) {
// non-empty string is a precondtion of `rustc_lexer::strip_shebang()`.
if text.is_empty() {
return Default::default();
}
let mut tokens = Vec::new();
let mut errors = Vec::new();
let mut offset = match rustc_lexer::strip_shebang(text) {
Some(shebang_len) => {
tokens.push(Token { kind: SHEBANG, len: shebang_len.try_into().unwrap() });
shebang_len
}
None => 0,
};
let text_without_shebang = &text[offset..];
for rustc_token in rustc_lexer::tokenize(text_without_shebang) {
let token_len: TextSize = rustc_token.len.try_into().unwrap();
let token_range = TextRange::at(offset.try_into().unwrap(), token_len);
let (syntax_kind, err_message) =
rustc_token_kind_to_syntax_kind(&rustc_token.kind, &text[token_range]);
tokens.push(Token { kind: syntax_kind, len: token_len });
if let Some(err_message) = err_message {
errors.push(SyntaxError::new(err_message, token_range));
}
offset += rustc_token.len;
}
(tokens, errors)
}
/// Returns `SyntaxKind` and `Option<SyntaxError>` of the first token
/// encountered at the beginning of the string.
///
/// Returns `None` if the string contains zero *or two or more* tokens.
/// The token is malformed if the returned error is not `None`.
///
/// Beware that unescape errors are not checked at tokenization time.
pub fn lex_single_syntax_kind(text: &str) -> Option<(SyntaxKind, Option<SyntaxError>)> {
lex_first_token(text)
.filter(|(token, _)| token.len == TextSize::of(text))
.map(|(token, error)| (token.kind, error))
}
/// The same as `lex_single_syntax_kind()` but returns only `SyntaxKind` and
/// returns `None` if any tokenization error occured.
///
/// Beware that unescape errors are not checked at tokenization time.
pub fn lex_single_valid_syntax_kind(text: &str) -> Option<SyntaxKind> {
lex_first_token(text)
.filter(|(token, error)| !error.is_some() && token.len == TextSize::of(text))
.map(|(token, _error)| token.kind)
}
/// Returns `SyntaxKind` and `Option<SyntaxError>` of the first token
/// encountered at the beginning of the string.
///
/// Returns `None` if the string contains zero tokens or if the token was parsed
/// with an error.
/// The token is malformed if the returned error is not `None`.
///
/// Beware that unescape errors are not checked at tokenization time.
fn lex_first_token(text: &str) -> Option<(Token, Option<SyntaxError>)> {
// non-empty string is a precondtion of `rustc_lexer::first_token()`.
if text.is_empty() {
return None;
}
let rustc_token = rustc_lexer::first_token(text);
let (syntax_kind, err_message) = rustc_token_kind_to_syntax_kind(&rustc_token.kind, text);
let token = Token { kind: syntax_kind, len: rustc_token.len.try_into().unwrap() };
let optional_error = err_message
.map(|err_message| SyntaxError::new(err_message, TextRange::up_to(TextSize::of(text))));
Some((token, optional_error))
}
/// Returns `SyntaxKind` and an optional tokenize error message.
fn rustc_token_kind_to_syntax_kind(
rustc_token_kind: &rustc_lexer::TokenKind,
token_text: &str,
) -> (SyntaxKind, Option<&'static str>) {
// A note on an intended tradeoff:
// We drop some useful infromation here (see patterns with double dots `..`)
// Storing that info in `SyntaxKind` is not possible due to its layout requirements of
// being `u16` that come from `rowan::SyntaxKind`.
let syntax_kind = {
match rustc_token_kind {
rustc_lexer::TokenKind::LineComment => COMMENT,
rustc_lexer::TokenKind::BlockComment { terminated: true } => COMMENT,
rustc_lexer::TokenKind::BlockComment { terminated: false } => {
return (
COMMENT,
Some("Missing trailing `*/` symbols to terminate the block comment"),
);
}
rustc_lexer::TokenKind::Whitespace => WHITESPACE,
rustc_lexer::TokenKind::Ident => {
if token_text == "_" {
UNDERSCORE
} else {
SyntaxKind::from_keyword(token_text).unwrap_or(IDENT)
}
}
rustc_lexer::TokenKind::RawIdent => IDENT,
rustc_lexer::TokenKind::Literal { kind, .. } => return match_literal_kind(&kind),
rustc_lexer::TokenKind::Lifetime { starts_with_number: false } => LIFETIME,
rustc_lexer::TokenKind::Lifetime { starts_with_number: true } => {
return (LIFETIME, Some("Lifetime name cannot start with a number"))
}
rustc_lexer::TokenKind::Semi => T![;],
rustc_lexer::TokenKind::Comma => T![,],
rustc_lexer::TokenKind::Dot => T![.],
rustc_lexer::TokenKind::OpenParen => T!['('],
rustc_lexer::TokenKind::CloseParen => T![')'],
rustc_lexer::TokenKind::OpenBrace => T!['{'],
rustc_lexer::TokenKind::CloseBrace => T!['}'],
rustc_lexer::TokenKind::OpenBracket => T!['['],
rustc_lexer::TokenKind::CloseBracket => T![']'],
rustc_lexer::TokenKind::At => T![@],
rustc_lexer::TokenKind::Pound => T![#],
rustc_lexer::TokenKind::Tilde => T![~],
rustc_lexer::TokenKind::Question => T![?],
rustc_lexer::TokenKind::Colon => T![:],
rustc_lexer::TokenKind::Dollar => T![$],
rustc_lexer::TokenKind::Eq => T![=],
rustc_lexer::TokenKind::Not => T![!],
rustc_lexer::TokenKind::Lt => T![<],
rustc_lexer::TokenKind::Gt => T![>],
rustc_lexer::TokenKind::Minus => T![-],
rustc_lexer::TokenKind::And => T![&],
rustc_lexer::TokenKind::Or => T![|],
rustc_lexer::TokenKind::Plus => T![+],
rustc_lexer::TokenKind::Star => T![*],
rustc_lexer::TokenKind::Slash => T![/],
rustc_lexer::TokenKind::Caret => T![^],
rustc_lexer::TokenKind::Percent => T![%],
rustc_lexer::TokenKind::Unknown => ERROR,
}
};
return (syntax_kind, None);
fn match_literal_kind(kind: &rustc_lexer::LiteralKind) -> (SyntaxKind, Option<&'static str>) {
#[rustfmt::skip]
let syntax_kind = match *kind {
LK::Int { empty_int: false, .. } => INT_NUMBER,
LK::Int { empty_int: true, .. } => {
return (INT_NUMBER, Some("Missing digits after the integer base prefix"))
}
LK::Float { empty_exponent: false, .. } => FLOAT_NUMBER,
LK::Float { empty_exponent: true, .. } => {
return (FLOAT_NUMBER, Some("Missing digits after the exponent symbol"))
}
LK::Char { terminated: true } => CHAR,
LK::Char { terminated: false } => {
return (CHAR, Some("Missing trailing `'` symbol to terminate the character literal"))
}
LK::Byte { terminated: true } => BYTE,
LK::Byte { terminated: false } => {
return (BYTE, Some("Missing trailing `'` symbol to terminate the byte literal"))
}
LK::Str { terminated: true } => STRING,
LK::Str { terminated: false } => {
return (STRING, Some("Missing trailing `\"` symbol to terminate the string literal"))
}
LK::ByteStr { terminated: true } => BYTE_STRING,
LK::ByteStr { terminated: false } => {
return (BYTE_STRING, Some("Missing trailing `\"` symbol to terminate the byte string literal"))
}
LK::RawStr { err, .. } => match err {
None => RAW_STRING,
Some(RawStrError::InvalidStarter { .. }) => return (RAW_STRING, Some("Missing `\"` symbol after `#` symbols to begin the raw string literal")),
Some(RawStrError::NoTerminator { expected, found, .. }) => if expected == found {
return (RAW_STRING, Some("Missing trailing `\"` to terminate the raw string literal"))
} else {
return (RAW_STRING, Some("Missing trailing `\"` with `#` symbols to terminate the raw string literal"))
},
Some(RawStrError::TooManyDelimiters { .. }) => return (RAW_STRING, Some("Too many `#` symbols: raw strings may be delimited by up to 65535 `#` symbols")),
},
LK::RawByteStr { err, .. } => match err {
None => RAW_BYTE_STRING,
Some(RawStrError::InvalidStarter { .. }) => return (RAW_BYTE_STRING, Some("Missing `\"` symbol after `#` symbols to begin the raw byte string literal")),
Some(RawStrError::NoTerminator { expected, found, .. }) => if expected == found {
return (RAW_BYTE_STRING, Some("Missing trailing `\"` to terminate the raw byte string literal"))
} else {
return (RAW_BYTE_STRING, Some("Missing trailing `\"` with `#` symbols to terminate the raw byte string literal"))
},
Some(RawStrError::TooManyDelimiters { .. }) => return (RAW_BYTE_STRING, Some("Too many `#` symbols: raw byte strings may be delimited by up to 65535 `#` symbols")),
},
};
(syntax_kind, None)
}
}

View file

@ -0,0 +1,455 @@
//! Implementation of incremental re-parsing.
//!
//! We use two simple strategies for this:
//! - if the edit modifies only a single token (like changing an identifier's
//! letter), we replace only this token.
//! - otherwise, we search for the nearest `{}` block which contains the edit
//! and try to parse only this block.
use parser::Reparser;
use text_edit::Indel;
use crate::{
algo,
parsing::{
lexer::{lex_single_syntax_kind, tokenize, Token},
text_token_source::TextTokenSource,
text_tree_sink::TextTreeSink,
},
syntax_node::{GreenNode, GreenToken, NodeOrToken, SyntaxElement, SyntaxNode},
SyntaxError,
SyntaxKind::*,
TextRange, TextSize, T,
};
pub(crate) fn incremental_reparse(
node: &SyntaxNode,
edit: &Indel,
errors: Vec<SyntaxError>,
) -> Option<(GreenNode, Vec<SyntaxError>, TextRange)> {
if let Some((green, new_errors, old_range)) = reparse_token(node, &edit) {
return Some((green, merge_errors(errors, new_errors, old_range, edit), old_range));
}
if let Some((green, new_errors, old_range)) = reparse_block(node, &edit) {
return Some((green, merge_errors(errors, new_errors, old_range, edit), old_range));
}
None
}
fn reparse_token<'node>(
root: &'node SyntaxNode,
edit: &Indel,
) -> Option<(GreenNode, Vec<SyntaxError>, TextRange)> {
let prev_token = algo::find_covering_element(root, edit.delete).as_token()?.clone();
let prev_token_kind = prev_token.kind();
match prev_token_kind {
WHITESPACE | COMMENT | IDENT | STRING | RAW_STRING => {
if prev_token_kind == WHITESPACE || prev_token_kind == COMMENT {
// removing a new line may extends previous token
let deleted_range = edit.delete - prev_token.text_range().start();
if prev_token.text()[deleted_range].contains('\n') {
return None;
}
}
let mut new_text = get_text_after_edit(prev_token.clone().into(), &edit);
let (new_token_kind, new_err) = lex_single_syntax_kind(&new_text)?;
if new_token_kind != prev_token_kind
|| (new_token_kind == IDENT && is_contextual_kw(&new_text))
{
return None;
}
// Check that edited token is not a part of the bigger token.
// E.g. if for source code `bruh"str"` the user removed `ruh`, then
// `b` no longer remains an identifier, but becomes a part of byte string literal
if let Some(next_char) = root.text().char_at(prev_token.text_range().end()) {
new_text.push(next_char);
let token_with_next_char = lex_single_syntax_kind(&new_text);
if let Some((_kind, _error)) = token_with_next_char {
return None;
}
new_text.pop();
}
let new_token =
GreenToken::new(rowan::SyntaxKind(prev_token_kind.into()), new_text.into());
Some((
prev_token.replace_with(new_token),
new_err.into_iter().collect(),
prev_token.text_range(),
))
}
_ => None,
}
}
fn reparse_block<'node>(
root: &'node SyntaxNode,
edit: &Indel,
) -> Option<(GreenNode, Vec<SyntaxError>, TextRange)> {
let (node, reparser) = find_reparsable_node(root, edit.delete)?;
let text = get_text_after_edit(node.clone().into(), edit);
let (tokens, new_lexer_errors) = tokenize(&text);
if !is_balanced(&tokens) {
return None;
}
let mut token_source = TextTokenSource::new(&text, &tokens);
let mut tree_sink = TextTreeSink::new(&text, &tokens);
reparser.parse(&mut token_source, &mut tree_sink);
let (green, mut new_parser_errors) = tree_sink.finish();
new_parser_errors.extend(new_lexer_errors);
Some((node.replace_with(green), new_parser_errors, node.text_range()))
}
fn get_text_after_edit(element: SyntaxElement, edit: &Indel) -> String {
let edit = Indel::replace(edit.delete - element.text_range().start(), edit.insert.clone());
let mut text = match element {
NodeOrToken::Token(token) => token.text().to_string(),
NodeOrToken::Node(node) => node.text().to_string(),
};
edit.apply(&mut text);
text
}
fn is_contextual_kw(text: &str) -> bool {
matches!(text, "auto" | "default" | "union")
}
fn find_reparsable_node(node: &SyntaxNode, range: TextRange) -> Option<(SyntaxNode, Reparser)> {
let node = algo::find_covering_element(node, range);
let mut ancestors = match node {
NodeOrToken::Token(it) => it.parent().ancestors(),
NodeOrToken::Node(it) => it.ancestors(),
};
ancestors.find_map(|node| {
let first_child = node.first_child_or_token().map(|it| it.kind());
let parent = node.parent().map(|it| it.kind());
Reparser::for_node(node.kind(), first_child, parent).map(|r| (node, r))
})
}
fn is_balanced(tokens: &[Token]) -> bool {
if tokens.is_empty()
|| tokens.first().unwrap().kind != T!['{']
|| tokens.last().unwrap().kind != T!['}']
{
return false;
}
let mut balance = 0usize;
for t in &tokens[1..tokens.len() - 1] {
match t.kind {
T!['{'] => balance += 1,
T!['}'] => {
balance = match balance.checked_sub(1) {
Some(b) => b,
None => return false,
}
}
_ => (),
}
}
balance == 0
}
fn merge_errors(
old_errors: Vec<SyntaxError>,
new_errors: Vec<SyntaxError>,
range_before_reparse: TextRange,
edit: &Indel,
) -> Vec<SyntaxError> {
let mut res = Vec::new();
for old_err in old_errors {
let old_err_range = old_err.range();
if old_err_range.end() <= range_before_reparse.start() {
res.push(old_err);
} else if old_err_range.start() >= range_before_reparse.end() {
let inserted_len = TextSize::of(&edit.insert);
res.push(old_err.with_range((old_err_range + inserted_len) - edit.delete.len()));
// Note: extra parens are intentional to prevent uint underflow, HWAB (here was a bug)
}
}
res.extend(new_errors.into_iter().map(|new_err| {
// fighting borrow checker with a variable ;)
let offseted_range = new_err.range() + range_before_reparse.start();
new_err.with_range(offseted_range)
}));
res
}
#[cfg(test)]
mod tests {
use test_utils::{assert_eq_text, extract_range};
use super::*;
use crate::{AstNode, Parse, SourceFile};
fn do_check(before: &str, replace_with: &str, reparsed_len: u32) {
let (range, before) = extract_range(before);
let edit = Indel::replace(range, replace_with.to_owned());
let after = {
let mut after = before.clone();
edit.apply(&mut after);
after
};
let fully_reparsed = SourceFile::parse(&after);
let incrementally_reparsed: Parse<SourceFile> = {
let before = SourceFile::parse(&before);
let (green, new_errors, range) =
incremental_reparse(before.tree().syntax(), &edit, before.errors.to_vec()).unwrap();
assert_eq!(range.len(), reparsed_len.into(), "reparsed fragment has wrong length");
Parse::new(green, new_errors)
};
assert_eq_text!(
&format!("{:#?}", fully_reparsed.tree().syntax()),
&format!("{:#?}", incrementally_reparsed.tree().syntax()),
);
assert_eq!(fully_reparsed.errors(), incrementally_reparsed.errors());
}
#[test] // FIXME: some test here actually test token reparsing
fn reparse_block_tests() {
do_check(
r"
fn foo() {
let x = foo + <|>bar<|>
}
",
"baz",
3,
);
do_check(
r"
fn foo() {
let x = foo<|> + bar<|>
}
",
"baz",
25,
);
do_check(
r"
struct Foo {
f: foo<|><|>
}
",
",\n g: (),",
14,
);
do_check(
r"
fn foo {
let;
1 + 1;
<|>92<|>;
}
",
"62",
31, // FIXME: reparse only int literal here
);
do_check(
r"
mod foo {
fn <|><|>
}
",
"bar",
11,
);
do_check(
r"
trait Foo {
type <|>Foo<|>;
}
",
"Output",
3,
);
do_check(
r"
impl IntoIterator<Item=i32> for Foo {
f<|><|>
}
",
"n next(",
9,
);
do_check(r"use a::b::{foo,<|>,bar<|>};", "baz", 10);
do_check(
r"
pub enum A {
Foo<|><|>
}
",
"\nBar;\n",
11,
);
do_check(
r"
foo!{a, b<|><|> d}
",
", c[3]",
8,
);
do_check(
r"
fn foo() {
vec![<|><|>]
}
",
"123",
14,
);
do_check(
r"
extern {
fn<|>;<|>
}
",
" exit(code: c_int)",
11,
);
}
#[test]
fn reparse_token_tests() {
do_check(
r"<|><|>
fn foo() -> i32 { 1 }
",
"\n\n\n \n",
1,
);
do_check(
r"
fn foo() -> <|><|> {}
",
" \n",
2,
);
do_check(
r"
fn <|>foo<|>() -> i32 { 1 }
",
"bar",
3,
);
do_check(
r"
fn foo<|><|>foo() { }
",
"bar",
6,
);
do_check(
r"
fn foo /* <|><|> */ () {}
",
"some comment",
6,
);
do_check(
r"
fn baz <|><|> () {}
",
" \t\t\n\n",
2,
);
do_check(
r"
fn baz <|><|> () {}
",
" \t\t\n\n",
2,
);
do_check(
r"
/// foo <|><|>omment
mod { }
",
"c",
14,
);
do_check(
r#"
fn -> &str { "Hello<|><|>" }
"#,
", world",
7,
);
do_check(
r#"
fn -> &str { // "Hello<|><|>"
"#,
", world",
10,
);
do_check(
r##"
fn -> &str { r#"Hello<|><|>"#
"##,
", world",
10,
);
do_check(
r"
#[derive(<|>Copy<|>)]
enum Foo {
}
",
"Clone",
4,
);
}
#[test]
fn reparse_str_token_with_error_unchanged() {
do_check(r#""<|>Unclosed<|> string literal"#, "Still unclosed", 24);
}
#[test]
fn reparse_str_token_with_error_fixed() {
do_check(r#""unterinated<|><|>"#, "\"", 12);
}
#[test]
fn reparse_block_with_error_in_middle_unchanged() {
do_check(
r#"fn main() {
if {}
32 + 4<|><|>
return
if {}
}"#,
"23",
105,
)
}
#[test]
fn reparse_block_with_error_in_middle_fixed() {
do_check(
r#"fn main() {
if {}
32 + 4<|><|>
return
if {}
}"#,
";",
105,
)
}
}

View file

@ -0,0 +1,84 @@
//! See `TextTokenSource` docs.
use parser::TokenSource;
use crate::{parsing::lexer::Token, SyntaxKind::EOF, TextRange, TextSize};
/// Implementation of `parser::TokenSource` that takes tokens from source code text.
pub(crate) struct TextTokenSource<'t> {
text: &'t str,
/// token and its start position (non-whitespace/comment tokens)
/// ```non-rust
/// struct Foo;
/// ^------^--^-
/// | | \________
/// | \____ \
/// | \ |
/// (struct, 0) (Foo, 7) (;, 10)
/// ```
/// `[(struct, 0), (Foo, 7), (;, 10)]`
token_offset_pairs: Vec<(Token, TextSize)>,
/// Current token and position
curr: (parser::Token, usize),
}
impl<'t> TokenSource for TextTokenSource<'t> {
fn current(&self) -> parser::Token {
self.curr.0
}
fn lookahead_nth(&self, n: usize) -> parser::Token {
mk_token(self.curr.1 + n, &self.token_offset_pairs)
}
fn bump(&mut self) {
if self.curr.0.kind == EOF {
return;
}
let pos = self.curr.1 + 1;
self.curr = (mk_token(pos, &self.token_offset_pairs), pos);
}
fn is_keyword(&self, kw: &str) -> bool {
self.token_offset_pairs
.get(self.curr.1)
.map(|(token, offset)| &self.text[TextRange::at(*offset, token.len)] == kw)
.unwrap_or(false)
}
}
fn mk_token(pos: usize, token_offset_pairs: &[(Token, TextSize)]) -> parser::Token {
let (kind, is_jointed_to_next) = match token_offset_pairs.get(pos) {
Some((token, offset)) => (
token.kind,
token_offset_pairs
.get(pos + 1)
.map(|(_, next_offset)| offset + token.len == *next_offset)
.unwrap_or(false),
),
None => (EOF, false),
};
parser::Token { kind, is_jointed_to_next }
}
impl<'t> TextTokenSource<'t> {
/// Generate input from tokens(expect comment and whitespace).
pub fn new(text: &'t str, raw_tokens: &'t [Token]) -> TextTokenSource<'t> {
let token_offset_pairs: Vec<_> = raw_tokens
.iter()
.filter_map({
let mut len = 0.into();
move |token| {
let pair = if token.kind.is_trivia() { None } else { Some((*token, len)) };
len += token.len;
pair
}
})
.collect();
let first = mk_token(0, &token_offset_pairs);
TextTokenSource { text, token_offset_pairs, curr: (first, 0) }
}
}

View file

@ -0,0 +1,183 @@
//! FIXME: write short doc here
use std::mem;
use parser::{ParseError, TreeSink};
use crate::{
parsing::Token,
syntax_node::GreenNode,
SmolStr, SyntaxError,
SyntaxKind::{self, *},
SyntaxTreeBuilder, TextRange, TextSize,
};
/// Bridges the parser with our specific syntax tree representation.
///
/// `TextTreeSink` also handles attachment of trivia (whitespace) to nodes.
pub(crate) struct TextTreeSink<'a> {
text: &'a str,
tokens: &'a [Token],
text_pos: TextSize,
token_pos: usize,
state: State,
inner: SyntaxTreeBuilder,
}
enum State {
PendingStart,
Normal,
PendingFinish,
}
impl<'a> TreeSink for TextTreeSink<'a> {
fn token(&mut self, kind: SyntaxKind, n_tokens: u8) {
match mem::replace(&mut self.state, State::Normal) {
State::PendingStart => unreachable!(),
State::PendingFinish => self.inner.finish_node(),
State::Normal => (),
}
self.eat_trivias();
let n_tokens = n_tokens as usize;
let len = self.tokens[self.token_pos..self.token_pos + n_tokens]
.iter()
.map(|it| it.len)
.sum::<TextSize>();
self.do_token(kind, len, n_tokens);
}
fn start_node(&mut self, kind: SyntaxKind) {
match mem::replace(&mut self.state, State::Normal) {
State::PendingStart => {
self.inner.start_node(kind);
// No need to attach trivias to previous node: there is no
// previous node.
return;
}
State::PendingFinish => self.inner.finish_node(),
State::Normal => (),
}
let n_trivias =
self.tokens[self.token_pos..].iter().take_while(|it| it.kind.is_trivia()).count();
let leading_trivias = &self.tokens[self.token_pos..self.token_pos + n_trivias];
let mut trivia_end =
self.text_pos + leading_trivias.iter().map(|it| it.len).sum::<TextSize>();
let n_attached_trivias = {
let leading_trivias = leading_trivias.iter().rev().map(|it| {
let next_end = trivia_end - it.len;
let range = TextRange::new(next_end, trivia_end);
trivia_end = next_end;
(it.kind, &self.text[range])
});
n_attached_trivias(kind, leading_trivias)
};
self.eat_n_trivias(n_trivias - n_attached_trivias);
self.inner.start_node(kind);
self.eat_n_trivias(n_attached_trivias);
}
fn finish_node(&mut self) {
match mem::replace(&mut self.state, State::PendingFinish) {
State::PendingStart => unreachable!(),
State::PendingFinish => self.inner.finish_node(),
State::Normal => (),
}
}
fn error(&mut self, error: ParseError) {
self.inner.error(error, self.text_pos)
}
}
impl<'a> TextTreeSink<'a> {
pub(super) fn new(text: &'a str, tokens: &'a [Token]) -> Self {
Self {
text,
tokens,
text_pos: 0.into(),
token_pos: 0,
state: State::PendingStart,
inner: SyntaxTreeBuilder::default(),
}
}
pub(super) fn finish(mut self) -> (GreenNode, Vec<SyntaxError>) {
match mem::replace(&mut self.state, State::Normal) {
State::PendingFinish => {
self.eat_trivias();
self.inner.finish_node()
}
State::PendingStart | State::Normal => unreachable!(),
}
self.inner.finish_raw()
}
fn eat_trivias(&mut self) {
while let Some(&token) = self.tokens.get(self.token_pos) {
if !token.kind.is_trivia() {
break;
}
self.do_token(token.kind, token.len, 1);
}
}
fn eat_n_trivias(&mut self, n: usize) {
for _ in 0..n {
let token = self.tokens[self.token_pos];
assert!(token.kind.is_trivia());
self.do_token(token.kind, token.len, 1);
}
}
fn do_token(&mut self, kind: SyntaxKind, len: TextSize, n_tokens: usize) {
let range = TextRange::at(self.text_pos, len);
let text: SmolStr = self.text[range].into();
self.text_pos += len;
self.token_pos += n_tokens;
self.inner.token(kind, text);
}
}
fn n_attached_trivias<'a>(
kind: SyntaxKind,
trivias: impl Iterator<Item = (SyntaxKind, &'a str)>,
) -> usize {
match kind {
MACRO_CALL | CONST | TYPE_ALIAS | STRUCT | ENUM | VARIANT | FN | TRAIT | MODULE
| RECORD_FIELD | STATIC => {
let mut res = 0;
let mut trivias = trivias.enumerate().peekable();
while let Some((i, (kind, text))) = trivias.next() {
match kind {
WHITESPACE => {
if text.contains("\n\n") {
// we check whether the next token is a doc-comment
// and skip the whitespace in this case
if let Some((peek_kind, peek_text)) =
trivias.peek().map(|(_, pair)| pair)
{
if *peek_kind == COMMENT
&& peek_text.starts_with("///")
&& !peek_text.starts_with("////")
{
continue;
}
}
break;
}
}
COMMENT => {
res = i + 1;
}
_ => (),
}
}
res
}
_ => 0,
}
}

105
crates/syntax/src/ptr.rs Normal file
View file

@ -0,0 +1,105 @@
//! FIXME: write short doc here
use std::{
hash::{Hash, Hasher},
iter::successors,
marker::PhantomData,
};
use crate::{AstNode, SyntaxKind, SyntaxNode, TextRange};
/// A pointer to a syntax node inside a file. It can be used to remember a
/// specific node across reparses of the same file.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct SyntaxNodePtr {
pub(crate) range: TextRange,
kind: SyntaxKind,
}
impl SyntaxNodePtr {
pub fn new(node: &SyntaxNode) -> SyntaxNodePtr {
SyntaxNodePtr { range: node.text_range(), kind: node.kind() }
}
pub fn to_node(&self, root: &SyntaxNode) -> SyntaxNode {
assert!(root.parent().is_none());
successors(Some(root.clone()), |node| {
node.children().find(|it| it.text_range().contains_range(self.range))
})
.find(|it| it.text_range() == self.range && it.kind() == self.kind)
.unwrap_or_else(|| panic!("can't resolve local ptr to SyntaxNode: {:?}", self))
}
pub fn cast<N: AstNode>(self) -> Option<AstPtr<N>> {
if !N::can_cast(self.kind) {
return None;
}
Some(AstPtr { raw: self, _ty: PhantomData })
}
}
/// Like `SyntaxNodePtr`, but remembers the type of node
#[derive(Debug)]
pub struct AstPtr<N: AstNode> {
raw: SyntaxNodePtr,
_ty: PhantomData<fn() -> N>,
}
impl<N: AstNode> Clone for AstPtr<N> {
fn clone(&self) -> AstPtr<N> {
AstPtr { raw: self.raw.clone(), _ty: PhantomData }
}
}
impl<N: AstNode> Eq for AstPtr<N> {}
impl<N: AstNode> PartialEq for AstPtr<N> {
fn eq(&self, other: &AstPtr<N>) -> bool {
self.raw == other.raw
}
}
impl<N: AstNode> Hash for AstPtr<N> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.raw.hash(state)
}
}
impl<N: AstNode> AstPtr<N> {
pub fn new(node: &N) -> AstPtr<N> {
AstPtr { raw: SyntaxNodePtr::new(node.syntax()), _ty: PhantomData }
}
pub fn to_node(&self, root: &SyntaxNode) -> N {
let syntax_node = self.raw.to_node(root);
N::cast(syntax_node).unwrap()
}
pub fn syntax_node_ptr(&self) -> SyntaxNodePtr {
self.raw.clone()
}
pub fn cast<U: AstNode>(self) -> Option<AstPtr<U>> {
if !U::can_cast(self.raw.kind) {
return None;
}
Some(AstPtr { raw: self.raw, _ty: PhantomData })
}
}
impl<N: AstNode> From<AstPtr<N>> for SyntaxNodePtr {
fn from(ptr: AstPtr<N>) -> SyntaxNodePtr {
ptr.raw
}
}
#[test]
fn test_local_syntax_ptr() {
use crate::{ast, AstNode, SourceFile};
let file = SourceFile::parse("struct Foo { f: u32, }").ok().unwrap();
let field = file.syntax().descendants().find_map(ast::RecordField::cast).unwrap();
let ptr = SyntaxNodePtr::new(field.syntax());
let field_syntax = ptr.to_node(file.syntax());
assert_eq!(field.syntax(), &field_syntax);
}

View file

@ -0,0 +1,44 @@
//! See docs for `SyntaxError`.
use std::fmt;
use crate::{TextRange, TextSize};
/// Represents the result of unsuccessful tokenization, parsing
/// or tree validation.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct SyntaxError(String, TextRange);
// FIXME: there was an unused SyntaxErrorKind previously (before this enum was removed)
// It was introduced in this PR: https://github.com/rust-analyzer/rust-analyzer/pull/846/files#diff-827da9b03b8f9faa1bade5cdd44d5dafR95
// but it was not removed by a mistake.
//
// So, we need to find a place where to stick validation for attributes in match clauses.
// Code before refactor:
// InvalidMatchInnerAttr => {
// write!(f, "Inner attributes are only allowed directly after the opening brace of the match expression")
// }
impl SyntaxError {
pub fn new(message: impl Into<String>, range: TextRange) -> Self {
Self(message.into(), range)
}
pub fn new_at_offset(message: impl Into<String>, offset: TextSize) -> Self {
Self(message.into(), TextRange::empty(offset))
}
pub fn range(&self) -> TextRange {
self.1
}
pub fn with_range(mut self, range: TextRange) -> Self {
self.1 = range;
self
}
}
impl fmt::Display for SyntaxError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}

View file

@ -0,0 +1,77 @@
//! This module defines Concrete Syntax Tree (CST), used by rust-analyzer.
//!
//! The CST includes comments and whitespace, provides a single node type,
//! `SyntaxNode`, and a basic traversal API (parent, children, siblings).
//!
//! The *real* implementation is in the (language-agnostic) `rowan` crate, this
//! module just wraps its API.
use rowan::{GreenNodeBuilder, Language};
use crate::{Parse, SmolStr, SyntaxError, SyntaxKind, TextSize};
pub use rowan::GreenNode;
pub(crate) use rowan::GreenToken;
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum RustLanguage {}
impl Language for RustLanguage {
type Kind = SyntaxKind;
fn kind_from_raw(raw: rowan::SyntaxKind) -> SyntaxKind {
SyntaxKind::from(raw.0)
}
fn kind_to_raw(kind: SyntaxKind) -> rowan::SyntaxKind {
rowan::SyntaxKind(kind.into())
}
}
pub type SyntaxNode = rowan::SyntaxNode<RustLanguage>;
pub type SyntaxToken = rowan::SyntaxToken<RustLanguage>;
pub type SyntaxElement = rowan::SyntaxElement<RustLanguage>;
pub type SyntaxNodeChildren = rowan::SyntaxNodeChildren<RustLanguage>;
pub type SyntaxElementChildren = rowan::SyntaxElementChildren<RustLanguage>;
pub use rowan::{Direction, NodeOrToken};
#[derive(Default)]
pub struct SyntaxTreeBuilder {
errors: Vec<SyntaxError>,
inner: GreenNodeBuilder<'static>,
}
impl SyntaxTreeBuilder {
pub(crate) fn finish_raw(self) -> (GreenNode, Vec<SyntaxError>) {
let green = self.inner.finish();
(green, self.errors)
}
pub fn finish(self) -> Parse<SyntaxNode> {
let (green, errors) = self.finish_raw();
if cfg!(debug_assertions) {
let node = SyntaxNode::new_root(green.clone());
crate::validation::validate_block_structure(&node);
}
Parse::new(green, errors)
}
pub fn token(&mut self, kind: SyntaxKind, text: SmolStr) {
let kind = RustLanguage::kind_to_raw(kind);
self.inner.token(kind, text)
}
pub fn start_node(&mut self, kind: SyntaxKind) {
let kind = RustLanguage::kind_to_raw(kind);
self.inner.start_node(kind)
}
pub fn finish_node(&mut self) {
self.inner.finish_node()
}
pub fn error(&mut self, error: parser::ParseError, text_pos: TextSize) {
self.errors.push(SyntaxError::new_at_offset(*error.0, text_pos))
}
}

280
crates/syntax/src/tests.rs Normal file
View file

@ -0,0 +1,280 @@
use std::{
fmt::Write,
fs,
path::{Path, PathBuf},
};
use expect::expect_file;
use rayon::prelude::*;
use test_utils::project_dir;
use crate::{fuzz, tokenize, SourceFile, SyntaxError, TextRange, TextSize, Token};
#[test]
fn lexer_tests() {
// FIXME:
// * Add tests for unicode escapes in byte-character and [raw]-byte-string literals
// * Add tests for unescape errors
dir_tests(&test_data_dir(), &["lexer/ok"], "txt", |text, path| {
let (tokens, errors) = tokenize(text);
assert_errors_are_absent(&errors, path);
dump_tokens_and_errors(&tokens, &errors, text)
});
dir_tests(&test_data_dir(), &["lexer/err"], "txt", |text, path| {
let (tokens, errors) = tokenize(text);
assert_errors_are_present(&errors, path);
dump_tokens_and_errors(&tokens, &errors, text)
});
}
#[test]
fn parse_smoke_test() {
let code = r##"
fn main() {
println!("Hello, world!")
}
"##;
let parse = SourceFile::parse(code);
// eprintln!("{:#?}", parse.syntax_node());
assert!(parse.ok().is_ok());
}
#[test]
fn parser_tests() {
dir_tests(&test_data_dir(), &["parser/inline/ok", "parser/ok"], "rast", |text, path| {
let parse = SourceFile::parse(text);
let errors = parse.errors();
assert_errors_are_absent(&errors, path);
parse.debug_dump()
});
dir_tests(&test_data_dir(), &["parser/err", "parser/inline/err"], "rast", |text, path| {
let parse = SourceFile::parse(text);
let errors = parse.errors();
assert_errors_are_present(&errors, path);
parse.debug_dump()
});
}
#[test]
fn expr_parser_tests() {
fragment_parser_dir_test(
&["parser/fragments/expr/ok"],
&["parser/fragments/expr/err"],
crate::ast::Expr::parse,
);
}
#[test]
fn path_parser_tests() {
fragment_parser_dir_test(
&["parser/fragments/path/ok"],
&["parser/fragments/path/err"],
crate::ast::Path::parse,
);
}
#[test]
fn pattern_parser_tests() {
fragment_parser_dir_test(
&["parser/fragments/pattern/ok"],
&["parser/fragments/pattern/err"],
crate::ast::Pat::parse,
);
}
#[test]
fn item_parser_tests() {
fragment_parser_dir_test(
&["parser/fragments/item/ok"],
&["parser/fragments/item/err"],
crate::ast::Item::parse,
);
}
#[test]
fn type_parser_tests() {
fragment_parser_dir_test(
&["parser/fragments/type/ok"],
&["parser/fragments/type/err"],
crate::ast::Type::parse,
);
}
#[test]
fn parser_fuzz_tests() {
for (_, text) in collect_rust_files(&test_data_dir(), &["parser/fuzz-failures"]) {
fuzz::check_parser(&text)
}
}
#[test]
fn reparse_fuzz_tests() {
for (_, text) in collect_rust_files(&test_data_dir(), &["reparse/fuzz-failures"]) {
let check = fuzz::CheckReparse::from_data(text.as_bytes()).unwrap();
println!("{:?}", check);
check.run();
}
}
/// Test that Rust-analyzer can parse and validate the rust-analyzer
/// FIXME: Use this as a benchmark
#[test]
fn self_hosting_parsing() {
let dir = project_dir().join("crates");
let files = walkdir::WalkDir::new(dir)
.into_iter()
.filter_entry(|entry| {
// Get all files which are not in the crates/syntax/test_data folder
!entry.path().components().any(|component| component.as_os_str() == "test_data")
})
.map(|e| e.unwrap())
.filter(|entry| {
// Get all `.rs ` files
!entry.path().is_dir() && (entry.path().extension().unwrap_or_default() == "rs")
})
.map(|entry| entry.into_path())
.collect::<Vec<_>>();
assert!(
files.len() > 100,
"self_hosting_parsing found too few files - is it running in the right directory?"
);
let errors = files
.into_par_iter()
.filter_map(|file| {
let text = read_text(&file);
match SourceFile::parse(&text).ok() {
Ok(_) => None,
Err(err) => Some((file, err)),
}
})
.collect::<Vec<_>>();
if !errors.is_empty() {
let errors = errors
.into_iter()
.map(|(path, err)| format!("{}: {:?}\n", path.display(), err))
.collect::<String>();
panic!("Parsing errors:\n{}\n", errors);
}
}
fn test_data_dir() -> PathBuf {
project_dir().join("crates/syntax/test_data")
}
fn assert_errors_are_present(errors: &[SyntaxError], path: &Path) {
assert!(!errors.is_empty(), "There should be errors in the file {:?}", path.display());
}
fn assert_errors_are_absent(errors: &[SyntaxError], path: &Path) {
assert_eq!(
errors,
&[] as &[SyntaxError],
"There should be no errors in the file {:?}",
path.display(),
);
}
fn dump_tokens_and_errors(tokens: &[Token], errors: &[SyntaxError], text: &str) -> String {
let mut acc = String::new();
let mut offset: TextSize = 0.into();
for token in tokens {
let token_len = token.len;
let token_text = &text[TextRange::at(offset, token.len)];
offset += token.len;
writeln!(acc, "{:?} {:?} {:?}", token.kind, token_len, token_text).unwrap();
}
for err in errors {
writeln!(acc, "> error{:?} token({:?}) msg({})", err.range(), &text[err.range()], err)
.unwrap();
}
acc
}
fn fragment_parser_dir_test<T, F>(ok_paths: &[&str], err_paths: &[&str], f: F)
where
T: crate::AstNode,
F: Fn(&str) -> Result<T, ()>,
{
dir_tests(&test_data_dir(), ok_paths, "rast", |text, path| {
if let Ok(node) = f(text) {
format!("{:#?}", crate::ast::AstNode::syntax(&node))
} else {
panic!("Failed to parse '{:?}'", path);
}
});
dir_tests(&test_data_dir(), err_paths, "rast", |text, path| {
if let Ok(_) = f(text) {
panic!("'{:?}' successfully parsed when it should have errored", path);
} else {
"ERROR\n".to_owned()
}
});
}
/// Calls callback `f` with input code and file paths for each `.rs` file in `test_data_dir`
/// subdirectories defined by `paths`.
///
/// If the content of the matching output file differs from the output of `f()`
/// the test will fail.
///
/// If there is no matching output file it will be created and filled with the
/// output of `f()`, but the test will fail.
fn dir_tests<F>(test_data_dir: &Path, paths: &[&str], outfile_extension: &str, f: F)
where
F: Fn(&str, &Path) -> String,
{
for (path, input_code) in collect_rust_files(test_data_dir, paths) {
let actual = f(&input_code, &path);
let path = path.with_extension(outfile_extension);
expect_file![path].assert_eq(&actual)
}
}
/// Collects all `.rs` files from `dir` subdirectories defined by `paths`.
fn collect_rust_files(root_dir: &Path, paths: &[&str]) -> Vec<(PathBuf, String)> {
paths
.iter()
.flat_map(|path| {
let path = root_dir.to_owned().join(path);
rust_files_in_dir(&path).into_iter()
})
.map(|path| {
let text = read_text(&path);
(path, text)
})
.collect()
}
/// Collects paths to all `.rs` files from `dir` in a sorted `Vec<PathBuf>`.
fn rust_files_in_dir(dir: &Path) -> Vec<PathBuf> {
let mut acc = Vec::new();
for file in fs::read_dir(&dir).unwrap() {
let file = file.unwrap();
let path = file.path();
if path.extension().unwrap_or_default() == "rs" {
acc.push(path);
}
}
acc.sort();
acc
}
/// Read file and normalize newlines.
///
/// `rustc` seems to always normalize `\r\n` newlines to `\n`:
///
/// ```
/// let s = "
/// ";
/// assert_eq!(s.as_bytes(), &[10]);
/// ```
///
/// so this should always be correct.
fn read_text(path: &Path) -> String {
fs::read_to_string(path)
.unwrap_or_else(|_| panic!("File at {:?} should be valid", path))
.replace("\r\n", "\n")
}

View file

@ -0,0 +1,303 @@
//! FIXME: write short doc here
mod block;
use crate::{
ast, match_ast, AstNode, SyntaxError,
SyntaxKind::{BYTE, BYTE_STRING, CHAR, CONST, FN, INT_NUMBER, STRING, TYPE_ALIAS},
SyntaxNode, SyntaxToken, TextSize, T,
};
use rustc_lexer::unescape::{
self, unescape_byte, unescape_byte_literal, unescape_char, unescape_literal, Mode,
};
use std::convert::TryFrom;
fn rustc_unescape_error_to_string(err: unescape::EscapeError) -> &'static str {
use unescape::EscapeError as EE;
#[rustfmt::skip]
let err_message = match err {
EE::ZeroChars => {
"Literal must not be empty"
}
EE::MoreThanOneChar => {
"Literal must be one character long"
}
EE::LoneSlash => {
"Character must be escaped: `\\`"
}
EE::InvalidEscape => {
"Invalid escape"
}
EE::BareCarriageReturn | EE::BareCarriageReturnInRawString => {
"Character must be escaped: `\r`"
}
EE::EscapeOnlyChar => {
"Escape character `\\` must be escaped itself"
}
EE::TooShortHexEscape => {
"ASCII hex escape code must have exactly two digits"
}
EE::InvalidCharInHexEscape => {
"ASCII hex escape code must contain only hex characters"
}
EE::OutOfRangeHexEscape => {
"ASCII hex escape code must be at most 0x7F"
}
EE::NoBraceInUnicodeEscape => {
"Missing `{` to begin the unicode escape"
}
EE::InvalidCharInUnicodeEscape => {
"Unicode escape must contain only hex characters and underscores"
}
EE::EmptyUnicodeEscape => {
"Unicode escape must not be empty"
}
EE::UnclosedUnicodeEscape => {
"Missing `}` to terminate the unicode escape"
}
EE::LeadingUnderscoreUnicodeEscape => {
"Unicode escape code must not begin with an underscore"
}
EE::OverlongUnicodeEscape => {
"Unicode escape code must have at most 6 digits"
}
EE::LoneSurrogateUnicodeEscape => {
"Unicode escape code must not be a surrogate"
}
EE::OutOfRangeUnicodeEscape => {
"Unicode escape code must be at most 0x10FFFF"
}
EE::UnicodeEscapeInByte => {
"Byte literals must not contain unicode escapes"
}
EE::NonAsciiCharInByte | EE::NonAsciiCharInByteString => {
"Byte literals must not contain non-ASCII characters"
}
};
err_message
}
pub(crate) fn validate(root: &SyntaxNode) -> Vec<SyntaxError> {
// FIXME:
// * Add unescape validation of raw string literals and raw byte string literals
// * Add validation of doc comments are being attached to nodes
let mut errors = Vec::new();
for node in root.descendants() {
match_ast! {
match node {
ast::Literal(it) => validate_literal(it, &mut errors),
ast::BlockExpr(it) => block::validate_block_expr(it, &mut errors),
ast::FieldExpr(it) => validate_numeric_name(it.name_ref(), &mut errors),
ast::RecordExprField(it) => validate_numeric_name(it.name_ref(), &mut errors),
ast::Visibility(it) => validate_visibility(it, &mut errors),
ast::RangeExpr(it) => validate_range_expr(it, &mut errors),
ast::PathSegment(it) => validate_path_keywords(it, &mut errors),
_ => (),
}
}
}
errors
}
fn validate_literal(literal: ast::Literal, acc: &mut Vec<SyntaxError>) {
// FIXME: move this function to outer scope (https://github.com/rust-analyzer/rust-analyzer/pull/2834#discussion_r366196658)
fn unquote(text: &str, prefix_len: usize, end_delimiter: char) -> Option<&str> {
text.rfind(end_delimiter).and_then(|end| text.get(prefix_len..end))
}
let token = literal.token();
let text = token.text().as_str();
// FIXME: lift this lambda refactor to `fn` (https://github.com/rust-analyzer/rust-analyzer/pull/2834#discussion_r366199205)
let mut push_err = |prefix_len, (off, err): (usize, unescape::EscapeError)| {
let off = token.text_range().start() + TextSize::try_from(off + prefix_len).unwrap();
acc.push(SyntaxError::new_at_offset(rustc_unescape_error_to_string(err), off));
};
match token.kind() {
BYTE => {
if let Some(Err(e)) = unquote(text, 2, '\'').map(unescape_byte) {
push_err(2, e);
}
}
CHAR => {
if let Some(Err(e)) = unquote(text, 1, '\'').map(unescape_char) {
push_err(1, e);
}
}
BYTE_STRING => {
if let Some(without_quotes) = unquote(text, 2, '"') {
unescape_byte_literal(without_quotes, Mode::ByteStr, &mut |range, char| {
if let Err(err) = char {
push_err(2, (range.start, err));
}
})
}
}
STRING => {
if let Some(without_quotes) = unquote(text, 1, '"') {
unescape_literal(without_quotes, Mode::Str, &mut |range, char| {
if let Err(err) = char {
push_err(1, (range.start, err));
}
})
}
}
_ => (),
}
}
pub(crate) fn validate_block_structure(root: &SyntaxNode) {
let mut stack = Vec::new();
for node in root.descendants() {
match node.kind() {
T!['{'] => stack.push(node),
T!['}'] => {
if let Some(pair) = stack.pop() {
assert_eq!(
node.parent(),
pair.parent(),
"\nunpaired curleys:\n{}\n{:#?}\n",
root.text(),
root,
);
assert!(
node.next_sibling().is_none() && pair.prev_sibling().is_none(),
"\nfloating curlys at {:?}\nfile:\n{}\nerror:\n{}\n",
node,
root.text(),
node.text(),
);
}
}
_ => (),
}
}
}
fn validate_numeric_name(name_ref: Option<ast::NameRef>, errors: &mut Vec<SyntaxError>) {
if let Some(int_token) = int_token(name_ref) {
if int_token.text().chars().any(|c| !c.is_digit(10)) {
errors.push(SyntaxError::new(
"Tuple (struct) field access is only allowed through \
decimal integers with no underscores or suffix",
int_token.text_range(),
));
}
}
fn int_token(name_ref: Option<ast::NameRef>) -> Option<SyntaxToken> {
name_ref?.syntax().first_child_or_token()?.into_token().filter(|it| it.kind() == INT_NUMBER)
}
}
fn validate_visibility(vis: ast::Visibility, errors: &mut Vec<SyntaxError>) {
let parent = match vis.syntax().parent() {
Some(it) => it,
None => return,
};
match parent.kind() {
FN | CONST | TYPE_ALIAS => (),
_ => return,
}
let impl_def = match parent.parent().and_then(|it| it.parent()).and_then(ast::Impl::cast) {
Some(it) => it,
None => return,
};
if impl_def.trait_().is_some() {
errors.push(SyntaxError::new("Unnecessary visibility qualifier", vis.syntax.text_range()));
}
}
fn validate_range_expr(expr: ast::RangeExpr, errors: &mut Vec<SyntaxError>) {
if expr.op_kind() == Some(ast::RangeOp::Inclusive) && expr.end().is_none() {
errors.push(SyntaxError::new(
"An inclusive range must have an end expression",
expr.syntax().text_range(),
));
}
}
fn validate_path_keywords(segment: ast::PathSegment, errors: &mut Vec<SyntaxError>) {
use ast::PathSegmentKind;
let path = segment.parent_path();
let is_path_start = segment.coloncolon_token().is_none() && path.qualifier().is_none();
if let Some(token) = segment.self_token() {
if !is_path_start {
errors.push(SyntaxError::new(
"The `self` keyword is only allowed as the first segment of a path",
token.text_range(),
));
}
} else if let Some(token) = segment.crate_token() {
if !is_path_start || use_prefix(path).is_some() {
errors.push(SyntaxError::new(
"The `crate` keyword is only allowed as the first segment of a path",
token.text_range(),
));
}
} else if let Some(token) = segment.super_token() {
if !all_supers(&path) {
errors.push(SyntaxError::new(
"The `super` keyword may only be preceded by other `super`s",
token.text_range(),
));
return;
}
let mut curr_path = path;
while let Some(prefix) = use_prefix(curr_path) {
if !all_supers(&prefix) {
errors.push(SyntaxError::new(
"The `super` keyword may only be preceded by other `super`s",
token.text_range(),
));
return;
}
curr_path = prefix;
}
}
fn use_prefix(mut path: ast::Path) -> Option<ast::Path> {
for node in path.syntax().ancestors().skip(1) {
match_ast! {
match node {
ast::UseTree(it) => if let Some(tree_path) = it.path() {
// Even a top-level path exists within a `UseTree` so we must explicitly
// allow our path but disallow anything else
if tree_path != path {
return Some(tree_path);
}
},
ast::UseTreeList(_it) => continue,
ast::Path(parent) => path = parent,
_ => return None,
}
};
}
return None;
}
fn all_supers(path: &ast::Path) -> bool {
let segment = match path.segment() {
Some(it) => it,
None => return false,
};
if segment.kind() != Some(PathSegmentKind::SuperKw) {
return false;
}
if let Some(ref subpath) = path.qualifier() {
return all_supers(subpath);
}
return true;
}
}

View file

@ -0,0 +1,22 @@
//! Logic for validating block expressions i.e. `ast::BlockExpr`.
use crate::{
ast::{self, AstNode, AttrsOwner},
SyntaxError,
SyntaxKind::*,
};
pub(crate) fn validate_block_expr(block: ast::BlockExpr, errors: &mut Vec<SyntaxError>) {
if let Some(parent) = block.syntax().parent() {
match parent.kind() {
FN | EXPR_STMT | BLOCK_EXPR => return,
_ => {}
}
}
errors.extend(block.attrs().map(|attr| {
SyntaxError::new(
"A block in this position cannot accept inner attributes",
attr.syntax().text_range(),
)
}))
}