migrate ra_syntax to the new rowan API

This commit is contained in:
Aleksey Kladov 2019-07-18 19:23:05 +03:00
parent 58d4983ba5
commit d402974aa0
20 changed files with 1189 additions and 2352 deletions

View file

@ -31,7 +31,7 @@ pub mod ast;
#[doc(hidden)]
pub mod fuzz;
use std::{fmt::Write, sync::Arc};
use std::{fmt::Write, marker::PhantomData, sync::Arc};
use ra_text_edit::AtomTextEdit;
@ -43,8 +43,8 @@ pub use crate::{
ptr::{AstPtr, SyntaxNodePtr},
syntax_error::{Location, SyntaxError, SyntaxErrorKind},
syntax_node::{
Direction, InsertPosition, SyntaxElement, SyntaxNode, SyntaxNodeWrapper, SyntaxToken,
SyntaxTreeBuilder, TreeArc, WalkEvent,
Direction, InsertPosition, SyntaxElement, SyntaxNode, SyntaxToken, SyntaxTreeBuilder,
WalkEvent,
},
syntax_text::SyntaxText,
};
@ -58,48 +58,63 @@ pub use rowan::{SmolStr, TextRange, TextUnit};
/// Note that we always produce a syntax tree, even for completely invalid
/// files.
#[derive(Debug, PartialEq, Eq)]
pub struct Parse<T: SyntaxNodeWrapper> {
tree: TreeArc<T>,
pub struct Parse<T> {
green: GreenNode,
errors: Arc<Vec<SyntaxError>>,
_ty: PhantomData<fn() -> T>,
}
impl<T: SyntaxNodeWrapper> Clone for Parse<T> {
impl<T> Clone for Parse<T> {
fn clone(&self) -> Parse<T> {
Parse { tree: self.tree.clone(), errors: self.errors.clone() }
Parse { green: self.green.clone(), errors: self.errors.clone(), _ty: PhantomData }
}
}
impl<T: SyntaxNodeWrapper> Parse<T> {
fn new(tree: TreeArc<T>, errors: Vec<SyntaxError>) -> Parse<T> {
Parse { tree, errors: Arc::new(errors) }
impl<T> Parse<T> {
fn new(green: GreenNode, errors: Vec<SyntaxError>) -> Parse<T> {
Parse { green, errors: Arc::new(errors), _ty: PhantomData }
}
pub fn tree(&self) -> &T {
&*self.tree
fn syntax_node(&self) -> SyntaxNode {
SyntaxNode::new(self.green.clone())
}
}
impl<T: AstNode> Parse<T> {
pub fn to_syntax(self) -> Parse<SyntaxNode> {
Parse { green: self.green, errors: self.errors, _ty: PhantomData }
}
pub fn tree(&self) -> T {
T::cast(self.syntax_node()).unwrap()
}
pub fn errors(&self) -> &[SyntaxError] {
&*self.errors
}
pub fn ok(self) -> Result<TreeArc<T>, Arc<Vec<SyntaxError>>> {
pub fn ok(self) -> Result<T, Arc<Vec<SyntaxError>>> {
if self.errors.is_empty() {
Ok(self.tree)
Ok(self.tree())
} else {
Err(self.errors)
}
}
}
impl<T: AstNode> Parse<T> {
pub fn to_syntax(this: Self) -> Parse<SyntaxNode> {
Parse { tree: this.tree().syntax().to_owned(), errors: this.errors }
impl Parse<SyntaxNode> {
pub fn cast<N: AstNode>(self) -> Option<Parse<N>> {
if N::cast(self.syntax_node()).is_some() {
Some(Parse { green: self.green, errors: self.errors, _ty: PhantomData })
} else {
None
}
}
}
impl Parse<SourceFile> {
pub fn debug_dump(&self) -> String {
let mut buf = self.tree.syntax().debug_dump();
let mut buf = self.tree().syntax().debug_dump();
for err in self.errors.iter() {
writeln!(buf, "error {:?}: {}", err.location(), err.kind()).unwrap();
}
@ -112,45 +127,38 @@ impl Parse<SourceFile> {
fn incremental_reparse(&self, edit: &AtomTextEdit) -> Option<Parse<SourceFile>> {
// FIXME: validation errors are not handled here
parsing::incremental_reparse(self.tree.syntax(), edit, self.errors.to_vec()).map(
parsing::incremental_reparse(self.tree().syntax(), edit, self.errors.to_vec()).map(
|(green_node, errors, _reparsed_range)| Parse {
tree: SourceFile::new(green_node),
green: green_node,
errors: Arc::new(errors),
_ty: PhantomData,
},
)
}
fn full_reparse(&self, edit: &AtomTextEdit) -> Parse<SourceFile> {
let text = edit.apply(self.tree.syntax().text().to_string());
let text = edit.apply(self.tree().syntax().text().to_string());
SourceFile::parse(&text)
}
}
impl Parse<SyntaxNode> {
pub fn cast<T: AstNode>(self) -> Option<Parse<T>> {
let node = T::cast(&self.tree)?;
Some(Parse { tree: node.to_owned(), errors: self.errors })
}
}
/// `SourceFile` represents a parse tree for a single Rust file.
pub use crate::ast::SourceFile;
impl SourceFile {
fn new(green: GreenNode) -> TreeArc<SourceFile> {
fn new(green: GreenNode) -> SourceFile {
let root = SyntaxNode::new(green);
if cfg!(debug_assertions) {
validation::validate_block_structure(&root);
}
assert_eq!(root.kind(), SyntaxKind::SOURCE_FILE);
TreeArc::cast(root)
SourceFile::cast(root).unwrap()
}
pub fn parse(text: &str) -> Parse<SourceFile> {
let (green, mut errors) = parsing::parse_text(text);
let tree = SourceFile::new(green);
errors.extend(validation::validate(&tree));
Parse { tree, errors: Arc::new(errors) }
errors.extend(validation::validate(&SourceFile::new(green.clone())));
Parse { green, errors: Arc::new(errors), _ty: PhantomData }
}
}
@ -170,14 +178,14 @@ fn api_walkthrough() {
// The `parse` method returns a `Parse` -- a pair of syntax tree and a list
// of errors. That is, syntax tree is constructed even in presence of errors.
let parse = SourceFile::parse(source_code);
assert!(parse.errors.is_empty());
assert!(parse.errors().is_empty());
// Due to the way ownership is set up, owned syntax Nodes always live behind
// a `TreeArc` smart pointer. `TreeArc` is roughly an `std::sync::Arc` which
// points to the whole file instead of an individual node.
let file: TreeArc<SourceFile> = parse.tree;
// The `tree` method returns an owned syntax node of type `SourceFile`.
// Owned nodes are cheap: inside, they are `Rc` handles to the underling data.
let file: SourceFile = parse.tree();
// `SourceFile` is the root of the syntax tree. We can iterate file's items:
// `SourceFile` is the root of the syntax tree. We can iterate file's items.
// Let's fetch the `foo` function.
let mut func = None;
for item in file.items() {
match item.kind() {
@ -185,31 +193,26 @@ fn api_walkthrough() {
_ => unreachable!(),
}
}
// The returned items are always references.
let func: &ast::FnDef = func.unwrap();
// All nodes implement `ToOwned` trait, with `Owned = TreeArc<Self>`.
// `to_owned` is a cheap operation: atomic increment.
let _owned_func: TreeArc<ast::FnDef> = func.to_owned();
let func: ast::FnDef = func.unwrap();
// Each AST node has a bunch of getters for children. All getters return
// `Option`s though, to account for incomplete code. Some getters are common
// for several kinds of node. In this case, a trait like `ast::NameOwner`
// usually exists. By convention, all ast types should be used with `ast::`
// qualifier.
let name: Option<&ast::Name> = func.name();
let name: Option<ast::Name> = func.name();
let name = name.unwrap();
assert_eq!(name.text(), "foo");
// Let's get the `1 + 1` expression!
let block: &ast::Block = func.body().unwrap();
let expr: &ast::Expr = block.expr().unwrap();
let block: ast::Block = func.body().unwrap();
let expr: ast::Expr = block.expr().unwrap();
// "Enum"-like nodes are represented using the "kind" pattern. It allows us
// to match exhaustively against all flavors of nodes, while maintaining
// internal representation flexibility. The drawback is that one can't write
// nested matches as one pattern.
let bin_expr: &ast::BinExpr = match expr.kind() {
let bin_expr: ast::BinExpr = match expr.kind() {
ast::ExprKind::BinExpr(e) => e,
_ => unreachable!(),
};
@ -219,23 +222,14 @@ fn api_walkthrough() {
let expr_syntax: &SyntaxNode = expr.syntax();
// Note how `expr` and `bin_expr` are in fact the same node underneath:
assert!(std::ptr::eq(expr_syntax, bin_expr.syntax()));
assert!(expr_syntax == bin_expr.syntax());
// To go from CST to AST, `AstNode::cast` function is used:
let expr = match ast::Expr::cast(expr_syntax) {
let _expr: ast::Expr = match ast::Expr::cast(expr_syntax.clone()) {
Some(e) => e,
None => unreachable!(),
};
// Note how expr is also a reference!
let expr: &ast::Expr = expr;
// This is possible because the underlying representation is the same:
assert_eq!(
expr as *const ast::Expr as *const u8,
expr_syntax as *const SyntaxNode as *const u8
);
// The two properties each syntax node has is a `SyntaxKind`:
assert_eq!(expr_syntax.kind(), SyntaxKind::BIN_EXPR);
@ -248,7 +242,7 @@ fn api_walkthrough() {
assert_eq!(text.to_string(), "1 + 1");
// There's a bunch of traversal methods on `SyntaxNode`:
assert_eq!(expr_syntax.parent(), Some(block.syntax()));
assert_eq!(expr_syntax.parent().as_ref(), Some(block.syntax()));
assert_eq!(block.syntax().first_child_or_token().map(|it| it.kind()), Some(T!['{']));
assert_eq!(
expr_syntax.next_sibling_or_token().map(|it| it.kind()),
@ -257,7 +251,7 @@ fn api_walkthrough() {
// As well as some iterator helpers:
let f = expr_syntax.ancestors().find_map(ast::FnDef::cast);
assert_eq!(f, Some(&*func));
assert_eq!(f, Some(func));
assert!(expr_syntax.siblings_with_tokens(Direction::Next).any(|it| it.kind() == T!['}']));
assert_eq!(
expr_syntax.descendants_with_tokens().count(),
@ -272,7 +266,7 @@ fn api_walkthrough() {
for event in expr_syntax.preorder_with_tokens() {
match event {
WalkEvent::Enter(node) => {
let text = match node {
let text = match &node {
SyntaxElement::Node(it) => it.text().to_string(),
SyntaxElement::Token(it) => it.text().to_string(),
};
@ -319,7 +313,7 @@ fn api_walkthrough() {
let mut exprs_visit = Vec::new();
for node in file.syntax().descendants() {
if let Some(result) =
visitor().visit::<ast::Expr, _>(|expr| expr.syntax().text().to_string()).accept(node)
visitor().visit::<ast::Expr, _>(|expr| expr.syntax().text().to_string()).accept(&node)
{
exprs_visit.push(result);
}